Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters

Publication year range
1.
Appl Environ Microbiol ; 90(8): e0098824, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39082807

ABSTRACT

Shigella bacteria utilize the type III secretion system (T3SS) to invade host cells and establish local infection. Invasion plasmid antigen D (IpaD), a component of Shigella T3SS, has garnered extensive interest as a vaccine target, primarily due to its pivotal role in the Shigella invasion, immunogenic property, and a high degree of conservation across Shigella species and serotypes. Currently, we are developing an epitope- and structure-based multivalent vaccine against shigellosis and require functional epitope antigens of key Shigella virulence determinants including IpaD. However, individual IpaD B-cell epitopes, their contributions to the overall immunogenicity, and functional activities attributing to bacteria invasion have not been fully characterized. In this study, we predicted continuous B-cell epitopes in silico and fused each epitope to a carrier protein. Then, we immunized mice intramuscularly with each epitope fusion protein, examined the IpaD-specific antibody responses, and measured antibodies from each epitope fusion for the activity against Shigella invasion in vitro. Data showed that all epitope fusion proteins induced similar levels of anti-IpaD IgG antibodies in mice, and differences were noted for antibody inhibition activity against Shigella invasion. IpaD epitope 1 (SPGGNDGNSV), IpaD epitope 2 (LGGNGEVVLDNA), and IpaD epitope 5 (SPNNTNGSSTET) induced antibodies significantly better in inhibiting invasion from Shigella flexneri 2a, and epitopes 1 and 5 elicited antibodies more effectively at preventing invasion of Shigella sonnei. These results suggest that IpaD epitopes 1 and 5 can be the IpaD representative antigens for epitope-based polyvalent protein construction and protein-based cross-protective Shigella vaccine development.IMPORTANCEShigella is a leading cause of diarrhea in children younger than 5 years in developing countries (children's diarrhea) and continues to be a major threat to public health. No licensed vaccines are currently available against the heterogeneous Shigella species and serotype strains. Aiming to develop a cross-protective multivalent vaccine against shigellosis and dysentery, we applied novel multiepitope fusion antigen (MEFA) technology to construct a broadly immunogenic polyvalent protein antigen, by presenting functional epitopes of multiple Shigella virulence determinants on a backbone protein. The functional IpaD epitopes identified from this study will essentially allow us to construct an optimal polyvalent Shigella immunogen, leading to the development of a cross-protective vaccine against shigellosis (and dysentery) and the improvement of global health. In addition, identifying functional epitopes from heterogeneous virulence determinants and using them as antigenic representatives for the development of cross-protective multivalent vaccines can be applied generally in vaccine development.


Subject(s)
Antigens, Bacterial , Epitopes, B-Lymphocyte , Shigella flexneri , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Animals , Mice , Shigella flexneri/immunology , Shigella flexneri/genetics , Epitopes, B-Lymphocyte/immunology , Shigella Vaccines/immunology , Shigella Vaccines/administration & dosage , Shigella Vaccines/genetics , Dysentery, Bacillary/prevention & control , Dysentery, Bacillary/immunology , Dysentery, Bacillary/microbiology , Mice, Inbred BALB C , Epitope Mapping , Female , Shigella/immunology , Shigella/genetics , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Shigella sonnei/immunology , Shigella sonnei/genetics , Type III Secretion Systems/immunology , Type III Secretion Systems/genetics
2.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673913

ABSTRACT

Shigellosis is a severe gastrointestinal disease that annually affects approximately 270 million individuals globally. It has particularly high morbidity and mortality in low-income regions; however, it is not confined to these regions and occurs in high-income nations when conditions allow. The ill effects of shigellosis are at their highest in children ages 2 to 5, with survivors often exhibiting impaired growth due to infection-induced malnutrition. The escalating threat of antibiotic resistance further amplifies shigellosis as a serious public health concern. This review explores Shigella pathology, with a primary focus on the status of Shigella vaccine candidates. These candidates include killed whole-cells, live attenuated organisms, LPS-based, and subunit vaccines. The strengths and weaknesses of each vaccination strategy are considered. The discussion includes potential Shigella immunogens, such as LPS, conserved T3SS proteins, outer membrane proteins, diverse animal models used in Shigella vaccine research, and innovative vaccine development approaches. Additionally, this review addresses ongoing challenges that necessitate action toward advancing effective Shigella prevention and control measures.


Subject(s)
Dysentery, Bacillary , Shigella Vaccines , Shigella , Humans , Shigella Vaccines/immunology , Shigella Vaccines/administration & dosage , Dysentery, Bacillary/prevention & control , Dysentery, Bacillary/immunology , Animals , Shigella/immunology , Shigella/pathogenicity , Vaccines, Subunit/immunology , Vaccine Development , Vaccines, Attenuated/immunology
3.
Microb Pathog ; 178: 106066, 2023 May.
Article in English | MEDLINE | ID: mdl-36924900

ABSTRACT

BACKGROUNDS: Shigella spp. causes bloody diarrhea and leads to death, especially in children. Chimeric proteins containing virulence factors can prevent Shigella infection. The purpose of this study is to investigate the immunogenic and protective effect of trivalent chimeric protein containing IpaD-StxB-TolC antigens against shiga toxin, S. dysenteri and S. flexneri in vitro and in vivo conditions. METHODS: Recombinant vector was transferred to E. coli BL21. The expression of the chimeric protein was confirmed by SDS PAGE and purified using the Ni-NTA column. Mice were immunized with recombinant protein and antibody titer was evaluated by ELISA. 10, 25 and 50 LD50 of Shiga toxin neutralization was evaluated in vitro (Vero cell line) and in vivo conditions. Also, the challenge of immunized mice with 10, 25 and 50 LD50 of S. dysentery and S. flexneri was done. RESULTS: The expression and purification of the recombinant protein with 60.6 kDa was done. ELISA showed increased antibody titer against the chimeric protein. MTT assay indicated that 1/8000 dilution of the sera had a 51% of cell viability against the toxin in Vero cell line. The challenge of mice immunized with toxin showed that the mice had complete protection against 10 and 25 LD50 of toxin and had 40% survival against 50 LD50. Mice receiving 10 and 25 LD50 of S. dysenteri and S. flexneri had 100% protection and in 50 LD50 the survival rate was 60 and 50%, respectively. Organ burden showed that the amount of bacterial colonization in immunized mice was 1 × 104 CFU/mL, which was significantly different from the control group. CONCLUSION: This study showed that chimeric proteins can create favorable immunogenicity in the host as vaccine candidates.


Subject(s)
Dysentery, Bacillary , Escherichia coli , Animals , Mice , Escherichia coli/genetics , Antigens, Bacterial/genetics , Bacterial Vaccines , Dysentery, Bacillary/prevention & control , Recombinant Proteins/genetics , Shiga Toxins , Recombinant Fusion Proteins/genetics , Antibodies, Bacterial , Shigella flexneri/genetics , Mice, Inbred BALB C
4.
Proteomics ; 21(2): e2000072, 2021 01.
Article in English | MEDLINE | ID: mdl-33025732

ABSTRACT

Escherichia coli and Shigella spp. causing illnesses in humans represent a genotypically and phenotypically diverse group of pathogens. Although E. coli diversity has been studied by comparative genomics, the intra-species variation at the proteome level is currently unknown. The proteomes of 16 pathogenic E. coli, 2 non-pathogenic E. coli, and 5 Shigella strains originating from 18 phylogenetic lineages are investigated. By applying label-free quantitative proteomics on trypsin-digested cell extracts from bacteria grown on blood agar, 4018 proteins are detected, 3285 of which arequantified, and 261 represented virulence factors. Of 753 proteins quantified in all strains, the levels of 153 vary substantially between strains and are functionally associated mostly with stress response and peripheral metabolism. The levels of proteins associated with the central metabolism vary considerably less than the levels of proteins from other metabolic pathways. Hierarchical clustering analysis based on the protein levels results in strains grouping that differ from that obtained by gene-based phylogenetic analysis. Finally, strains of some E. coli pathotypes have more similar protein profiles even when the strains are not genetically closely related. The results suggest that the degree of genetic relatedness may not necessarily be a good predictor of E. coli phenotypic characteristics.


Subject(s)
Escherichia coli , Shigella , Escherichia coli Infections , Escherichia coli Proteins/genetics , Humans , Phylogeny , Proteomics
5.
Microb Pathog ; 147: 104246, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32562811

ABSTRACT

Anti-adhesion therapy and anti-adhesin immunity are meant to diminish the interaction between pathogens and host tissues, either by prevention or by exclusion of bacterial adhesion and entrance to cells. Azurin is a scaffold protein possessing antiviral, antiparasitic, and anticancer activities. The purpose of the present study was to determine the effect of recombinant Azurin (rAzurin) on the adhesion and invasion capacity of invasive (Shigella sonnei, Shigella flexneri, Campylobacter jejuni) and non-invasive (Vibrio cholerae) enteric bacteria to cells. The non-toxic dose of rAzurin and the best MOI (Multiplicity of Infection) of bacterial species was assessed by MTT assay. Bacterial species were used at MOIs of 20:1 and Azurin was applied at the concentrations of 5 and 25 µg/mL and added to Caco-2 cells in competition and replacement assay to assess the anti-adhesion and anti-invasion properties of rAzurin. The protein caused significant decrease in the adhesion rate of S. sonnei, S. flexneri, C. jejuni, and V. cholerae strains to Caco-2 cells by 43, 39, 72, and 38% in competition and 45, 46, 75, and 48% in replacement assays, respectively. Also, S. sonnei, S. flexneri, and C. jejuni strains invasion rate was reduced to 50, 50, and 70% in anti-invasion assay, respectively. The inhibitory effect of Azurin against C. jejuni and V. cholerae strains adhesion was more significant (p < .001) compared to Shigella spp. (p < .05) which may be due to smaller size of the former bacteria. On the contrary, in invasion assay, rAzurin showed a greater inhibitory effect against Shigella spp. (p < .001) compared to C. jejuni (p < .05), which may probably be due to the interaction of rAzurin with several effectors or ligands, involved in Shigella invasion and internalization. The findings of the present study opens new insights of rAzurin as a new and potent candidate for reducing or probably preventing enteric bacterial attachment, invasion, and pathogenesis.


Subject(s)
Azurin/pharmacology , Bacterial Adhesion/drug effects , Shigella , Caco-2 Cells , Diarrhea , Humans , Recombinant Proteins/pharmacology
6.
Mol Cell Probes ; 51: 101531, 2020 06.
Article in English | MEDLINE | ID: mdl-32062018

ABSTRACT

The incidence of foodborne infections caused by Shigella spp. is still very high in every year, which poses a great potential threat to public health. Conventional quantification methods based on culture techniques, biochemical, and serological identification are time-consuming and labor-intensive. To develop a more rapid and efficient detection method of Shigella spp., we compared the sensitivity and specificity of three different polymerase chain reaction (PCR) methods, including conventional PCR, quantitative real-time PCR (RTQ-PCR), and droplet digital PCR (ddPCR). Our results indicated that ddPCR method exhibited higher sensitivity, and the limit of detection was 10-5 ng/µl for genomic DNA templates, 10-1 cfu/ml for Shigella bacteria culture. In addition, we found that ddPCR was a time-saving method, which required a shorter pre-culturing time. Collectively, ddPCR assay was a reliable method for rapid and effective detection of Shigella spp.


Subject(s)
Dysentery, Bacillary/diagnosis , Real-Time Polymerase Chain Reaction/methods , Shigella/genetics , Shigella/isolation & purification , Animals , DNA Primers , Dysentery, Bacillary/microbiology , Feces/microbiology , Limit of Detection , Mice , RAW 264.7 Cells , Sensitivity and Specificity , Shigella/pathogenicity
7.
J Infect Chemother ; 26(9): 955-958, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32446727

ABSTRACT

Acute dysentery is a prevalent case of hospital admission in developing countries, whose most common cause is believed to be Shigella species. Treatment failure employing oral or intravenous antibiotics is an increasing problem among children with dysentery. This is a prospective descriptive study that aims to find the antibiotic resistance pattern of Shigella spp. isolates from children with acute diarrhea in three children's referral hospitals in Mashhad, northeast-Iran. Between February 2018 to September 2019, a total of 233 stool samples were collected from children with inflammatory diarrhea. Shigella spp. were identified by culture and biochemical standard tests. Moreover, polyvalent Shigella antisera were used for serogrouping. The antibiotic susceptibility was performed by disk diffusion method. During the 9-month study period, a total of 94 non-duplicate clinical Shigella spp. were identified by culture and biochemical tests. Based on slide agglutination with appropriate group-specific polyvalent antisera, Shigella sonnei (70.2%) was found to be the most prevalent Shigella spp. followed by S. flexeneri (23.4%), S. dysentery (1%). Among isolates, S. boydii was not detected and five isolates (5.3%) were nonserotypable isolates. The resistance rate of Shigella spp. to azithromycin, ceftriaxone, ciprofloxacin, co-trimoxazole, nalidixic acid, gentamicin, amoxicillin, ampicillin, doxycycline and cefixime was 25.5%, 43.6%, 3.8%, 82.9%, 15.9%, 26.6%, 40.4%, 57.4%, 41.4%, 22.3%, respectively. The results revealed that the resistance of Shigella spp. to the three most commonly utilized antibiotics (azithromycin, ceftriaxone and, cefixime) is too high to recommend them as empirical therapy for children with acute dysentery in this city.


Subject(s)
Dysentery, Bacillary , Shigella , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azithromycin/pharmacology , Azithromycin/therapeutic use , Ceftriaxone/pharmacology , Ceftriaxone/therapeutic use , Child , Drug Resistance, Bacterial , Dysentery, Bacillary/drug therapy , Dysentery, Bacillary/epidemiology , Feces , Hospitals , Humans , Iran/epidemiology , Microbial Sensitivity Tests , Prospective Studies , Referral and Consultation
8.
Acta Microbiol Immunol Hung ; 67(2): 100-106, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32223306

ABSTRACT

This study aimed to evaluate the routine identification tools available in Lebanon for differentiation of Escherichia coli and Shigella spp. The identification of 43 isolates defined as Shigella spp. by Api 20E was accessed using MALDI-TOF, serological testing, duplex PCR targeting ipaH (present in Shigella spp. and enteroinvasive E. coli "EIEC") and lacY (found in E. coli including EIEC but not Shigella spp.) as well as gyrB gene sequencing. Antibiotic susceptibility was investigated as well as Shiga-toxin production. All isolates were identified as E. coli by MALDI-TOF while the PCR showed a disparate group of 26 EIEC, 11 Shigella spp., 5 E. coli and 1 inactive E. coli. However, the sequencing of gyrB gene, which was recently described as a suitable marker for distinguishing E. coli and Shigella spp., identified all isolates as E. coli. Antibiotic resistance was noticeable against ß-lactams, rifampicin, trimethoprim-sulfamethoxazole, gentamicin, and ciprofloxacin. The most common variants of beta-lactamase genes were blaTEM-1, blaCTX-M-15, and blaCTX-M-3. A great discordance between the used methods in identification was revealed herein. An accurate identification technique able to distinguish E. coli from Shigella spp. in routine laboratories is a pressing need in order to select the appropriate treatment and assess the epidemiology of these bacteria.


Subject(s)
Dysentery, Bacillary/diagnosis , Enteropathogenic Escherichia coli/isolation & purification , Molecular Typing/methods , Shigella/isolation & purification , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , DNA Gyrase/genetics , Drug Resistance, Multiple, Bacterial/genetics , Dysentery, Bacillary/microbiology , Enteropathogenic Escherichia coli/classification , Enteropathogenic Escherichia coli/genetics , Escherichia coli Proteins/genetics , Humans , Lebanon , Microbial Sensitivity Tests , Monosaccharide Transport Proteins/genetics , Shiga Toxin/metabolism , Shigella/classification , Shigella/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Symporters/genetics
9.
Article in English | MEDLINE | ID: mdl-30455248

ABSTRACT

We analyzed 254 Shigella species isolates collected in Québec, Canada, during 2013 and 2014. Overall, 23.6% of isolates showed reduced susceptibility to azithromycin (RSA) encoded by mphA (11.6%), ermB (1.7%), or both genes (86.7%). Shigella strains with RSA were mostly isolated from men who have sex with men (68.8% or higher) from the Montreal region. A complete sequence analysis of six selected plasmids from Shigella sonnei and different serotypes of Shigella flexneri emphasized the role of IS26 in the dissemination of RSA.


Subject(s)
Azithromycin/pharmacology , Shigella/drug effects , Shigella/pathogenicity , Anti-Bacterial Agents/pharmacology , Canada , Homosexuality, Male/statistics & numerical data , Humans , Male , Microbial Sensitivity Tests , Quebec , Shigella flexneri/drug effects , Shigella flexneri/pathogenicity , Shigella sonnei/drug effects , Shigella sonnei/pathogenicity
10.
Plant Cell Environ ; 42(11): 2962-2978, 2019 11.
Article in English | MEDLINE | ID: mdl-31250458

ABSTRACT

Shigella, which infects primates, can be transmitted via fresh vegetables; however, its molecular interactions with plants have not been elucidated. Here, we show that four Shigella strains, Shigella boydii, Shigella sonnei, Shigella flexneri 2a, and S. flexneri 5a, proliferate at different levels in Arabidopsis thaliana. Microscopic studies revealed that these bacteria were present inside leaves and damaged plant cells. Green fluorescent protein (GFP)-tagged S. boydii and S. flexneri 5a colonized leaves only, whereas S. flexneri 2a colonized both leaves and roots. Using Shigella mutants lacking type III secretion systems (T3SSs), we found that T3SSs that regulate the pathogenesis of shigellosis in humans also play a central role in bacterial proliferation in Arabidopsis. Strikingly, the immunosuppressive activity of two T3S effectors, OspF and OspG, was required for proliferation of Shigella in Arabidopsis. Of note, delivery of OspF or OspG effectors inside plant cells upon Shigella inoculation was confirmed using a split GFP system. These findings demonstrate that the human pathogen Shigella can proliferate in plants by adapting immunosuppressive machinery used in the original host human.


Subject(s)
Arabidopsis/microbiology , Bacterial Outer Membrane Proteins/metabolism , Shigella/growth & development , Shigella/pathogenicity , Type III Secretion Systems/metabolism , Virulence Factors/metabolism , Arabidopsis/immunology , Arabidopsis/metabolism , Gene Expression Regulation, Plant/immunology , Plant Cells/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Leaves/microbiology , Plants, Genetically Modified , Shigella/genetics , Signal Transduction/immunology , Type III Secretion Systems/genetics
11.
Niger J Clin Pract ; 22(8): 1083-1090, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31417051

ABSTRACT

AIMS: The aim of this study was to provide epidemiological data about the presence of Salmonella spp. and Shigella spp. in raw milk samples collected from different animals. METHODS: A total of 231 raw milk samples from 48 cows, 65 goats, 65 sheep, and 53 donkeys were studied. The ISO 6579:2002 and ISO 21567:2004 methods, antimicrobial susceptibility tests, and serotyping were performed. Species and subspecies discriminations were made via matrix-assisted laser desorption/ionization-time of flight mass spectrometry. After DNA isolation from all samples, Salmonella spp. and Shigella spp. were detected using real-time polymerase chain reaction (PCR) kits. RESULTS: Five samples (2.16%) showed positivity out of 231 raw milk samples for Salmonella spp., and 2 (0.87%) samples were detected to be positive by multiplex real-time PCR design. CONCLUSION: We found that raw milk samples were not free of Salmonella spp. and Shigella spp. and need to be tested routinely to avoid public health problems. Rapid and reliable real-time PCR method can be developed and used for this purposes instead of slow bacterial culture processes.


Subject(s)
DNA, Bacterial/analysis , Food Contamination/analysis , Milk/microbiology , Polymerase Chain Reaction/methods , Salmonella/genetics , Salmonella/isolation & purification , Shigella/genetics , Shigella/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Cattle , Equidae , Female , Goats , Humans , Salmonella/classification , Sensitivity and Specificity , Sheep , Shigella/classification
12.
Rheumatol Int ; 38(6): 1009-1016, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29404675

ABSTRACT

Enterobacterial components in the joints of patients are believed to contribute to a perpetuating inflammation leading to a reactive arthritis (ReA), a condition in which microbial agents cannot be recovered from the joint. At present, it is unclear whether nucleic acids from Shigella spp. are playing a pathogenic role in causing not only ReA but also other forms of arthritis. Quantitative real-time polymerase chain reaction assay (qPCR) is the method of choice for the identification of bacteria within the synovium. The aim of our study was to detect the presence of Shigella spp. nucleic acids in the synovial tissue (ST) of Tunisian arthritis patients. We investigated 57 ST samples from rheumatoid arthritis (RA) n = 38, undifferentiated oligoarthritis (UOA) n = 12, and spondyloarthritis (SpA) n = 7 patients; 5 ST samples from healthy individuals were used as controls. Shigella spp. DNA and mRNA transcripts encoding the virulence gene A (VirA) were examined using an optimized qPCR with newly designed primers and probes. Using qPCR, Shigella spp. DNA was found in 37/57 (65%) ST samples (24/38, i.e., 63.2% of RA, 8/12, i.e., 67% of UOA, and 5/7, i.e., 71.4% of SpA patients). Paired DNA and mRNA were extracted from 39 ST samples, whose VirA cDNA was found in 29/39 (74.4%) patients. qPCR did not yield any nucleic acids in the five healthy control ST samples. The qPCR assay was sensitive and showed a good intra- and inter-run reproducibility. These preliminary findings generated by an optimized, highly sensitive PCR assay underline a potential role of past gastrointestinal infections. In Tunisian patients, a bacterial etiology involving Shigella spp. in the manifestation of arthritic disorders including RA might be more common than expected.


Subject(s)
Arthritis, Rheumatoid/microbiology , DNA, Bacterial/analysis , Real-Time Polymerase Chain Reaction/methods , Shigella/isolation & purification , Synovial Membrane/microbiology , Adult , Female , Humans , Male , Middle Aged , Nucleic Acids , Prohibitins , Reproducibility of Results , Tunisia
13.
Microb Pathog ; 92: 68-71, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26654792

ABSTRACT

Shigella is one of the important causes of diarrhea worldwide. Shigella has several virulence factors contributing in colonization and invasion of epithelial cells and eventually death of host cells. The present study was performed in order to investigate the distribution of virulence factors genes in Shigella spp. isolated from patients with acute diarrhea in Kerman, Iran as well as the genetic relationship of these isolates. A total of 56 isolates including 31 S. flexneri, 18 S. sonnei and 7 S. boydii were evaluated by polymerase chain reaction (PCR) for the presence of 11 virulence genes (ipaH, ial, set1A, set1B, sen, virF, invE, sat, sigA, pic and sepA). Then, the clonal relationship of these strains was analyzed by multilocus variable-number tandem repeat analysis (MLVA) method. All isolates were positive for ipaH gene. The other genes include ial, invE and virF were found in 80.4%, 60.7% and 67.9% of the isolates, respectively. Both set1A and set1B were detected in 32.3% of S. flexneri isolates, whereas 66.1% of the isolates belonging to different serogroup carried sen gene. The sat gene was present in all S. flexneri isolates, but not in the S. sonnei and S. boydii isolates. The result showed, 30.4% of isolates were simultaneously positive and the rest of the isolates were negative for sepA and pic genes. The Shigella isolates were divided into 29 MLVA types. This study, for the first time, investigated distribution of 11 virulence genes in Shigella spp. Our results revealed heterogeneity of virulence genes in different Shigella serogroups. Furthermore, the strains belonging to the same species had little diversity.


Subject(s)
Diarrhea/microbiology , Genes, Bacterial , Shigella/genetics , Shigella/pathogenicity , Virulence Factors/genetics , Humans , Iran , Minisatellite Repeats , Multilocus Sequence Typing , Shigella/classification , Shigella/isolation & purification
14.
Emerg Infect Dis ; 20(5): 854-6, 2014 May.
Article in English | MEDLINE | ID: mdl-24750584

ABSTRACT

During 2012-2013 in Montreal, Canada, 4 locally acquired Shigella spp. pulse types with the mph(A) gene and reduced susceptibility to azithromycin were identified from 9 men who have sex with men, 7 of whom were HIV infected. Counseling about prevention of enteric sexually transmitted infections might help slow transmission of these organisms.


Subject(s)
Anti-Bacterial Agents/pharmacology , Azithromycin/pharmacology , Drug Resistance, Bacterial , Dysentery, Bacillary/epidemiology , Dysentery, Bacillary/microbiology , Shigella/drug effects , Adult , Coinfection/epidemiology , Drug Resistance, Bacterial/genetics , Female , Genes, Bacterial , Homosexuality, Male , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Phosphotransferases (Alcohol Group Acceptor)/genetics , Public Health Surveillance , Quebec/epidemiology , Sexually Transmitted Diseases , Shigella/genetics
15.
J Family Med Prim Care ; 13(5): 2073-2077, 2024 May.
Article in English | MEDLINE | ID: mdl-38948633

ABSTRACT

Introduction: Gastrointestinal infections affect many people annually. The most common bacterial agents involved in these infections are enteropathogenic bacteria and in the continuation of using broad-spectrum antibiotics, Clostridium difficile-associated diarrhea is involved, especially in hospitalized patients. The aim of the present study was to investigate the pattern of antibiotic resistance among enteropathogenic bacteria. Materials and Methods: In this cross-sectional study, 163 samples of patients with diarrhea in Dezful Ganjavian Hospital were examined. The samples were cultured in MacConkey, Hektoen enteric agar and GN broth, and cycloserine cefoxitin fructose agar media and incubated under standard conditions. In order to identify enteropathogenic bacteria, biochemical tests and serological confirmatory tests were used. Antibiotic resistance pattern of the isolates was investigated by Kirby-Bauer disk diffusion susceptibility test. Results: The frequency of pathogenic bacteria includes 41.1% of Shigella flexneri, followed by 41.1% of S. sonnei, 6.7% of Enteropathogenic E. coli, 5.5% of Salmonella enterica Serogroup B, and 5.5% of Shigella dysenteriae. The results revealed a total of 46 patients with orders regarding C. difficile culture, no C. difficile was isolated from the samples. The studied isolates showed the highest resistance to trimethoprim-sulfamethoxazole, and ceftriaxone (88.3%), and the most effective antibiotic in the treatment of patients was ciprofloxacin with 86% sensitivity. Conclusion: Susceptibility to antibiotics was different among the isolates, which shows that the early identification of the infection agent and the selection of the correct antibiotic treatment are effective in improving the gastrointestinal infection and preventing the spread of the infection.

16.
Vaccines (Basel) ; 12(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38932347

ABSTRACT

Shigella spp. are responsible for bacillary dysentery or shigellosis transmitted via the fecal-oral route, causing significant morbidity and mortality, especially among vulnerable populations. There are currently no licensed Shigella vaccines. Shigella spp. use a type III secretion system (T3SS) to invade host cells. We have shown that L-DBF, a recombinant fusion of the T3SS needle tip (IpaD) and translocator (IpaB) proteins with the LTA1 subunit of enterotoxigenic E. coli labile toxin, is broadly protective against Shigella spp. challenge in a mouse lethal pulmonary model. Here, we assessed the effect of LDBF, formulated with a unique TLR4 agonist called BECC470 in an oil-in-water emulsion (ME), on the murine immune response in a high-risk population (young and elderly) in response to Shigella challenge. Dual RNA Sequencing captured the transcriptome during Shigella infection in vaccinated and unvaccinated mice. Both age groups were protected by the L-DBF formulation, while younger vaccinated mice exhibited more adaptive immune response gene patterns. This preliminary study provides a step toward identifying the gene expression patterns and regulatory pathways responsible for a protective immune response against Shigella. Furthermore, this study provides a measure of the challenges that need to be addressed when immunizing an aging population.

17.
Future Microbiol ; 19: 377-384, 2024 03.
Article in English | MEDLINE | ID: mdl-38305237

ABSTRACT

Background: The present study aims to determine the presence of Yersinia spp., Yersinia pestis, Yersinia enterocolitica pathogen, Listeria monocytogenes, Salmonella spp., Shigella spp., Francisella tularensis and Borrelia spp. in brown rats of Tehran, Iran. Methods: PCR was used to detect various bacteria in 100 brown rats, Also, ELISA was used to detect antibodies against the F. tularensis and Borrelia spp. Results: A total of 16% and 13% of fecal samples were positive for Yersinia spp. and Y. enterocolitica pathogen. ELISA results were negative for F. tularensis and Borrelia. No specific antibodies (IgG) were against these bacteria. Conclusion: According to the results of our analysis, rats are significant transmitters and carriers of a variety of illnesses that can spread to both people and other animals.


Subject(s)
Listeria monocytogenes , Shigella , Yersinia enterocolitica , Humans , Animals , Rats , Yersinia enterocolitica/genetics , Iran/epidemiology , Salmonella
18.
Anal Chim Acta ; 1284: 341967, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37996154

ABSTRACT

Escherichia coli and Shigella spp. are closely related, making it crucial to accurately identify them for disease control and prevention. In this study, we utilized MALDI-TOF MS to identify characteristic peaks of decarboxylation products of lysine and ornithine to distinguish between E. coli and Shigella spp. Our findings indicate that the peak at m/z 103.12 ± 0.1 of the product cadaverine from lysine decarboxylase is unique to E. coli, while all Shigella species lack the m/z 103.12 ± 0.1 peak. However, S. sonnei and S. boydii serotype C13 exhibit a specific peak at m/z 89.10 ± 0.1, which is the product of putrescine from ornithine decarboxylase. We were able to correctly identify 97.06% (132 of 136) of E. coli and Shigella isolates and 100% (8 of 8) of S. sonnei isolates using this biochemical-based MALDI-TOF MS detection system. This technology is advantageous for its high-throughput, high quality, and ease of operation, and is of significant value for the diagnosis of E. coli and Shigella-related diseases.


Subject(s)
Escherichia coli , Shigella , Escherichia coli/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Shigella/chemistry , Cadaverine , Putrescine
19.
Front Microbiol ; 14: 1240570, 2023.
Article in English | MEDLINE | ID: mdl-38094623

ABSTRACT

The evidence and prevalence of multidrug-resistant (MDR) Shigella spp. poses a serious global threat to public health and the economy. Food- or water-borne MDR Shigella spp. demands an alternate strategy to counteract this threat. In this regard, phage therapy has garnered great interest from medical practitioners and researchers as a potential way to combat MDR pathogens. In this observation, we isolated Shigella phages from environmental water samples and tested against various clinically isolated MDR Shigella spp. In this study, we have defined the isolation and detailed physical and genomic characterizations of two phages Sfin-2 and Sfin-6 from environmental water samples. The phages exhibited potent lytic activity against Shigella flexneri, Shigella dysenteriae, and Shigella sonnei. They showed absorption within 5-10 min, a burst size ranging from ~74 to 265 PFU/cell, and a latent period of 5-20 min. The phages were stable at a broad pH range and survived an hour at 50°C. The purified phages Sfin-2 and Sfin-6 belong to the Siphoviridae family with an isometric head (64.90 ± 2.04 nm and 62.42 ± 4.04 nm, respectively) and a non-contractile tail (145 ± 8.5 nm and 148.47 ± 14.5 nm, respectively). The in silico analysis concluded that the size of the genomic DNA of the Sfin-2 phage is 50,390 bp with a GC content of 44.90%, while the genome size of the Sfin-6 phage is 50,523 bp with a GC content of 48.30%. A total of 85 and 83 putative open reading frames (ORFs) were predicted in the Sfin-2 and Sfin-6 phages, respectively. Furthermore, a comparative genomic and phylogenetic analysis revealed that both phages represented different isolates and novel members of the T1-like phages. Sfin-2 and Sfin-6 phages, either individually or in a cocktail form, showed a significant reduction in the viable Shigella count on raw chicken samples after 72 h of incubation. Therefore, these results indicate that these phages might have a potential role in therapeutic approaches designed for shigellosis patients as well as in the biological control of MDR Shigella spp. in the poultry or food industry during the course of meat storage.

20.
Antibiotics (Basel) ; 12(5)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37237720

ABSTRACT

Shigella is the leading global etiological agent of shigellosis, especially in poor and underdeveloped or developing nations with insufficient sanitation such as Bangladesh. Antibiotics are the only treatment option for the shigellosis caused by Shigella spp. as no effective vaccine exists. However, the emergence of antimicrobial resistance (AMR) poses a serious global public health concern. Therefore, a systematic review and meta-analysis were conducted to establish the overall drug resistance pattern against Shigella spp. in Bangladesh. The databases of PubMed, Web of Science, Scopus, and Google Scholar were searched for relevant studies. This investigation comprised 28 studies with 44,519 samples. Forest and funnel plots showed any-drug, mono-drug, and multi-drug resistance. Any fluoroquinolone had a resistance rate of 61.9% (95% CI: 45.7-83.8%), any trimethoprim-sulfamethoxazole-60.8% (95% CI: 52.4-70.5%), any azithromycin-38.8% (95% CI: 19.6-76.9%), any nalidixic acid-36.2% (95% CI: 14.2-92.4%), any ampicillin-34.5% (95% CI: 25.0-47.8%), and any ciprofloxacin-31.1% (95% CI: 11.9-81.3%). Multi-drug-resistant Shigella spp. exhibited a prevalence of 33.4% (95% CI: 17.3-64.5%), compared to 2.6% to 3.8% for mono-drug-resistant strains. Since resistance to commonly used antibiotics and multidrug resistance were higher, a judicious use of antibiotics, the promotion of infection control measures, and the implementation of antimicrobial surveillance and monitoring programs are required to tackle the therapeutic challenges of shigellosis.

SELECTION OF CITATIONS
SEARCH DETAIL