Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Zhen Ci Yan Jiu ; 43(7): 414-8, 2018 Jul 25.
Article in Zh | MEDLINE | ID: mdl-30094976

ABSTRACT

OBJECTIVE: To explore the neuroanatomical basis of acupoint-visceral correlation by studying the distribution of the neurons associated with acupoint "Shenshu" (BL 23) area and adrenal gland in rats. METHODS: AF 488-CTB and AF 594-CTB were injected into the left side of BL 23 area and adrenal gland in the same rat respectively. Three days after injection, the dorsal root ganglions (DRG), sympathetic chain, and spinal cord were dissected out from the perfused rats. The neuronal labeling with AF 488/594-CTB was directly observed on the sections under a fluorescent microscope or a laser scanning confocal microscope. RESULTS: All neural labeling was observed in the injection side. The sensory neurons associated with both acupoint BL 23 and adrenal gland distributed from thoracic (T) 10 to lumbar (L) 2 DRG with high concentration in T 12-T 13 and T 11-T 12, respectively, in which some of them were simultaneously labeled with both AF 488/594-CTB and located in T 12-L 1 DRG. For the sympathetic innervation, the postganglionic neurons correlated with BL 23 and adrenal gland were labeled with AF 488/594-CTB separately in the sympathetic chain at the lumbar segments, while the labeled preganglionic neurons were only observed at the lateral horn of T 11-T 13 spinal segments in the cases of adrenal gland. In addition, the labeled motor neurons were mainly detected in the spinal ventral horn at cervical (C) 7-C 8 and T 11-L 1 segments. CONCLUSION: These results indicate that there are segmental correlation between BL 23 and adrenal gland on the sensory and sympathetic innervations, and this correlation might be a neural pathway for modulating the function role of adrenal gland through BL 23 needling.


Subject(s)
Acupuncture Points , Motor Neurons , Adrenal Glands , Animals , Rats , Sensory Receptor Cells , Spinal Cord
2.
J Pharmacol Toxicol Methods ; 88(Pt 1): 64-71, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28658603

ABSTRACT

The purpose of this study was to evaluate functional measures of diminished sympathetic activity after postganglionic neuronal loss in the conscious rat. To produce variable degrees of sympathetic postganglionic neuronal loss, adult rats were treated daily with toxic doses of guanethidine (100mg/kg) for either 5days or 11days, followed by a recovery period of at least 18days. Heart rate, blood pressure, cardiac baroreflex responsiveness, urinalysis (for catecholamine metabolite, 3-methoxy-4-hydroxyphenylethylenglycol; MHPG), and pupillometry were performed during the recovery period. At the end of the recovery period stereology of superior cervical ganglia (SCG) was performed to determine the degree of neuronal loss. Total number of SCG neurons was correlated to physiological outcomes using regression analysis. Whereas guanethidine treatment for 11days caused significant reduction in the number of neurons (15,646±1460 vs. 31,958±1588), guanethidine treatment for 5days caused variable levels of neuronal depletion (26,009±3518). Regression analysis showed that only changes in urinary MHPG levels and systolic blood pressure significantly correlated with reduction of SCG neurons (r2=0.45 and 0.19, both p<0.05). Although cardiac baroreflex-induced reflex tachycardia (345.7±19.6 vs. 449.7±20.3) and pupil/iris ratio (0.50±0.03% vs. 0.61±0.02%) were significantly attenuated in the 11-day guanethidine treated rats there was no significant relationship between these measurements and the number of remaining SCG neurons after treatment (p>0.05). These data suggest that basal systolic blood pressure and urinary MHPG levels predict drug-induced depletion of sympathetic activity in vivo.


Subject(s)
Guanethidine/toxicity , Neurons/drug effects , Superior Cervical Ganglion/drug effects , Sympatholytics/toxicity , Toxicity Tests, Acute/methods , Animals , Baroreflex/drug effects , Blood Pressure/drug effects , Catecholamines/metabolism , Consciousness , Heart Rate/drug effects , Male , Methoxyhydroxyphenylglycol/urine , Rats , Rats, Sprague-Dawley
3.
Article in English | MEDLINE | ID: mdl-27085835

ABSTRACT

The goal of this study was to determine the degree of sympathetic postganglionic neuronal loss required to impair cardiovascular-related sympathetic activity. To produce neuronal loss separate groups of rats were treated daily with guanethidine for either 5days or 11days, followed by a recovery period. Sympathetic activity was measured by renal sympathetic nerve activity (RSNA). Stereology of thoracic (T13) ganglia was performed to determine neuronal loss. Despite loss of more than two thirds of neurons in T13 ganglia in both treated groups no effect on resting blood pressure (BP) or heart rate (HR) was detected. Basal RSNA in rats treated for 5days (0.61±0.10µV∗s) and 11days (0.37±0.08µV∗s) was significantly less than vehicle-treated rats (0.99±0.13µV∗s, p<0.05). Increases in RSNA by baroreceptor unloading were significantly lower in 5-day (1.09±0.19µV∗s) and 11-day treated rats (0.59±0.11µV∗s) compared with vehicle-treated rats (1.82±0.19µV∗s, p<0.05). Increases in RSNA to chemoreceptor stimulation were significantly lower in 5-day treated rats (1.54±0.25µV∗s) compared with vehicle-treated rats (2.69±0.23µV∗s, p<0.05). Increases in RSNA in 11-day treated rats were significantly lower (0.75±0.15µV∗s, p<0.05) compared with both vehicle-treated and 5-day treated rats. A positive correlation of neurons to sympathetic responsiveness but not basal activity was detected. These data suggest that diminished capacity for reflex sympathetic responsiveness rather than basal activity alone must be assessed for complete detection of neurophysiological cardiovascular impairment.


Subject(s)
Anesthesia/adverse effects , Cardiovascular System/drug effects , Sympathetic Fibers, Postganglionic , Sympathetic Nervous System/drug effects , Animals , Blood Pressure/drug effects , Body Weight/drug effects , Cardiovascular System/innervation , Guanethidine/toxicity , Heart Rate/drug effects , Kidney/drug effects , Kidney/innervation , Male , Pressoreceptors/drug effects , Rats , Rats, Sprague-Dawley , Sympatholytics/toxicity , Thoracic Nerves
SELECTION OF CITATIONS
SEARCH DETAIL