Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 434
Filter
Add more filters

Publication year range
1.
Cancer Sci ; 115(5): 1505-1519, 2024 May.
Article in English | MEDLINE | ID: mdl-38476010

ABSTRACT

The fibrotic tumor microenvironment is a pivotal therapeutic target. Nintedanib, a clinically approved multikinase antifibrotic inhibitor, is effective against lung adenocarcinoma (ADC) but not squamous cell carcinoma (SCC). Previous studies have implicated the secretome of tumor-associated fibroblasts (TAFs) in the selective effects of nintedanib in ADC, but the driving factor(s) remained unidentified. Here we examined the role of tissue inhibitor of metalloproteinase-1 (TIMP-1), a tumor-promoting cytokine overproduced in ADC-TAFs. To this aim, we combined genetic approaches with in vitro and in vivo preclinical models based on patient-derived TAFs. Nintedanib reduced TIMP-1 production more efficiently in ADC-TAFs than SCC-TAFs through a SMAD3-dependent mechanism. Cell culture experiments indicated that silencing TIMP1 in ADC-TAFs abolished the therapeutic effects of nintedanib on cancer cell growth and invasion, which were otherwise enhanced by the TAF secretome. Consistently, co-injecting ADC cells with TIMP1-knockdown ADC-TAFs into immunocompromised mice elicited a less effective reduction of tumor growth and invasion under nintedanib treatment compared to tumors bearing unmodified fibroblasts. Our results unveil a key mechanism underlying the selective mode of action of nintedanib in ADC based on the excessive production of TIMP-1 in ADC-TAFs. We further pinpoint reduced SMAD3 expression and consequent limited TIMP-1 production in SCC-TAFs as key for the resistance of SCC to nintedanib. These observations strongly support the emerging role of TIMP-1 as a critical regulator of therapy response in solid tumors.


Subject(s)
Adenocarcinoma of Lung , Cancer-Associated Fibroblasts , Indoles , Lung Neoplasms , Smad3 Protein , Tissue Inhibitor of Metalloproteinase-1 , Animals , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/drug effects , Humans , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Mice , Indoles/pharmacology , Indoles/therapeutic use , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/genetics , Smad3 Protein/metabolism , Cell Line, Tumor , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Female
2.
Bioorg Med Chem Lett ; 99: 129627, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38272189

ABSTRACT

Metastasis is one of the major causes of death in patients with cancer, and cell invasion plays a fundamental part in this process. Because of the absence of efficacious treatments, caring for these patients is challenging. Recently, we optimized the structure of the naturally occurring lasso peptide sungsanpin. We identified two peptides, octapeptide S3 and cyclic peptide S4, which inhibited invasion into A549 cells effectively. We undertook an alanine scan of S3 to explore the structure-activity relationship. The linear octapeptide S3-4 and cyclic peptide S4-1 exhibited improved inhibition of invasion into A549 cells. We modified S3-4 to obtain S3-4K, which displayed much higher inhibitory activity against invasion into A549 cells than S3-4. Of all peptides tested, S4-1 upregulated significantly mRNA of tissue inhibitor matrix metalloproteinase TIMP-1 and TIMP-2.


Subject(s)
Peptides , Tissue Inhibitor of Metalloproteinase-1 , Humans , Tissue Inhibitor of Metalloproteinase-1/genetics , Matrix Metalloproteinases , A549 Cells , Peptides, Cyclic
3.
Cell Biochem Funct ; 42(2): e3958, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38396357

ABSTRACT

Iron accumulation in the brain causes oxidative stress, blood-brain barrier (BBB) breakdown, and neurodegeneration. We examined the preventive effects of acetylated oligopeptides (AOP) from whey protein on iron-induced hippocampal damage compared to N-acetyl cysteine (NAC). This 5-week study used 40 male albino rats. At the start, all rats received 150 mg/kg/day of oral NAC for a week. The 40 animals were then randomly divided into four groups: Group I (control) received a normal diet; Group II (iron overload) received 60 mg/kg/day intraperitoneal iron dextran 5 days a week for 4 weeks; Group III (NAC group) received 150 mg/kg/day NAC and iron dextran; and Group IV (AOP group) received 150 mg/kg/day AOP and iron dextran. Enzyme-linked immunosorbent assay, spectrophotometry, and qRT-PCR were used to measure MMP-9, tissue inhibitor metalloproteinase-1 (TIMP-1), MDA, reduced glutathione (GSH) levels, and nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) gene expression. Histopathological and immunohistochemical detection of nestin, claudin, caspase, and GFAP was also done. MMP-9, TIMP-1, MDA, caspase, and GFAP rose in the iron overload group, while GSH, Nrf2, HO-1, nestin, and claudin decreased. The NAC and AOP administrations improved iron overload-induced biochemical and histological alterations. We found that AOP and NAC can protect the brain hippocampus from iron overload, improve BBB disruption, and provide neuroprotection with mostly no significant difference from healthy controls.


Subject(s)
Acetylcysteine , Iron Overload , Oligopeptides , Animals , Male , Rats , Acetylcysteine/pharmacology , Acetylcysteine/metabolism , Caspases/metabolism , Claudins/genetics , Dentate Gyrus/metabolism , Dentate Gyrus/pathology , Dextrans/metabolism , Dextrans/pharmacology , Down-Regulation , Glutathione/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Iron/metabolism , Iron/pharmacology , Iron Overload/complications , Iron Overload/drug therapy , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/pharmacology , Nestin/genetics , Nestin/metabolism , Nestin/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/pharmacology , Up-Regulation , Oligopeptides/pharmacology , Heme Oxygenase-1/drug effects , Glial Fibrillary Acidic Protein/drug effects , Glial Fibrillary Acidic Protein/metabolism
4.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891934

ABSTRACT

Despite the significant changes that unfold during the subacute phase of stroke, few studies have examined recovery abilities during this critical period. As neuroinflammation subsides and tissue degradation diminishes, the processes of neuroplasticity and angiogenesis intensify. An important factor in brain physiology and pathology, particularly neuroplasticity, is matrix metalloproteinase 9 (MMP-9). Its activity is modulated by tissue inhibitors of metalloproteinases (TIMPs), which impede substrate binding and activity by binding to its active sites. Notably, TIMP-1 specifically targets MMP-9 among other matrix metalloproteinases (MMPs). Our present study examines whether MMP-9 may play a beneficial role in psychological functions, particularly in alleviating depressive symptoms and enhancing specific cognitive domains, such as calculation. It appears that improvements in depressive symptoms during rehabilitation were notably linked with baseline MMP-9 plasma levels (r = -0.36, p = 0.025), and particularly so with the ratio of MMP-9 to TIMP-1, indicative of active MMP-9 (r = -0.42, p = 0.008). Furthermore, our findings support previous research demonstrating an inverse relationship between pre-rehabilitation MMP-9 serum levels and post-rehabilitation motor function. Crucially, our study emphasizes a positive correlation between cognition and motor function, highlighting the necessity of integrating both aspects into rehabilitation planning. These findings demonstrate the potential utility of MMP-9 as a prognostic biomarker for delineating recovery trajectories and guiding personalized treatment strategies for stroke patients during the subacute phase.


Subject(s)
Matrix Metalloproteinase 9 , Stroke , Tissue Inhibitor of Metalloproteinase-1 , Matrix Metalloproteinase 9/blood , Matrix Metalloproteinase 9/metabolism , Humans , Tissue Inhibitor of Metalloproteinase-1/blood , Tissue Inhibitor of Metalloproteinase-1/metabolism , Male , Stroke/metabolism , Stroke/blood , Female , Prospective Studies , Aged , Recovery of Function , Middle Aged , Stroke Rehabilitation , Biomarkers/blood
5.
Int J Mol Sci ; 25(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38928311

ABSTRACT

Aneurysms pose life-threatening risks due to the dilatation of the arteries and carry a high risk of rupture. Despite continuous research efforts, there are still no satisfactory or clinically effective pharmaceutical treatments for this condition. Accelerated inflammatory processes during aneurysm development lead to increased levels of matrix metalloproteinases (MMPs) and destabilization of the vessel wall through the degradation of the structural components of the extracellular matrix (ECM), mainly collagen and elastin. Tissue inhibitors of metalloproteinases (TIMPs) directly regulate MMP activity and consequently inhibit ECM proteolysis. In this work, the synthesis of TIMP-1 protein was increased by the exogenous delivery of synthetic TIMP-1 encoding mRNA into aortic vessel tissue in an attempt to inhibit MMP-9. In vitro, TIMP-1 mRNA transfection resulted in significantly increased TIMP-1 protein expression in various cells. The functionality of the expressed protein was evaluated in an appropriate ex vivo aortic vessel model. Decreased MMP-9 activity was detected using in situ zymography 24 h and 48 h post microinjection of 5 µg TIMP-1 mRNA into the aortic vessel wall. These results suggest that TIMP-1 mRNA administration is a promising approach for the treatment of aneurysms.


Subject(s)
Matrix Metalloproteinase 9 , RNA, Messenger , Tissue Inhibitor of Metalloproteinase-1 , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Animals , Humans , Rats , Aneurysm/therapy , Aneurysm/genetics , Aorta/metabolism , Male , Arteries/metabolism , Matrix Metalloproteinase Inhibitors/pharmacology
6.
J Cell Physiol ; 238(8): 1876-1890, 2023 08.
Article in English | MEDLINE | ID: mdl-37269543

ABSTRACT

Epithelial keratinocyte proliferation is an essential element of wound repair, and chronic wound conditions, such as diabetic foot, are characterized by aberrant re-epithelialization. In this study, we examined the functional role of retinoic acid inducible-gene I (RIG-I), a key regulator of epidermal keratinocyte proliferation, in promoting TIMP-1 expression. We found that RIG-I is overexpressed in keratinocytes of skin injury and underexpressed in skin wound sites of diabetic foot and streptozotocin-induced diabetic mice. Moreover, mice lacking RIG-I developed an aggravated phenotype when subjected to skin injury. Mechanistically, RIG-I promoted keratinocyte proliferation and wound repair by inducing TIMP-1 via the NF-κB signaling pathway. Indeed, recombinant TIMP-1 directly accelerated HaCaT cell proliferation in vitro and promoted wound healing in Ddx58-/- and diabetic mice in vivo. In summary, we demonstrated that RIG-I is a crucial factor that mediates epidermal keratinocyte proliferation and may be a potential biomarker for skin injury severity, thus making it an attractive locally therapeutic target for the treatment of chronic wounds such as diabetic foot.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Foot , Animals , Mice , Cell Movement , Cell Proliferation , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetic Foot/genetics , Diabetic Foot/metabolism , Keratinocytes/metabolism , NF-kappa B/metabolism , Signal Transduction , Skin/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Wound Healing/genetics
7.
Neurobiol Dis ; 179: 106057, 2023 04.
Article in English | MEDLINE | ID: mdl-36878326

ABSTRACT

The APOE4 allele increases the risk for Alzheimer's disease (AD) in a dose-dependent manner and is also associated with cognitive decline in non-demented elderly controls. In mice with targeted gene replacement (TR) of murine APOE with human APOE3 or APOE4, the latter show reduced neuronal dendritic complexity and impaired learning. APOE4 TR mice also show reduced gamma oscillation power, a neuronal population activity which is important to learning and memory. Published work has shown that brain extracellular matrix (ECM) can reduce neuroplasticity as well as gamma power, while attenuation of ECM can instead enhance this endpoint. In the present study we examine human cerebrospinal fluid (CSF) samples from APOE3 and APOE4 individuals and brain lysates from APOE3 and APOE4 TR mice for levels of ECM effectors that can increase matrix deposition and restrict neuroplasticity. We find that CCL5, a molecule linked to ECM deposition in liver and kidney, is increased in CSF samples from APOE4 individuals. Levels of tissue inhibitor of metalloproteinases (TIMPs), which inhibit the activity of ECM-degrading enzymes, are also increased in APOE4 CSF as well as astrocyte supernatants brain lysates from APOE4 TR mice. Importantly, as compared to APOE4/wild-type heterozygotes, APOE4/CCR5 knockout heterozygotes show reduced TIMP levels and enhanced EEG gamma power. The latter also show improved learning and memory, suggesting that the CCR5/CCL5 axis could represent a therapeutic target for APOE4 individuals.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Mice , Humans , Animals , Aged , Apolipoprotein E4/genetics , Memory, Short-Term , Apolipoprotein E3/genetics , Mice, Transgenic , Alzheimer Disease/genetics , Apolipoproteins E/genetics , Receptors, CCR5
8.
Kidney Int ; 103(1): 144-155, 2023 01.
Article in English | MEDLINE | ID: mdl-36273656

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) involves the development and persistent growth of fluid filled kidney cysts. In a recent study, we showed that ADPKD kidney cyst epithelial cells can stimulate the proliferation and differentiation of peri-cystic myofibroblasts. Although dense myofibroblast populations are often found surrounding kidney cysts, their role in cyst enlargement or fibrosis in ADPKD is unclear. To clarify this, we examined the effect of myofibroblast depletion in the Pkd1RC/RC (RC/RC) mouse model of ADPKD. RC/RC;αSMAtk mice that use the ganciclovir-thymidine kinase system to selectively deplete α-smooth muscle actin expressing myofibroblasts were generated. Ganciclovir treatment for four weeks depleted myofibroblasts, reduced kidney fibrosis and preserved kidney function in these mice. Importantly, myofibroblast depletion significantly reduced cyst growth and cyst epithelial cell proliferation in RC/RC;αSMAtk mouse kidneys. Similar ganciclovir treatment did not alter cyst growth or fibrosis in wild-type or RC/RC littermates. In vitro, co-culture with myofibroblasts from the kidneys of patients with ADPKD increased 3D microcyst growth of human ADPKD cyst epithelial cells. Treatment with conditioned culture media from ADPKD kidney myofibroblasts increased microcyst growth and cell proliferation of ADPKD cyst epithelial cells. Further examination of ADPKD myofibroblast conditioned media showed high levels of protease inhibitors including PAI1, TIMP1 and 2, NGAL and TFPI-2, and treatment with recombinant PAI1 and TIMP1 increased ADPKD cyst epithelial cell proliferation in vitro. Thus, our findings show that myofibroblasts directly promote cyst epithelial cell proliferation, cyst growth and fibrosis in ADPKD kidneys, and their targeting could be a novel therapeutic strategy to treat PKD.


Subject(s)
Cysts , Polycystic Kidney, Autosomal Dominant , Humans , Mice , Animals , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Myofibroblasts , Cells, Cultured , Kidney/pathology , Cell Proliferation , Fibrosis , Cysts/drug therapy , Cysts/pathology , Epithelial Cells/pathology
9.
J Neuroinflammation ; 20(1): 151, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37365625

ABSTRACT

BACKGROUND: Epilepsy is the second most prevalent neurological disease. Although there are many antiseizure drugs, approximately 30% of cases are refractory to treatment. Temporal lobe epilepsy (TLE) is the most common epilepsy subtype, and previous studies have reported that hippocampal inflammation is an important mechanism associated with the occurrence and development of TLE. However, the inflammatory biomarkers associated with TLE are not well defined. METHODS: In our study, we merged human hippocampus datasets (GSE48350 and GSE63808) through batch correction and generally verified the diagnostic roles of inflammation-related genes (IRGs) and subtype classification according to IRGs in epilepsy through differential expression, random forest, support vector machine, nomogram, subtype classification, enrichment, protein‒protein interaction, immune cell infiltration, and immune function analyses. Finally, we detected the location and expression of inhibitor of metalloproteinase-1 (TIMP1) in epileptic patients and kainic acid-induced epileptic mice. RESULTS: According to the bioinformatics analysis, we identified TIMP1 as the most significant IRG associated with TLE, and we found that TIMP1 was mainly located in cortical neurons and scantly expressed in cortical gliocytes by immunofluorescence staining. We detected decreased expression of TIMP1 by quantitative real-time polymerase chain reaction and western blotting. CONCLUSION: TIMP1, the most significant IRG associated with TLE, might be a novel and promising biomarker to study the mechanism of epilepsy and guide the discovery of new drugs for its treatment.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Humans , Mice , Animals , Epilepsy, Temporal Lobe/chemically induced , Epilepsy/metabolism , Hippocampus/metabolism , Inflammation/metabolism , Biomarkers/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism
10.
BMC Gastroenterol ; 23(1): 287, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37605137

ABSTRACT

BACKGROUND: Helicobacter pylori (H. pylori) is one of the leading causes of peptic ulcers, and its treatment is a worldwide challenge. Matrix metalloproteinases and their inhibitors influence the development and healing of peptic ulcers. This study aimed to evaluate the ratios of matrix metalloproteinase-2 (MMP-2) to tissue inhibitor of metalloproteinase-1 (TIMP-1) in patients with peptic ulcers that are sensitive or resistant to H. pylori treatment and compare them with healthy individuals. METHODS: In this study, 95 patients were included and divided into two groups sensitive (41 patients) and resistant to treatment (54 patients). The results were compared with a control group of 20 participants with normal endoscopy and H. pylori-negative. After obtaining written informed consent, five ml of venous blood was taken to determine their serum MMP-2 and TIMP-1 levels using an enzyme-linked immunosorbent assay. RESULTS: In patients with H. pylori-induced peptic ulcers, the MMP-2/TIMP-1 ratio was significantly higher than the healthy controls (P < 0.05). MMP-2 level was associated with patients' response to treatment (P < 0.05). The MMP-2/TIMP-1 ratio was higher in patients with simultaneous gastric and duodenal ulcers (P < 0.05). CONCLUSION: It seems that peptic ulcer disease caused by infection with H. pylori increases the MMP-2/TIMP-1 ratio in patients with peptic ulcers. However, it might not be a good predictor of refractory H. pylori-induced peptic ulcer disease.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Peptic Ulcer , Humans , Tissue Inhibitor of Metalloproteinase-1 , Matrix Metalloproteinase 2 , Helicobacter Infections/complications , Helicobacter Infections/drug therapy , Peptic Ulcer/drug therapy
11.
J Biochem Mol Toxicol ; 37(11): e23453, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37437075

ABSTRACT

Chronic obstructive pulmonary disease (COPD) has high morbidity and mortality. Here, we aimed to explore the roles and potential correlation of placenta polypeptide injection (PPI) and MMP-9/TIMP-1 signaling pathway in COPD. BEAS-2B cells were treated with cigarette smoke extract (CSE) to establish a COPD cell model in vitro. The cell survival and cytotoxic effect were measured by CCK-8, LDH release and flow cytometry assays. The inflammatory responses were determined by western blot and ELISA assay. Cell fibrosis was assessed by immunofluorescence and western blot assays. PPI treatment had no cytotoxic effect on BEAS-2B cells until the final concentration reached to 10%. In the range of 0%-8% final concentration, PPI treatment weakened CSE-induced the decrease of cell viability and the increase of LDH level in a concentration-dependent manner. Four percent PPI treatment enhanced cell viability and decreased cell apoptosis of CSE-treated cells in a time-dependent manner. Moreover, 4% PPI treatment significantly decreased inflammatory responses and fibrosis induced by CSE, while AMPA (MMPs agonist) had opposite effects. Notably, AMPA reversed the protective roles of PPI on CSE-induced inflammation and fibrosis. Mechanistically, 4% PPI treatment significantly suppressed MMP-1, MMP-2, MMP-3, MMP-9, MMP-13, and MMP-19 levels, but enhanced TIMP-1, TIMP-2, TIMP-3, and TIMP-4 levels. Among them, MMP-9 and TIMP-1 might be the main target of PPI. PPI effectively attenuated CSE-induced inflammation and fibrosis in vitro by regulating MMP-9/TIMP-1 signaling pathway.


Subject(s)
Cigarette Smoking , Pulmonary Disease, Chronic Obstructive , Humans , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/pharmacology , Matrix Metalloproteinase 9/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/adverse effects , Pulmonary Disease, Chronic Obstructive/chemically induced , Signal Transduction , Inflammation/chemically induced , Inflammation/drug therapy , Peptides/adverse effects
12.
BMC Pulm Med ; 23(1): 32, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36690987

ABSTRACT

OBJECTS: The family with sequence similarity 83B (FAM83B) is one of the markers for poor prognosis in several carcinomas, but the expression and the mechanism resulted in malignant phenotype in lung adenocarcinoma (LUAD) remain to be elucidated. METHODS:  Data of RNA-seq in LUAD were downloaded from the cancer genome atlas (TCGA) database for differential expression and survival analysis, and immunohistochemistry was employed to analyze the protein expression of FAM83B in 126 cases of primary LUAD. The LUAD cell lines were collected for the detection of the effects on migration and invasion. Then, western blot was performed to measure the expression of tissue inhibitor of metalloproteinase (TIMP)-1 and activation of PI3K/AKT/NF-κB pathway. RESULTS: FAM83B was overexpressed in multiple types of carcinomas; The differential expression analysis revealed that the level of FAM83B was higher in LUAD than that in para-carcinoma; The patients with overexpression of FAM83B were with shorter overall survival (OS), disease specific survival (DSS) and progress free interval (PFI); Enrichment analysis suggested it was related to the focal adhesion of LUAD. Immunohistochemistry analysis demonstrated that higher FAM83B expression was positively related to lymph node metastasis in primary. Scratch assay and Borden chamber assay showed that the overexpression of FAM83B promoted migration and invasion activity in vitro. Furthermore, high level of FAM83B accelerated the tumorigenesis in vivo. Western blot showed that TIMP-1 was upregulated in H1299/FAM83B OE cells accompanying by the activation of PI3K/AKT/NF-κB pathway. CONCLUSIONS: FAM83B was a marker for poor prognosis of LUAD and it might promote the expression of TIMP-1 by activating PI3K/AKT/NF-κB pathway and then affect the ECM balance, which resulted in the migration and invasion of LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Cell Line, Tumor , Cell Movement/genetics , Adenocarcinoma of Lung/pathology , Lung Neoplasms/pathology , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/genetics
13.
Eur J Appl Physiol ; 2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38043087

ABSTRACT

OBJECTIVES: The objectives of this study were to assess the effect of 8 weeks of moderate-intensity aerobic training on permeability inflammatory indicators of matrix metalloproteinases (MMPs) and specific tissue inhibitors of MMPs in female migraineurs. METHODS: Female migraineurs (n = 28, age 32 ± 6) were randomised into two groups: migraine with exercise training (EXE + Mig, n = 13) and migraine without exercise training (NON-EXE + Mig, n = 15). Matched healthy women were also recruited as a healthy control group (CON, n = 15). The EXE-Mig group performed 8 weeks of aerobic training. Pre and post intervention, serum matrix metalloproteinases (MMP-2 and 9) and specific tissue inhibitors of MMPs (TIMP-1 and 2) were measured. In addition, body composition indices and VO2max were determined. RESULTS: Exercise training reduced serum MMP-9 in female migraineurs with between-group changes and a time x group interaction (p < 0.05). In addition, exercise training reduced the serum MMP-9/TIMP-1 ratio in female migraineurs with between-group changes and time x group interaction (p < 0.05). However, no training-induced effect was observed in serum TIMP-1, TIMP-2, MMP-2 contents (p > 0.05) and MMP-2/TIMP-2 ratio (p > 0.05). Finally, exercise training reduced body fat content, WHR and BMI, and improved VO2max (p < 0.01). CONCLUSIONS: Our results demonstrated beneficial effects of aerobic exercise training on some circulatory inflammation factors (MMP9, MMP-9/TIMP-1) and some health indicators in female migraineurs, suggesting that such training can be employed as a non-pharmacological therapeutic method.

14.
BMC Musculoskelet Disord ; 24(1): 240, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36991363

ABSTRACT

BACKGROUND: Matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinases-1 (TIMP-1) are involved in the pathological mechanism of osteonecrosis of the femoral head (ONFH). This study aimed to investigate the relationship of serum MMP-9, TIMP-1, and the MMP-9/TIMP-1 ratio with disease severity in patients with nontraumatic ONFH. METHODS: Serum levels of MMP-9 and TIMP-1 among 102 nontraumatic ONFH patients and 96 healthy individuals were determined by enzyme-linked immunosorbent assay (ELISA). Imaging severity was determined using the FICAT classification system. The Harris hip score (HHS) and visual analogue scale (VAS) were used to evaluate clinical progress. The correlations of serum MMP-9 and TIMP-1 levels with imaging severity and clinical progress was evaluated statistically. The diagnostic value of MMP-9 for NONFH disease severity was evaluated by examining receiver operating characteristic (ROC) curves. RESULTS: The serum MMP-9 levels and the MMP-9/TIMP-1 ratio were significantly increased in patients with ONFH compared to normal controls, and TIMP-1 levels did not differ between the two groups. Serum MMP-9 levels and the MMP-9/TIMP-1 ratio were positively correlated with FICAT stage and VAS and were negatively correlated with the HHS score. The ROC curve results indicated that MMP-9 could be used as a potential marker of nontraumatic ONFH imaging progression. CONCLUSIONS: We hypothesize that increased MMP-9 expression and an imbalance in the MMP-9/TIMP-1 ratio play a role in the development of ONFH and are correlate with the severity of ONFH. The determination of MMP-9 can be a useful tool to assess the severity of the disease in patients with nontraumatic ONFH.


Subject(s)
Femur Head Necrosis , Matrix Metalloproteinase 9 , Humans , Femur Head/pathology , Matrix Metalloproteinase 9/blood , ROC Curve , Tissue Inhibitor of Metalloproteinase-1/blood , Femur Head Necrosis/blood
15.
Proc Natl Acad Sci U S A ; 117(5): 2588-2596, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31969449

ABSTRACT

Malignant transformation entails important changes in the control of cell proliferation through the rewiring of selected signaling pathways. Cancer cells then become very dependent on the proper function of those pathways, and their inhibition offers therapeutic opportunities. Here we identify the stress kinase p38α as a nononcogenic signaling molecule that enables the progression of KrasG12V-driven lung cancer. We demonstrate in vivo that, despite acting as a tumor suppressor in healthy alveolar progenitor cells, p38α contributes to the proliferation and malignization of lung cancer epithelial cells. We show that high expression levels of p38α correlate with poor survival in lung adenocarcinoma patients, and that genetic or chemical inhibition of p38α halts tumor growth in lung cancer mouse models. Moreover, we reveal a lung cancer epithelial cell-autonomous function for p38α promoting the expression of TIMP-1, which in turn stimulates cell proliferation in an autocrine manner. Altogether, our results suggest that epithelial p38α promotes KrasG12V-driven lung cancer progression via maintenance of cellular self-growth stimulatory signals.


Subject(s)
Adenocarcinoma of Lung/enzymology , Lung Neoplasms/enzymology , Mitogen-Activated Protein Kinase 14/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/mortality , Adenocarcinoma of Lung/pathology , Animals , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Disease Progression , Humans , Lung/enzymology , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 14/genetics , Neoplastic Processes , Proto-Oncogene Proteins p21(ras)/genetics
16.
Biochem Genet ; 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38103125

ABSTRACT

Angiogenesis is the critical media for tumor growth and migration. Tissue Inhibitor Matrix Metalloproteinase-1 (TIMP1) acts as an oncogene in colon carcinoma (CC), but the biological effects of TIMP1 on angiogenesis remain an open issue. This study sought to explore the exact function and mechanism of TIMP1 in the angiogenesis of CC. Bioinformatics methods were utilized to analyze the expression of TIMP1 and its upstream transcription factor FOS-like antigen 1 (FOSL1) in the tumor tissue of CC. Meanwhile, in CC cell lines, real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blot were utilized to verify the expression of TIMP1 and FOSL1. Cell counting kit-8 and tube formation assays were utilized to analyze the proliferation and angiogenesis abilities of human umbilical vein endothelial cells (HUVECs). Western blot was used to detect the protein expression of VEGFA, VEGFR-2, and VEGFR-3. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were carried out to explore the specific interaction between FOSL1 and TIMP1. The present study discovered that TIMP1 and FOSL1 were evidently up-regulated in CC tissue and cells. Meanwhile, TIMP1 was found to participate in regulating the signaling pathway of vascular endothelial growth factor (VEGF). Silenced TIMP1 conspicuously suppressed the proliferation and angiogenesis of HUVECs and reduced the protein expression of VEGFA, VEGFR-2, and VEGFR-3. Moreover, FOSL1 could promote TIMP1 transcription by binding with its promoter and the inhibition of TIMP1 expression obviously reversed the promotion effects of FOSL1 overexpression on the proliferation and angiogenesis of HUVECs. FOSL1 activated VEGF pathway by up-regulating TIMP1 expression, thereby advancing CC angiogenesis. We provided theoretical basis that the FOSL1/TIMP1/VEGF pathway might be a novel option for anti-angiogenesis therapy of CC.

17.
Immunopharmacol Immunotoxicol ; 45(4): 419-425, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36541209

ABSTRACT

BACKGROUND: Ferroptosis is involved in the drug resistance mechanisms of some tumors. The present study aimed to explore the role of tissue inhibitor of matrix metalloprotease 1 (TIMP1) in sorafenib-triggered ferroptosis in colorectal cancer (CRC). METHODS: HCT-8 CRC cell lines were generated that were sorafenib-resistant or that under- or overexpressed TIMP1. The levels of reactive oxygen species (ROS), iron, and malondialdehyde (MDA) were compared across the different cell lines. The half-maximal inhibitory concentration of sorafenib against the different lines was determined based on cell viability. Expression of ferroptosis-related genes and the corresponding proteins was determined by quantitative RT-PCR or western blotting. RESULTS: TIMP1 overexpression induced sorafenib resistance in HCT-8 cells. TIMP1 knockdown repressed the activation of the PI3K/Akt pathway and reduced levels of glutathione peroxidase 4 (GPX4), enhancing sorafenib-induced ferroptosis. This led to accumulation of ROS, iron, and MDA. Giving sorafenib and the GPX4 inhibitor RSL3 to sorafenib-resistant HCT-8 cells induced ferroptosis, leading to elevated levels of iron and lipid peroxides, ultimately reducing cell viability. TIMP1 depletion in CRC cells enhances sorafenib-triggered ferroptosis by reducing PI3K/Akt axis signal transduction. CONCLUSION: The combination of sorafenib and GPX4 inhibitors such as RSL3 may be a promising therapy against CRC.


Subject(s)
Colorectal Neoplasms , Ferroptosis , Signal Transduction , Humans , Colorectal Neoplasms/drug therapy , Iron , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Reactive Oxygen Species , Sorafenib/pharmacology , Tissue Inhibitor of Metalloproteinase-1
18.
Chem Biodivers ; 20(2): e202201221, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36651671

ABSTRACT

Cancer metastasis, including cell invasion, is a major cause of poor clinical outcomes and death in numerous cancer patients. In recent years, many efforts have been made to develop potent therapeutic molecules from naturally derived peptides. Sungsanpin is a naturally derived lasso peptide that inhibits A549 cell invasion. We aimed to evaluate the potential of sungsanpin derivatives as candidates for anti-invasion drugs. We synthesized an analog of sungsanpin (Sun A) using a solid-phase peptide synthesis strategy (SPPS) and further modified its structure to improve its anti-invasion activity. All peptides were tested for their proliferative inhibition and anti-invasion activities in the A549 cell lines. Octapeptide S3 and cyclooctapeptide S4 upregulated the expression of TIMP-1 and TIMP-2 mRNA effectively and thus improved the inhibitory effect on the invasion of A549 cells. The two peptides can inhibit the invasion of A549 cells by up to 60 %, suggesting that they have potential as lead molecules for the development of peptide inhibitors.


Subject(s)
Lung Neoplasms , Peptides , Humans , Peptides/chemistry , A549 Cells , Cell Line, Tumor , Lung Neoplasms/drug therapy
19.
Int J Neurosci ; : 1-15, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38060511

ABSTRACT

INTRODUCTION: Granule cell dispersion (GCD) is pathognomonic of hippocampal sclerosis seen in the mesial temporal lobe epilepsy (MTLE). Current animal studies indicate deficiency of Reelin is associated with abnormal granule cell migration leading to GCD. The present study aimed to evaluate complete Reelin signalling pathway to assess whether Reelin deficiency is related to MTLE. MATERIALS AND METHODS: Hippocampal sclerosis was confirmed by H and E stain. To explore the amount and cellular location of the Reelin cascade molecules, the hippocampal tissues from MTLE surgery and controls (n = 15 each) were studied using Immuno-histochemistry (IHC). Additionally, confocal imaging was used to validate the IHC findings by co-localization of different proteins. Quantification of IHC images was performed using histo-score and confocal images by Image J software. RESULTS: Immune expression of active Reelin was significantly reduced in patients. Reelin receptors were deranged, apolipoprotein E receptor 2 was increased while very low-density lipoprotein receptor was reduced. Disabled-1, a downstream molecule was significantly reduced in MTLE. Its ultimate target, cofilin was thus disinhibited and expressed more in MTLE. Reelin cleaving protease, matrix metalloprotease-9 (MMP-9) and MMP-9 inhibitor, tissue inhibitor of matrix protease-1, showed reduced expression in extracellular matrix. Semi-quantification of immunohistochemistry was done using Histo (H) score. H score of Reelin in diseased patients was 15 against 125 for control patients. These results were validated by confocal fluorescence microscopy. CONCLUSIONS: Reelin signalling cascade was deranged in chronic MTLE. Pharmacological manipulation of Reelin cascade can be done at various levels and it may provide novel treatment options for MTLE.

20.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675165

ABSTRACT

Acute lung injury is a complex cascade process that develops in response to various damaging factors, which can lead to acute respiratory distress syndrome. Within this study, based on bioinformatics reanalysis of available full-transcriptome data of acute lung injury induced in mice and humans by various factors, we selected a set of genes that could serve as good targets for suppressing inflammation in the lung tissue, evaluated their expression in the cells of different origins during LPS-induced inflammation, and chose the tissue inhibitor of metalloproteinase Timp1 as a promising target for suppressing inflammation. We designed an effective chemically modified anti-TIMP1 siRNA and showed that Timp1 silencing correlates with a decrease in the pro-inflammatory cytokine IL6 secretion in cultured macrophage cells and reduces the severity of LPS-induced acute lung injury in a mouse model.


Subject(s)
Acute Lung Injury , RNA, Small Interfering , Animals , Humans , Mice , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , Inflammation/genetics , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Lung/drug effects , Lung/metabolism , Mice, Inbred C57BL , Phenotype , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL