Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.599
Filter
Add more filters

Publication year range
1.
Cell ; 187(15): 4030-4042.e13, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38908367

ABSTRACT

Insufficient telomerase activity, stemming from low telomerase reverse transcriptase (TERT) gene transcription, contributes to telomere dysfunction and aging pathologies. Besides its traditional function in telomere synthesis, TERT acts as a transcriptional co-regulator of genes pivotal in aging and age-associated diseases. Here, we report the identification of a TERT activator compound (TAC) that upregulates TERT transcription via the MEK/ERK/AP-1 cascade. In primary human cells and naturally aged mice, TAC-induced elevation of TERT levels promotes telomere synthesis, blunts tissue aging hallmarks with reduced cellular senescence and inflammatory cytokines, and silences p16INK4a expression via upregulation of DNMT3B-mediated promoter hypermethylation. In the brain, TAC alleviates neuroinflammation, increases neurotrophic factors, stimulates adult neurogenesis, and preserves cognitive function without evident toxicity, including cancer risk. Together, these findings underscore TERT's critical role in aging processes and provide preclinical proof of concept for physiological TERT activation as a strategy to mitigate multiple aging hallmarks and associated pathologies.


Subject(s)
Aging , DNA Methylation , Telomerase , Telomerase/metabolism , Telomerase/genetics , Humans , Animals , Mice , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , Cellular Senescence , Promoter Regions, Genetic , DNA Methyltransferase 3B , Brain/metabolism , Telomere/metabolism , Mice, Inbred C57BL , Male , Transcription Factor AP-1/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Neurogenesis
2.
Cell ; 172(1-2): 331-343.e13, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29290466

ABSTRACT

Telomerase maintains chromosome ends from humans to yeasts. Recruitment of yeast telomerase to telomeres occurs through its Ku and Est1 subunits via independent interactions with telomerase RNA (TLC1) and telomeric proteins Sir4 and Cdc13, respectively. However, the structures of the molecules comprising these telomerase-recruiting pathways remain unknown. Here, we report crystal structures of the Ku heterodimer and Est1 complexed with their key binding partners. Two major findings are as follows: (1) Ku specifically binds to telomerase RNA in a distinct, yet related, manner to how it binds DNA; and (2) Est1 employs two separate pockets to bind distinct motifs of Cdc13. The N-terminal Cdc13-binding site of Est1 cooperates with the TLC1-Ku-Sir4 pathway for telomerase recruitment, whereas the C-terminal interface is dispensable for binding Est1 in vitro yet is nevertheless essential for telomere maintenance in vivo. Overall, our results integrate previous models and provide fundamentally valuable structural information regarding telomere biology.


Subject(s)
DNA-Binding Proteins/chemistry , Molecular Docking Simulation , Saccharomyces cerevisiae Proteins/chemistry , Telomerase/chemistry , Telomere Homeostasis , Telomere-Binding Proteins/chemistry , Binding Sites , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Protein Binding , RNA/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Telomerase/genetics , Telomerase/metabolism , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism
3.
Cell ; 172(3): 439-453.e14, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29290468

ABSTRACT

Telomere maintenance critically depends on the distinct activities of telomerase, which adds telomeric repeats to solve the end replication problem, and RTEL1, which dismantles DNA secondary structures at telomeres to facilitate replisome progression. Here, we establish that reversed replication forks are a pathological substrate for telomerase and the source of telomere catastrophe in Rtel1-/- cells. Inhibiting telomerase recruitment to telomeres, but not its activity, or blocking replication fork reversal through PARP1 inhibition or depleting UBC13 or ZRANB3 prevents the rapid accumulation of dysfunctional telomeres in RTEL1-deficient cells. In this context, we establish that telomerase binding to reversed replication forks inhibits telomere replication, which can be mimicked by preventing replication fork restart through depletion of RECQ1 or PARG. Our results lead us to propose that telomerase inappropriately binds to and inhibits restart of reversed replication forks within telomeres, which compromises replication and leads to critically short telomeres.


Subject(s)
DNA Helicases/genetics , DNA Replication , Telomere Homeostasis , Animals , Cell Line , Cells, Cultured , DNA Helicases/metabolism , Glycoside Hydrolases/metabolism , Mice , Poly (ADP-Ribose) Polymerase-1/metabolism , RecQ Helicases/metabolism , Ubiquitin-Conjugating Enzymes/metabolism
4.
Cell ; 174(1): 218-230.e13, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29804836

ABSTRACT

Ribonucleoprotein enzymes require dynamic conformations of their RNA constituents for regulated catalysis. Human telomerase employs a non-coding RNA (hTR) with a bipartite arrangement of domains-a template-containing core and a distal three-way junction (CR4/5) that stimulates catalysis through unknown means. Here, we show that telomerase activity unexpectedly depends upon the holoenzyme protein TCAB1, which in turn controls conformation of CR4/5. Cells lacking TCAB1 exhibit a marked reduction in telomerase catalysis without affecting enzyme assembly. Instead, TCAB1 inactivation causes unfolding of CR4/5 helices that are required for catalysis and for association with the telomerase reverse-transcriptase (TERT). CR4/5 mutations derived from patients with telomere biology disorders provoke defects in catalysis and TERT binding similar to TCAB1 inactivation. These findings reveal a conformational "activity switch" in human telomerase RNA controlling catalysis and TERT engagement. The identification of two discrete catalytic states for telomerase suggests an intramolecular means for controlling telomerase in cancers and progenitor cells.


Subject(s)
RNA, Untranslated/chemistry , Telomerase/metabolism , Biocatalysis , Cell Line , HeLa Cells , Humans , Molecular Chaperones , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleic Acid Conformation , Protein Binding , RNA Interference , RNA, Small Interfering/metabolism , RNA, Untranslated/metabolism , Telomerase/antagonists & inhibitors , Telomerase/chemistry , Telomerase/genetics , Telomere/metabolism
5.
Genes Dev ; 38(11-12): 569-582, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38997156

ABSTRACT

Salivary gland homeostasis and regeneration after radiotherapy depend significantly on progenitor cells. However, the lineage of submandibular gland (SMG) progenitor cells remains less defined compared with other normal organs. Here, using a mouse strain expressing regulated CreERT2 recombinase from the endogenous Tert locus, we identify a distinct telomerase-expressing (TertHigh) cell population located in the ductal region of the adult SMG. These TertHigh cells contribute to ductal cell generation during SMG homeostasis and to both ductal and acinar cell renewal 1 year after radiotherapy. TertHigh cells maintain self-renewal capacity during in vitro culture, exhibit resistance to radiation damage, and demonstrate enhanced proliferative activity after radiation exposure. Similarly, primary human SMG cells with high Tert expression display enhanced cell survival after radiotherapy, and CRISPR-activated Tert in human SMG spheres increases proliferation after radiation. RNA sequencing reveals upregulation of "cell cycling" and "oxidative stress response" pathways in TertHigh cells following radiation. Mechanistically, Tert appears to modulate cell survival through ROS levels in SMG spheres following radiation damage. Our findings highlight the significance of TertHigh cells in salivary gland biology, providing insights into their response to radiotherapy and into their use as a potential target for enhancing salivary gland regeneration after radiotherapy.


Subject(s)
Homeostasis , Regeneration , Telomerase , Telomerase/metabolism , Telomerase/genetics , Animals , Homeostasis/genetics , Homeostasis/radiation effects , Mice , Regeneration/radiation effects , Regeneration/genetics , Humans , Salivary Glands/radiation effects , Salivary Glands/metabolism , Salivary Glands/cytology , Cell Proliferation/radiation effects , Cell Proliferation/genetics , Cell Survival/radiation effects , Cell Survival/genetics , Submandibular Gland/radiation effects , Submandibular Gland/metabolism , Stem Cells/radiation effects , Stem Cells/metabolism , Stem Cells/cytology , Radiotherapy/adverse effects , Reactive Oxygen Species/metabolism , Cells, Cultured
6.
Cell ; 166(5): 1188-1197.e9, 2016 Aug 25.
Article in English | MEDLINE | ID: mdl-27523609

ABSTRACT

Telomerase maintains genome integrity by adding repetitive DNA sequences to the chromosome ends in actively dividing cells, including 90% of all cancer cells. Recruitment of human telomerase to telomeres occurs during S-phase of the cell cycle, but the molecular mechanism of the process is only partially understood. Here, we use CRISPR genome editing and single-molecule imaging to track telomerase trafficking in nuclei of living human cells. We demonstrate that telomerase uses three-dimensional diffusion to search for telomeres, probing each telomere thousands of times each S-phase but only rarely forming a stable association. Both the transient and stable association events depend on the direct interaction of the telomerase protein TERT with the telomeric protein TPP1. Our results reveal that telomerase recruitment to telomeres is driven by dynamic interactions between the rapidly diffusing telomerase and the chromosome end.


Subject(s)
Telomerase/metabolism , Telomere/enzymology , Active Transport, Cell Nucleus , Bacterial Proteins , CRISPR-Associated Protein 9 , Cell Line , Cell Nucleus/enzymology , Clustered Regularly Interspaced Short Palindromic Repeats , Coiled Bodies/enzymology , Endonucleases , Gene Editing , Genome, Human , HeLa Cells , Humans , Imaging, Three-Dimensional , Protein Domains , S Phase , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Shelterin Complex , Telomerase/chemistry , Telomere/chemistry , Telomere Homeostasis , Telomere-Binding Proteins/chemistry , Telomere-Binding Proteins/metabolism
7.
Genes Dev ; 37(13-14): 555-569, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37495394

ABSTRACT

It has been known for decades that telomerase extends the 3' end of linear eukaryotic chromosomes and dictates the telomeric repeat sequence based on the template in its RNA. However, telomerase does not mitigate sequence loss at the 5' ends of chromosomes, which results from lagging strand DNA synthesis and nucleolytic processing. Therefore, a second enzyme is needed to keep telomeres intact: DNA polymerase α/Primase bound to Ctc1-Stn1-Ten1 (CST). CST-Polα/Primase maintains telomeres through a fill-in reaction that replenishes the lost sequences at the 5' ends. CST not only serves to maintain telomeres but also determines their length by keeping telomerase from overelongating telomeres. Here we discuss recent data on the evolution, structure, function, and recruitment of mammalian CST-Polα/Primase, highlighting the role of this complex and telomere length control in human disease.


Subject(s)
Telomerase , Animals , Humans , Telomerase/metabolism , DNA Primase/genetics , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , Telomere/genetics , Telomere/metabolism , Telomere Homeostasis , DNA Replication , Mammals/genetics
8.
Mol Cell ; 82(20): 3919-3931.e7, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36270249

ABSTRACT

Cancer-specific TERT promoter mutations have been linked to the reactivation of epigenetically silenced TERT gene by creating de novo binding motifs for E-Twenty-Six transcription factors, especially GABPA. How these mutations switch on TERT from epigenetically repressed states to expressed states have not been defined. Here, we revealed that EGFR activation induces ERK1/2-dependent phosphorylation of argininosuccinate lyase (ASL) at Ser417 (S417), leading to interactions between ASL and GABPA at the mutant regions of TERT promoters. The ASL-generated fumarate inhibits KDM5C, leading to enhanced trimethylation of histone H3 Lys4 (H3K4me3), which in turn promotes the recruitment of c-Myc to TERT promoters for TERT expression. Expression of ASL S417A, which abrogates its binding with GABPA, results in reduced TERT expression, inhibited telomerase activity, shortened telomere length, and impaired brain tumor growth in mice. This study reveals an unrecognized mechanistic insight into epigenetically activation of mutant TERT promoters where GABPA-interacted ASL plays an instrumental role.


Subject(s)
Glioblastoma , Telomerase , Animals , Mice , Argininosuccinate Lyase/genetics , Argininosuccinate Lyase/metabolism , Cell Line, Tumor , ErbB Receptors/genetics , Fumarates , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Histones/genetics , Histones/metabolism , Mutation , Telomerase/genetics , Telomerase/metabolism , Telomere/metabolism , Telomere Shortening , Transcription Factors/metabolism , Promoter Regions, Genetic
9.
Physiol Rev ; 102(4): 1703-1720, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35532056

ABSTRACT

Parenchymal lung disease is the fourth leading cause of death in the United States; among the top causes, it continues on the rise. Telomeres and telomerase have historically been linked to cellular processes related to aging and cancer, but surprisingly, in the recent decade genetic discoveries have linked the most apparent manifestations of telomere and telomerase dysfunction in humans to the etiology of lung disease: both idiopathic pulmonary fibrosis (IPF) and emphysema. The short telomere defect is pervasive in a subset of IPF patients, and human IPF is the phenotype most intimately tied to germline defects in telomere maintenance. One-third of families with pulmonary fibrosis carry germline mutations in telomerase or other telomere maintenance genes, and one-half of patients with apparently sporadic IPF have short telomere length. Beyond explaining genetic susceptibility, short telomere length uncovers clinically relevant syndromic extrapulmonary disease, including a T-cell immunodeficiency and a propensity to myeloid malignancies. Recognition of this subset of patients who share a unifying molecular defect has provided a precision medicine paradigm wherein the telomere-mediated lung disease diagnosis provides more prognostic value than histopathology or multidisciplinary evaluation. Here, we critically evaluate this progress, emphasizing how the genetic findings put forth a new pathogenesis paradigm of age-related lung disease that links telomere abnormalities to alveolar stem senescence, remodeling, and defective gas exchange.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Diseases , Telomerase , Humans , Idiopathic Pulmonary Fibrosis/genetics , Lung/metabolism , Lung Diseases/genetics , Telomerase/genetics , Telomerase/metabolism , Telomere/genetics , Telomere/metabolism , Telomere/pathology
10.
Mol Cell ; 81(11): 2349-2360.e6, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33852895

ABSTRACT

Telomere length control is critical for cellular lifespan and tumor suppression. Telomerase is transiently activated in the inner cell mass of the developing blastocyst to reset telomere reserves. Its silencing upon differentiation leads to gradual telomere shortening in somatic cells. Here, we report that transcriptional regulation through cis-regulatory elements only partially accounts for telomerase activation in pluripotent cells. Instead, developmental control of telomerase is primarily driven by an alternative splicing event, centered around hTERT exon 2. Skipping of exon 2 triggers hTERT mRNA decay in differentiated cells, and conversely, its retention promotes telomerase accumulation in pluripotent cells. We identify SON as a regulator of exon 2 alternative splicing and report a patient carrying a SON mutation and suffering from insufficient telomerase and short telomeres. In summary, our study highlights a critical role for hTERT alternative splicing in the developmental regulation of telomerase and implicates defective splicing in telomere biology disorders.


Subject(s)
Alternative Splicing , DNA-Binding Proteins/genetics , Enhancer Elements, Genetic , Minor Histocompatibility Antigens/genetics , Telomerase/genetics , Telomere Homeostasis , Telomere/metabolism , Blastocyst/metabolism , Blastocyst/pathology , Cell Differentiation , Child, Preschool , DNA-Binding Proteins/deficiency , Female , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/pathology , Humans , Pedigree , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/pathology , Primary Cell Culture , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , Telomerase/deficiency , Telomere/pathology
11.
Genes Dev ; 35(23-24): 1625-1641, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34764137

ABSTRACT

The mammalian telomeric shelterin complex-comprised of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1-blocks the DNA damage response at chromosome ends and interacts with telomerase and the CST complex to regulate telomere length. The evolutionary origins of shelterin are unclear, partly because unicellular organisms have distinct telomeric proteins. Here, we describe the evolution of metazoan shelterin, showing that TRF1 emerged in vertebrates upon duplication of a TRF2-like ancestor. TRF1 and TRF2 diverged rapidly during vertebrate evolution through the acquisition of new domains and interacting factors. Vertebrate shelterin is also distinguished by the presence of an HJRL domain in the split C-terminal OB fold of POT1, whereas invertebrate POT1s carry inserts of variable nature. Importantly, the data reveal that, apart from the primate and rodent POT1 orthologs, all metazoan POT1s are predicted to have a fourth OB fold at their N termini. Therefore, we propose that POT1 arose from a four-OB-fold ancestor, most likely an RPA70-like protein. This analysis provides insights into the biology of shelterin and its evolution from ancestral telomeric DNA-binding proteins.


Subject(s)
Telomeric Repeat Binding Protein 2 , Tripeptidyl-Peptidase 1 , Animals , Mammals/genetics , Shelterin Complex , Telomere/genetics , Telomere/metabolism , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism
12.
Mol Cell ; 79(1): 115-126.e6, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32497497

ABSTRACT

Extension of telomeres is a critical step in the immortalization of cancer cells. This complex reaction requires proper spatiotemporal coordination of telomerase and telomeres and remains poorly understood at the cellular level. To understand how cancer cells execute this process, we combine CRISPR genome editing and MS2 RNA tagging to image single molecules of telomerase RNA (hTR). Real-time dynamics and photoactivation experiments of hTR in Cajal bodies (CBs) reveal that hTERT controls the exit of hTR from CBs. Single-molecule tracking of hTR at telomeres shows that TPP1-mediated recruitment results in short telomere-telomerase scanning interactions, and then base pairing between hTR and telomere ssDNA promotes long interactions required for stable telomerase retention. Interestingly, POT1 OB-fold mutations that result in abnormally long telomeres in cancers act by enhancing this retention step. In summary, single-molecule imaging unveils the life cycle of telomerase RNA and provides a framework to reveal how cancer-associated mutations mechanistically drive defects in telomere homeostasis.


Subject(s)
Coiled Bodies/metabolism , DNA, Single-Stranded/metabolism , RNA/metabolism , Single Molecule Imaging/methods , Telomerase/metabolism , Telomere Homeostasis , Telomere/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , DNA, Single-Stranded/genetics , Gene Editing , HeLa Cells , Humans , Mutation , RNA/genetics , Shelterin Complex , Telomerase/genetics , Telomere/genetics , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism
13.
Am J Hum Genet ; 111(6): 1114-1124, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38688277

ABSTRACT

Papillary thyroid cancer (PTC) is the most common endocrine malignancy. 10% to 15% of individuals show familial clustering with three or more affected members, but the factors underlying this risk are unknown. In a group of recently studied individuals with POT1 pathogenic variants and ultra-long telomere length, PTC was the second most common solid tumor. We tested whether variants in POT1 and four other telomere-maintenance genes associated with familial cancer underlie PTC susceptibility. Among 470 individuals, we identified pathogenic or likely pathogenic variants in three genes encoding telomere-binding proteins: POT1, TINF2, and ACD. They were found in 4.5% and 1.5% of familial and unselected cases, respectively. Individuals harboring these variants had ultra-long telomere length, and 15 of 18 (83%) developed other cancers, of which melanoma, lymphoma, and sarcoma were most common. Among individuals with PTC and melanoma, 22% carried a deleterious germline variant, suggesting that a long telomere syndrome might be clinically recognizable. Successive generations had longer telomere length than their parents and, at times, developed more cancers at younger ages. Tumor sequencing identified a single oncogenic driver, BRAF p.Val600Glu, in 10 of 10 tumors studied, but no telomere-maintenance mechanism, including at the TERT promoter. These data identify a syndromic subset of PTCs with locus heterogeneity and telomere lengthening as a convergent mechanism. They suggest these germline variants lower the threshold to cancer by obviating the need for an acquired telomere-maintenance mechanism in addition to sustaining the longevity of oncogenic mutations.


Subject(s)
Genetic Predisposition to Disease , Germ-Line Mutation , Shelterin Complex , Telomere Homeostasis , Telomere-Binding Proteins , Telomere , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Telomere-Binding Proteins/genetics , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Germ-Line Mutation/genetics , Male , Female , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Telomere Homeostasis/genetics , Telomere/genetics , Middle Aged , Adult , Proto-Oncogene Proteins B-raf/genetics , Aged , Melanoma/genetics , Melanoma/pathology , Pedigree
14.
Genes Dev ; 33(19-20): 1381-1396, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31488579

ABSTRACT

Short telomere syndromes manifest as familial idiopathic pulmonary fibrosis; they are the most common premature aging disorders. We used genome-wide linkage to identify heterozygous loss of function of ZCCHC8, a zinc-knuckle containing protein, as a cause of autosomal dominant pulmonary fibrosis. ZCCHC8 associated with TR and was required for telomerase function. In ZCCHC8 knockout cells and in mutation carriers, genomically extended telomerase RNA (TR) accumulated at the expense of mature TR, consistent with a role for ZCCHC8 in mediating TR 3' end targeting to the nuclear RNA exosome. We generated Zcchc8-null mice and found that heterozygotes, similar to human mutation carriers, had TR insufficiency but an otherwise preserved transcriptome. In contrast, Zcchc8-/- mice developed progressive and fatal neurodevelopmental pathology with features of a ciliopathy. The Zcchc8-/- brain transcriptome was highly dysregulated, showing accumulation and 3' end misprocessing of other low-abundance RNAs, including those encoding cilia components as well as the intronless replication-dependent histones. Our data identify a novel cause of human short telomere syndromes-familial pulmonary fibrosis and uncover nuclear exosome targeting as an essential 3' end maturation mechanism that vertebrate TR shares with replication-dependent histones.


Subject(s)
Carrier Proteins/genetics , Idiopathic Pulmonary Fibrosis/genetics , Loss of Function Mutation , Nuclear Proteins/genetics , RNA/metabolism , Telomerase/metabolism , Animals , Brain/enzymology , Brain/physiopathology , Cell Line , Cilia/genetics , Female , Genetic Linkage , HCT116 Cells , Humans , Idiopathic Pulmonary Fibrosis/enzymology , Idiopathic Pulmonary Fibrosis/physiopathology , Male , Mice , Mice, Knockout , Neurodevelopmental Disorders/genetics , Pedigree , RNA Processing, Post-Transcriptional/genetics , Telomere Shortening/genetics
15.
Hum Mol Genet ; 33(4): 318-332, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37879098

ABSTRACT

Dyskerin is a component of the human telomerase complex and is involved in stabilizing the human telomerase RNA (hTR). Many mutations in the DKC1 gene encoding dyskerin are found in X-linked dyskeratosis congenita (X-DC), a premature aging disorder and other related diseases. The C-terminal extension (CTE) of dyskerin contributes to its interaction with the molecular chaperone SHQ1 during the early stage of telomerase biogenesis. Disease mutations in this region were proposed to disrupt dyskerin-SHQ1 interaction and destabilize dyskerin, reducing hTR levels indirectly. However, biochemical evidence supporting this hypothesis is still lacking. In addition, the effects of many CTE disease mutations on hTR have not been examined. In this study, we tested eight dyskerin CTE variants and showed that they failed to maintain hTR levels. These mutants showed slightly reduced but not abolished interaction with SHQ1, and caused defective binding to hTR. Deletion of the CTE further reduced binding to hTR, and perturbed localization of dyskerin to the Cajal bodies and the nucleolus, and the interaction with TCAB1 as well as GAR1. Our findings suggest impaired dyskerin-hTR interaction in cells as a previously overlooked mechanism through which dyskerin CTE mutations cause X-DC and related telomere syndromes.


Subject(s)
Dyskeratosis Congenita , Telomerase , Humans , Telomerase/genetics , Dyskeratosis Congenita/genetics , Telomere/genetics , Telomere/metabolism , Nuclear Proteins/metabolism , RNA/genetics , RNA/metabolism , Mutation , RNA-Binding Proteins/genetics , Cell Cycle Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics
16.
Hum Mol Genet ; 33(7): 612-623, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38176734

ABSTRACT

Telomeres are nucleoprotein structures that protect the chromosome ends from degradation and fusion. Telomerase is a ribonucleoprotein complex essential to maintain the length of telomeres. Germline defects that lead to short and/or dysfunctional telomeres cause telomere biology disorders (TBDs), a group of rare and heterogeneous Mendelian diseases including pulmonary fibrosis, dyskeratosis congenita, and Høyeraal-Hreidarsson syndrome. TPP1, a telomeric factor encoded by the gene ACD, recruits telomerase at telomere and stimulates its activity via its TEL-patch domain that directly interacts with TERT, the catalytic subunit of telomerase. TBDs due to TPP1 deficiency have been reported only in 11 individuals. We here report four unrelated individuals with a wide spectrum of TBD manifestations carrying either heterozygous or homozygous ACD variants consisting in the recurrent and previously described in-frame deletion of K170 (K170∆) and three novel missense mutations G179D, L184R, and E215V. Structural and functional analyses demonstrated that the four variants affect the TEL-patch domain of TPP1 and impair telomerase activity. In addition, we identified in the ACD gene several motifs associated with small deletion hotspots that could explain the recurrence of the K170∆ mutation. Finally, we detected in a subset of blood cells from one patient, a somatic TERT promoter-activating mutation that likely provides a selective advantage over non-modified cells, a phenomenon known as indirect somatic genetic rescue. Together, our results broaden the genetic and clinical spectrum of TPP1 deficiency and specify new residues in the TEL-patch domain that are crucial for length maintenance and stability of human telomeres in vivo.


Subject(s)
Shelterin Complex , Telomerase , Telomere-Binding Proteins , Humans , Biology , Mutation , Shelterin Complex/genetics , Telomerase/genetics , Telomere/genetics , Telomere/metabolism , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism
17.
EMBO Rep ; 25(4): 1734-1751, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38480846

ABSTRACT

Pif1 family helicases are multifunctional proteins conserved in eukaryotes, from yeast to humans. They are important for the genome maintenance in both nuclei and mitochondria, where they have been implicated in Okazaki fragment processing, replication fork progression and termination, telomerase regulation and DNA repair. While the Pif1 helicase activity is readily detectable on naked nucleic acids in vitro, the in vivo functions rely on recruitment to DNA. We identify the single-stranded DNA binding protein complex RPA as the major recruiter of Pif1 in budding yeast, in addition to the previously reported Pif1-PCNA interaction. The two modes of the Pif1 recruitment act independently during telomerase inhibition, as the mutations in the Pif1 motifs disrupting either of the recruitment pathways act additively. In contrast, both recruitment mechanisms are essential for the replication-related roles of Pif1 at conventional forks and during the repair by break-induced replication. We propose a molecular model where RPA and PCNA provide a double anchoring of Pif1 at replication forks, which is essential for the Pif1 functions related to the fork movement.


Subject(s)
Saccharomyces cerevisiae Proteins , Telomerase , Humans , DNA Replication/genetics , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Telomerase/genetics , Saccharomyces cerevisiae Proteins/metabolism , DNA/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
18.
EMBO Rep ; 25(3): 1650-1684, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38424230

ABSTRACT

Lung diseases develop when telomeres shorten beyond a critical point. We constructed a mouse model in which the catalytic subunit of telomerase (mTert), or its catalytically inactive form (mTertCI), is expressed from the p21Cdkn1a locus. Expression of either TERT or TERTCI reduces global p21 levels in the lungs of aged mice, highlighting TERT non-canonical function. However, only TERT reduces accumulation of very short telomeres, oxidative damage, endothelial cell (ECs) senescence and senile emphysema in aged mice. Single-cell analysis of the lung reveals that p21 (and hence TERT) is expressed mainly in the capillary ECs. We report that a fraction of capillary ECs marked by CD34 and endowed with proliferative capacity declines drastically with age, and this is counteracted by TERT but not TERTCI. Consistently, only TERT counteracts decline of capillary density. Natural aging effects are confirmed using the experimental model of emphysema induced by VEGFR2 inhibition and chronic hypoxia. We conclude that catalytically active TERT prevents exhaustion of the putative CD34 + EC progenitors with age, thus protecting against capillary vessel loss and pulmonary emphysema.


Subject(s)
Emphysema , Microvascular Rarefaction , Pulmonary Emphysema , Telomerase , Mice , Animals , Telomere Shortening , Telomerase/genetics
19.
Bioessays ; 46(2): e2300184, 2024 02.
Article in English | MEDLINE | ID: mdl-38047499

ABSTRACT

Mammalian telomeres have evolved safeguards to prevent their recognition as DNA double-stranded breaks by suppressing the activation of various DNA sensing and repair proteins. We have shown that the telomere-binding proteins TRF2 and RAP1 cooperate to prevent telomeres from undergoing aberrant homology-directed recombination by mediating t-loop protection. Our recent findings also suggest that mammalian telomere-binding proteins interact with the nuclear envelope to maintain chromosome stability. RAP1 interacts with nuclear lamins through KU70/KU80, and disruption of RAP1 and TRF2 function result in nuclear envelope rupture, promoting telomere-telomere recombination to form structures termed ultrabright telomeres. In this review, we discuss the importance of the interactions between shelterin components and the nuclear envelope to maintain telomere homeostasis and genome stability.


Subject(s)
Nuclear Envelope , Telomere , Animals , Humans , Nuclear Envelope/metabolism , Telomere/genetics , Telomere/metabolism , Telomere-Binding Proteins/chemistry , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , DNA/metabolism , Genomic Instability , Mammals/genetics
20.
Genes Dev ; 32(9-10): 658-669, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29773556

ABSTRACT

Telomerase counteracts telomere shortening and cellular senescence in germ, stem, and cancer cells by adding repetitive DNA sequences to the ends of chromosomes. Telomeres are susceptible to damage by reactive oxygen species (ROS), but the consequences of oxidation of telomeres on telomere length and the mechanisms that protect from ROS-mediated telomere damage are not well understood. In particular, 8-oxoguanine nucleotides at 3' ends of telomeric substrates inhibit telomerase in vitro, whereas, at internal positions, they suppress G-quadruplex formation and were therefore proposed to promote telomerase activity. Here, we disrupt the peroxiredoxin 1 (PRDX1) and 7,8-dihydro-8-oxoguanine triphosphatase (MTH1) genes in cancer cells and demonstrate that PRDX1 and MTH1 cooperate to prevent accumulation of oxidized guanine in the genome. Concomitant disruption of PRDX1 and MTH1 leads to ROS concentration-dependent continuous shortening of telomeres, which is due to efficient inhibition of telomere extension by telomerase. Our results identify antioxidant systems that are required to protect telomeres from oxidation and are necessary to allow telomere maintenance by telomerase conferring immortality to cancer cells.


Subject(s)
DNA Repair Enzymes/metabolism , Peroxiredoxins/metabolism , Phosphoric Monoester Hydrolases/metabolism , Reactive Oxygen Species/metabolism , Telomerase/metabolism , Telomere Shortening/genetics , DNA Damage/genetics , DNA Repair Enzymes/genetics , Enzyme Activation/genetics , Gene Knockout Techniques , Genome , Guanine/metabolism , HCT116 Cells , Humans , Oxidation-Reduction , Oxidative Stress/genetics , Phosphoric Monoester Hydrolases/genetics , Telomerase/antagonists & inhibitors , Telomere Homeostasis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL