Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.263
Filter
Add more filters

Publication year range
1.
Annu Rev Pharmacol Toxicol ; 63: 1-13, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-35850522

ABSTRACT

After a traumatic childhood in Europe during the Second World War, I found that scientific research in Israel was a pleasure beyond my expectations. Over the last 65 year, I have worked on the chemistry and pharmacology of natural products. During the last few decades, most of my research has been on plant cannabinoids, the endogenous cannabinoids arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol, and endogenous anandamide-like compounds, all of which are involved in a wide spectrum of physiological reactions. Two plant cannabinoids, Δ9-tetrahydrocannabinol and cannabidiol, are approved drugs. However, the endogenous cannabinoids and the anandamide-like constituents have not yet been well investigated in humans. For me, intellectual freedom-the ability to do research based on my own scientific interests-has been the most satisfying part of my working life. Looking back over the 91 years of my long life, I conclude that I have been lucky, very lucky, both personally and scientifically.


Subject(s)
Cannabinoids , Humans , Child , Cannabinoids/pharmacology , Endocannabinoids/pharmacology , Endocannabinoids/metabolism , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/metabolism , Dronabinol/pharmacology
2.
J Neurosci ; 43(3): 373-385, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36517243

ABSTRACT

Cannabinoids modulate dopamine (DA) transmission and DA-related behavior, which has been thought to be mediated initially by activation of cannabinoid CB1 receptors (CB1Rs) on GABA neurons. However, there is no behavioral evidence supporting it. In contrast, here we report that CB1Rs are also expressed in a subset of DA neurons and functionally underlie cannabinoid action in male and female mice. RNAscope in situ hybridization (ISH) assays demonstrated CB1 mRNA in tyrosine hydroxylase (TH)-positive DA neurons in the ventral tegmental area (VTA) and glutamate decarboxylase 1 (GAD1)-positive GABA neurons. The CB1R-expressing DA neurons were located mainly in the middle portion of the VTA with the number of CB1-TH colocalization progressively decreasing from the medial to the lateral VTA. Triple-staining assays indicated CB1R mRNA colocalization with both TH and vesicular glutamate transporter 2 (VgluT2, a glutamate neuronal marker) in the medial VTA close to the midline of the brain. Optogenetic activation of this population of DA neurons was rewarding as assessed by optical intracranial self-stimulation. Δ9-tetrahydrocannabinol (Δ9-THC) or ACEA (a selective CB1R agonist) dose-dependently inhibited optical intracranial self-stimulation in DAT-Cre control mice, but not in conditional knockout mice with the CB1R gene absent in DA neurons. In addition, deletion of CB1Rs from DA neurons attenuated Δ9-THC-induced reduction in DA release in the NAc, locomotion, and anxiety. Together, these findings indicate that CB1Rs are expressed in a subset of DA neurons that corelease DA and glutamate, and functionally underlie cannabinoid modulation of DA release and DA-related behavior.SIGNIFICANCE STATEMENT Cannabinoids produce a series of psychoactive effects, such as aversion, anxiety, and locomotor inhibition in rodents. However, the cellular and receptor mechanisms underlying these actions are not fully understood. Here we report that CB1 receptors are expressed not only in GABA neurons but also in a subset of dopamine neurons, which are located mainly in the medial VTA close to the midline of the midbrain and corelease dopamine and glutamate. Optogenetic activation of these dopamine neurons is rewarding, which is dose-dependently inhibited by cannabinoids. Selective deletion of CB1 receptor from dopamine neurons blocked cannabinoid-induced aversion, hypoactivity, and anxiolytic effects. These findings demonstrate that dopaminergic CB1 receptors play an important role in mediating cannabinoid action.


Subject(s)
Anti-Anxiety Agents , Cannabinoids , Female , Mice , Male , Animals , Cannabinoids/pharmacology , Dopaminergic Neurons/physiology , Anti-Anxiety Agents/pharmacology , Dronabinol/pharmacology , Dopamine/physiology , Receptors, Cannabinoid , Ventral Tegmental Area/physiology , Receptors, Dopamine , Mice, Knockout , Glutamic Acid/pharmacology , RNA, Messenger , Receptor, Cannabinoid, CB1/genetics
3.
Neurobiol Dis ; 199: 106588, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38960101

ABSTRACT

Clinical and preclinical evidence has demonstrated an increased risk for neuropsychiatric disorders following prenatal cannabinoid exposure. However, given the phytochemical complexity of cannabis, there is a need to understand how specific components of cannabis may contribute to these neurodevelopmental risks later in life. To investigate this, a rat model of prenatal cannabinoid exposure was utilized to examine the impacts of specific cannabis constituents (Δ9-tetrahydrocannabinol [THC]; cannabidiol [CBD]) alone and in combination on future neuropsychiatric liability in male and female offspring. Prenatal THC and CBD exposure were associated with low birth weight. At adolescence, offspring displayed sex-specific behavioural changes in anxiety, temporal order and social cognition, and sensorimotor gating. These phenotypes were associated with sex and treatment-specific neuronal and gene transcriptional alterations in the prefrontal cortex, and ventral hippocampus, regions where the endocannabinoid system is implicated in affective and cognitive development. Electrophysiology and RT-qPCR analysis in these regions implicated dysregulation of the endocannabinoid system and balance of excitatory and inhibitory signalling in the developmental consequences of prenatal cannabinoids. These findings reveal critical insights into how specific cannabinoids can differentially impact the developing fetal brains of males and females to enhance subsequent neuropsychiatric risk.


Subject(s)
Behavior, Animal , Cannabidiol , Dronabinol , Hippocampus , Prefrontal Cortex , Prenatal Exposure Delayed Effects , Models, Animal , Animals , Rats , Dronabinol/toxicity , Cannabidiol/toxicity , Sex Factors , Prefrontal Cortex/drug effects , Hippocampus/drug effects , Male , Female , Pregnancy , Behavior, Animal/drug effects , Rats, Wistar , Memory/drug effects , Anxiety/chemically induced , Cognition/drug effects , Impulsive Behavior/drug effects , Psychotropic Drugs/toxicity
4.
Annu Rev Neurosci ; 39: 1-17, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27023732

ABSTRACT

The Cannabis sativa plant has been used to treat various physiological and psychiatric conditions for millennia. Current research is focused on isolating potentially therapeutic chemical constituents from the plant for use in the treatment of many central nervous system disorders. Of particular interest is the primary nonpsychoactive constituent cannabidiol (CBD). Unlike Δ(9)-tetrahydrocannabinol (THC), CBD does not act through the cannabinoid type 1 (CB1) receptor but has many other receptor targets that may play a role in psychiatric disorders. Here we review preclinical and clinical data outlining the therapeutic efficacy of CBD for the treatment of motivational disorders such as drug addiction, anxiety, and depression. Across studies, findings suggest promising treatment effects and potentially overlapping mechanisms of action for CBD in these disorders and indicate the need for further systematic investigation of the viability of CBD as a psychiatric pharmacotherapy.


Subject(s)
Cannabidiol/therapeutic use , Depression/drug therapy , Mental Disorders/drug therapy , Motivation/physiology , Receptor, Cannabinoid, CB1/metabolism , Animals , Anxiety/drug therapy , Humans
5.
Am J Physiol Heart Circ Physiol ; 327(3): H701-H714, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39028280

ABSTRACT

Delta-9-tetrahydrocannabinol (THC), the psychoactive component of cannabis, remains a schedule I substance, thus safety data regarding the effects on the cardiovascular and prenatal health are limited. Importantly, there is evidence showing prenatal cannabis exposure can negatively impact fetal organ development, including the cardiovascular system. THC can cross the placenta and bind to cannabinoid receptors expressed in the developing fetus, including on endothelial cells. To understand the impact of prenatal THC exposure on the fetal cardiovascular system, we used our rhesus macaque model of prenatal daily edible THC consumption. Before conception, animals were acclimated to THC (2.5 mg/7 kg/day, equivalent to a heavy medical cannabis dose) and maintained on this dose daily throughout pregnancy. Fetal tissue samples were collected at gestational day 155 (full term is 168 days). Our model showed that in utero THC exposure was associated with a decreased heart weight-to-body weight ratio in offspring, warranting further mechanistic investigation. Histological examination of the fetal cardiac and vascular tissues did not reveal any significant effect of THC exposure on the maturity of collagen within the fetal heart or the aorta. Total collagen III expression and elastin production and organization were unchanged. However, bulk RNA-sequencing of vascular cells in the umbilical vein, umbilical artery, and fetal aorta demonstrated that THC alters the fetal vascular transcriptome and is associated with upregulated expression of genes involved in carbohydrate metabolism and inflammation. The long-term consequences of these findings are unknown but suggest that prenatal THC exposure may affect cardiovascular development in offspring.NEW & NOTEWORTHY Prenatal cannabis use is increasing and despite the public health relevance, there is limited safety data regarding its impact on offspring cardiovascular health outcomes. We used a translational, nonhuman primate model of daily edible Δ-9-tetrahydrocannabinol (THC) consumption during pregnancy to assess its effects on the fetal cardiovascular system. THC-exposed fetal vascular tissues displayed upregulation of genes involved in cellular metabolism and inflammation, suggesting that prenatal THC exposure may impact fetal vascular tissues.


Subject(s)
Dronabinol , Extracellular Matrix , Macaca mulatta , Transcriptome , Animals , Dronabinol/toxicity , Pregnancy , Female , Transcriptome/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Prenatal Exposure Delayed Effects , Fetal Heart/drug effects , Fetal Heart/metabolism
6.
Drug Metab Rev ; 56(2): 164-174, 2024.
Article in English | MEDLINE | ID: mdl-38655747

ABSTRACT

Due to legal, political, and cultural changes, the use of cannabis has rapidly increased in recent years. Research has demonstrated that the cannabinoids cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) inhibit and induce cytochrome P450 (CYP450) enzymes. The objective of this review is to evaluate the effect of CBD and THC on the activity of CYP450 enzymes and the implications for drug-drug interactions (DDIs) with psychotropic agents that are CYP substrates. A systematic search was conducted using PubMed, Scopus, Scientific Electronic Library Online (SciELO) and PsychINFO. Search terms included 'cannabidiol', 'tetrahydrocannabinol', and 'cytochrome P450'. A total of seven studies evaluating the interaction of THC and CBD with CYP450 enzymes and psychotropic drugs were included. Both preclinical and clinical studies were included. Results from the included studies indicate that both CBD and THC inhibit several CYP450 enzymes including, but not limited to, CYP1A2, CYP3C19, and CYP2B6. While there are a few known CYP450 enzymes that are induced by THC and CBD, the induction of CYP450 enzymes is an understudied area of research and lacks clinical data. The inhibitory effects observed by CBD and THC on CYP450 enzymes vary in magnitude and may decrease the metabolism of psychotropic agents, cause changes in plasma levels of psychotropic medications, and increase adverse effects. Our findings clearly present interactions between THC and CBD and several CYP450 enzymes, providing clinicians evidence of a high risk of DDIs for patients who consume both cannabis and psychotropic medication. However, more clinical research is necessary before results are applied to clinical settings.


Subject(s)
Cannabidiol , Cytochrome P-450 Enzyme System , Dronabinol , Drug Interactions , Animals , Humans , Cannabidiol/pharmacology , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Dronabinol/pharmacology , Psychotropic Drugs/pharmacology
7.
Histochem Cell Biol ; 162(5): 363-372, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39110194

ABSTRACT

The consumption of fructose is increasing day by day. Understanding the impact of increasing fructose consumption on the small intestine is crucial since the small intestine processes fructose into glucose. ∆9-Tetrahydrocannabinol (THC), a key cannabinoid, interacts with CB1 and CB2 receptors in the gastrointestinal tract, potentially mitigating inflammation. Therefore, this study aimed to investigate the effects of the high-fructose diet (HFD) on the jejunum of rats and the role of THC consumption in reversing these effects. Experiments were conducted on Sprague-Dawley rats, with the experimental groups as follows: control (C), HFD, THC, and HFD + THC. The HFD group received a 10% fructose solution in drinking water for 12 weeks. THC groups were administered 1.5 mg/kg/day of THC intraperitoneally for the last four weeks. Following sacrification, the jejunum was evaluated for mucus secretion capacity. IL-6, JNK, CB2 and PCNA expressions were assessed through immunohistochemical analysis and the ultrastructural alterations via transmission electron microscopy. The results showed that fructose consumption did not cause weight gain but triggered inflammation in the jejunum, disrupted the cell proliferation balance, and increased mucus secretion in rats. Conversely, THC treatment displayed suppressed inflammation and improved cell proliferation balance caused by HFD. Ultrastructural examinations showed that the zonula occludens structures deteriorated in the HFD group, along with desmosome shrinkage. Mitochondria were found to be increased due to THC application following HFD. In conclusion, the findings of this research reveal the therapeutic potential of THC in reversing HFD-related alterations and provide valuable insights for clinical application.


Subject(s)
Dronabinol , Fructose , Intestine, Small , Rats, Sprague-Dawley , Animals , Dronabinol/pharmacology , Fructose/pharmacology , Rats , Male , Intestine, Small/metabolism , Intestine, Small/pathology , Intestine, Small/drug effects , Diet
8.
Neurochem Res ; 49(4): 935-948, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38141130

ABSTRACT

Cannabis has gained popularity in recent years as a substitute treatment for pain following the risks of typical treatments uncovered by the opioid crisis. The active ingredients frequently associated with pain-relieving effects are the phytocannabinoids Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), but their effectiveness and mechanisms of action are still under research. In this study, we used Caenorhabditis elegans, an ideal model organism for the study of nociception that expresses mammal ortholog cannabinoid (NPR-19 and NPR-32) and vanilloid (OSM-9 and OCR-2) receptors. Here, we evaluated the antinociceptive activity of THC and CBD, identifying receptor targets and several metabolic pathways activated following exposure to these molecules. The thermal avoidance index was used to phenotype each tested C. elegans experimental group. The data revealed for the first time that THC and CBD decreases the nocifensive response of C. elegans to noxious heat (32-35 °C). The effect was reversed 6 h post- CBD exposure but not for THC. Further investigations using specific mutants revealed CBD and THC are targeting different systems, namely the vanilloid and cannabinoid systems, respectively. Proteomic analysis revealed differences following Reactome pathways and gene ontology biological process database enrichment analyses between CBD or THC-treated nematodes and provided insights into potential targets for future drug development.


Subject(s)
Caenorhabditis elegans Proteins , Cannabidiol , Cannabinoids , Humans , Animals , Cannabidiol/pharmacology , Dronabinol/pharmacology , Caenorhabditis elegans , Proteomics , Pain , Analgesics/pharmacology , Mammals , Receptors, G-Protein-Coupled
9.
Pharmacol Res ; 199: 107049, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38159785

ABSTRACT

Adolescent exposure to Δ9-tetrahydrocannabinol (THC) has enduring effects on energy metabolism and immune function. Prior work showed that daily administration of a low-impact dose of THC (5 mg/kg, intraperitoneal) during adolescence alters transcription in adult microglia and disrupts their response to bacterial endotoxin or social stress. To explore the lasting impact of adolescent THC exposure on the brain's reaction to viral infection, we administered THC (5 mg/kg, intraperitoneal) in male and female mice once daily on postnatal day (PND) 30-43. When the mice reached adulthood (PND 70), we challenged them with the viral mimic, polyinosinic acid:polycytidylic acid [Poly(I:C)], and assessed sickness behavior (motor activity, body temperature) and whole brain gene transcription. Poly(I:C) caused an elevation in body temperature which was lessened by prior THC exposure in female but not male mice. Adolescent THC exposure did not affect the locomotor response to Poly(I:C) in either sex. Transcriptomic analyses showed that Poly(I:C) produced a substantial upregulation of immune-related genes in the brain, which was decreased by THC in females. Additionally, the viral mimic caused a male-selective downregulation in transcription of genes involved in neurodevelopment and synaptic transmission, which was abrogated by adolescent THC treatment. The results indicate that Poly(I:C) produces complex transcriptional alterations in the mouse brain, which are sexually dimorphic and differentially affected by early-life THC exposure. In particular, adolescent THC dampens the brain's antiviral response to Poly(I:C) in female mice and prevents the transcriptional downregulation of neuron-related genes caused by the viral mimic in male mice.


Subject(s)
Dronabinol , Virus Diseases , Animals , Mice , Male , Female , Dronabinol/pharmacology , Brain , Synaptic Transmission , Neurons
10.
Article in English | MEDLINE | ID: mdl-38771330

ABSTRACT

In Europe, concentrations of ∆9-tetrahydrocannabinol (THC) in cannabis resin (also known as hash) have risen markedly in the past decade, potentially increasing risks of mental health disorders. Current approaches to international drug monitoring cannot distinguish between different types of cannabis resin which may have contrasting health effects due to THC and cannabidiol (CBD) content. Here, we compared concentrations of THC and CBD in different types of cannabis resin collected in Europe (either Moroccan-type, or Dutch-type). We then tested the ability of machine learning algorithms to classify the type of cannabis resin (either Moroccan-type, or Dutch-type) using routinely collected monitoring data on THC and CBD. Finally, we applied the optimal algorithm to new samples collected in countries where the type of cannabis resin was unknown, the UK and Denmark. Results showed that overall, Dutch-type samples had higher THC (Hedges' g = 2.39) and lower CBD (Hedges' g = 0.81) than Moroccan-type samples. A Support Vector Machine algorithm achieved classification accuracy exceeding 95%, with little variation in this estimate, good interpretability, and plausibility. It made contrasting predictions about the type of cannabis resin collected in the UK (94% Moroccan-type; 6% Dutch-type) and Denmark (36% Moroccan-type; 64% Dutch-type). In conclusion, we provide proof-of-concept evidence for the potential of machine learning to inform international drug monitoring. Our findings should not be interpreted as objective confirmatory evidence but suggest that Dutch-type cannabis resin has higher THC concentrations than Moroccan-type cannabis resin, which may contribute to variation in drug markets and health outcomes for people who use cannabis in Europe.

11.
Support Care Cancer ; 32(4): 210, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443674

ABSTRACT

PURPOSE: Cannabis use may introduce risks and/or benefits among people living with cancer, depending on product type, composition, and nature of its use. Patient knowledge of tetrahydrocannabinol (THC) or cannabidiol (CBD) concentration could provide information for providers about cannabis use during and after treatment that may aide in risk and benefit assessments. This study aimed to examine knowledge of THC or CBD concentration among patients living with cancer who consume cannabis, and factors associated with knowledge of cannabinoid concentrations. METHODS: People living with cancer who consumed cannabis since their diagnosis (n = 343) completed an anonymous, mixed-mode survey. Questions assessed usual mode of delivery (MOD), knowledge of THC/CBD concentration, and how source of acquisition, current cannabis use, and source of instruction are associated with knowledge of THC/CBD concentration. Chi-square and separate binary logistic regression analyses were examined and weighted to reflect the Roswell Park patient population. RESULTS: Less than 20% of people living with cancer had knowledge of THC and CBD concentration for the cannabis products they consumed across all MOD (smoking- combustible products, vaping- vaporized products (e-cigarettes), edibles-eating or drinking it, and oral- taking by mouth (pills)). Source of acquisition (smoking-AOR:4.6, p < 0.01, vaping-AOR:5.8, p < 0.00, edibles-AOR:2.6, p < 0.04), current cannabis use (edibles-AOR:5.4, p < 0.01, vaping-AOR: 11.2, p < 0.00, and oral-AOR:9.3, p < 0.00), and source of instruction (vaping only AOR:4.2, p < 0.05) were found to be variables associated with higher knowledge of THC concentration. CONCLUSION: Self-reported knowledge of THC and CBD concentration statistically differed according to MOD, source of acquisition, source of instruction, and current cannabis use.


Subject(s)
Cannabidiol , Cannabis , Electronic Nicotine Delivery Systems , Neoplasms , Humans , Dronabinol , Self Report , Neoplasms/drug therapy , Survivors , Analgesics
12.
Curr Pain Headache Rep ; 28(7): 681-689, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38607548

ABSTRACT

PURPOSE OF THE REVIEW: Acute pain management remains a challenge and postoperative pain is often undermanaged despite many available treatment options, also including cannabinoids. RECENT FINDINGS: In the light of the opioid epidemic, there has been growing interest in alternative care bundles for pain management, including cannabinoids as potential treatment to decrease opioid prescribing. Despite the lack of solid evidence on the efficacy of cannabinoids, their use among patients with pain, including those using opioids, is currently increasing. This use is supported by data suggesting that cannabinoids could potentially contribute to a better pain management and to a reduction in opioid doses while maintaining effective analgesia with minimum side effects. The scientific basis for supporting the use of cannabis is extensive, although it does not necessarily translate into relevant clinical outcomes. The use of cannabinoids in acute pain did not always consistently show statistically significant results in improving acute pain. Large randomized, controlled trials evaluating diverse cannabis extracts are needed in different clinical pain populations to determine safety and efficacy.


Subject(s)
Acute Pain , Cannabinoids , Pain Management , Humans , Cannabinoids/therapeutic use , Acute Pain/drug therapy , Pain Management/methods , Analgesics, Opioid/therapeutic use
13.
Curr Pain Headache Rep ; 28(3): 109-118, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38095748

ABSTRACT

PURPOSE OF REVIEW: Neuropathic pain (NP) remains a challenge to treat, with 50% of patients experiencing limited efficacy from current treatments. Medicinal cannabis, which contains tetrahydrocannabinol (THC), cannabidiol (CBD) and other minor cannabinoids, is garnering attention as an alternative treatment for NP. This paper reviews the clinical evidence for phytocannabinoid treatment of NP. RECENT FINDINGS: Seventeen randomised controlled trials (RCT) were identified for inclusion in this review. Of these, ten studies using phytocannabinoid preparations containing THC alone had the most evidence for pain relief. Four studies investigating THC/CBD combinations showed some reductions in pain scores, although not all findings were statistically significant, whereas studies investigating CBD (two studies) or cannabidivarin (one study) showed no analgesic effect over placebo. However, CBD studies were of small sample size when compared to other studies in the review and short duration. Results for treatment of diabetic peripheral neuropathy patients with THC showed better improvements over those for NP induced by chemotherapy and multiple sclerosis, with these trials using vaporised whole plant cannabis. This formulation may have trace amounts of other minor cannabinoids, compared with synthetic cannabinoids such as dronabinol or nabilone that were investigated in other studies. This review provides an overview of RCTs that have investigated phytocannabinoid use for the treatment of NP. There appears to be evidence to necessitate further high quality RCTs into novel formulations of phytocannabinoids for the treatment of NP.


Subject(s)
Cannabinoids , Cannabis , Medical Marijuana , Neuralgia , Humans , Dronabinol/therapeutic use , Dronabinol/pharmacology , Cannabinoids/therapeutic use , Neuralgia/drug therapy , Medical Marijuana/therapeutic use , Randomized Controlled Trials as Topic
14.
BMC Pulm Med ; 24(1): 449, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39272060

ABSTRACT

BACKGROUND: Dabbing is recently getting popular among young adults. It is a new method of using the most active form of marijuana where large amounts of concentrated tetrahydrocannabinol are inhaled. Tetrahydrocannabinol is associated with a feeling of 'High' which makes the user feel joyous and relaxed. With increasing use of such techniques, dabbing becomes an important differential for evaluation of acute respiratory failure with pneumonitis especially in the adult population. CASE PRESENTATION: A Fifty-one years old Caucasian man presented to the hospital with chest pressure and shortness of breath. The patient was noted to be hypoxic, desaturating down to 82-83% on nasal cannula oxygen. Imaging revealed bilateral lung infiltrates. Patient was started on high flow oxygen, broad spectrum antibiotics and intravenous corticosteroids. The patient gradually improved and was able to come off oxygen completely. He was discharged home on prednisone taper. CONCLUSIONS: Dabbing is a newer technique which has been gaining popularity for marijuana usage. With the legalization of marijuana, newer techniques are getting popular. Our case report emphasizes the importance of keeping dabbing as a differential when a patient presents with respiratory failure and has concerns for pneumonitis. Patients might not reveal until specifically asked about their practices.


Subject(s)
Dronabinol , Pneumonia , Humans , Male , Middle Aged , Dronabinol/adverse effects , Respiratory Insufficiency , Anti-Bacterial Agents/adverse effects , Oxygen Inhalation Therapy , Tomography, X-Ray Computed , Dyspnea/etiology
15.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673788

ABSTRACT

Phytocannabinoids, a diverse group of naturally occurring compounds extracted from the Cannabis plant, have attracted interest due to their potential pharmacological effects and medicinal uses. This comprehensive review presents the intricate pharmacological profiles of phytocannabinoids while exploring the diverse impacts these substances have on biological systems. From the more than one hundred cannabinoids which were identified in the Cannabis plant so far, cannabidiol (CBD) and tetrahydrocannabinol (THC) are two of the most extensively studied phytocannabinoids. CBD is a non-psychoactive compound, which exhibits potential anti-inflammatory, neuroprotective, and anxiolytic properties, making it a promising candidate for a wide array of medical conditions. THC, known for its psychoactive effects, possesses analgesic and antiemetic properties, contributing to its therapeutic potential. In addition to THC and CBD, a wide range of additional phytocannabinoids have shown intriguing pharmacological effects, including cannabichromene (CBC), cannabigerol (CBG), and cannabinol (CBN). The endocannabinoid system, made up of the enzymes involved in the production and breakdown of endocannabinoids, cannabinoid receptors (CB1 and CB2), and endogenous ligands (endocannabinoids), is essential for preserving homeostasis in several physiological processes. Beyond their effects on the endocannabinoid system, phytocannabinoids are studied for their ability to modify ion channels, neurotransmitter receptors, and anti-oxidative pathways. The complex interaction between phytocannabinoids and biological systems offers hope for novel treatment approaches and lays the groundwork for further developments in the field of cannabinoid-based medicine. This review summarizes the state of the field, points out information gaps, and emphasizes the need for more studies to fully realize the therapeutic potential of phytocannabinoids.


Subject(s)
Cannabinoids , Humans , Cannabinoids/therapeutic use , Cannabinoids/pharmacology , Animals , Cannabis/chemistry , Endocannabinoids/metabolism , Endocannabinoids/therapeutic use , Cannabidiol/therapeutic use , Cannabidiol/pharmacology , Phytochemicals/therapeutic use , Phytochemicals/pharmacology , Dronabinol/therapeutic use , Dronabinol/pharmacology
16.
Int J Mol Sci ; 25(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542186

ABSTRACT

Over the past few decades, many current uses for cannabinoids have been described, ranging from controlling epilepsy to neuropathic pain and anxiety treatment. Medicines containing cannabinoids have been approved by both the FDA and the EMA for the control of specific diseases for which there are few alternatives. However, the molecular-level mechanism of action of cannabinoids is still poorly understood. Recently, cannabinoids have been shown to interact with autotaxin (ATX), a secreted lysophospholipase D enzyme responsible for catalyzing lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a pleiotropic growth factor that interacts with LPA receptors. In addition, a high-resolution structure of ATX in complex with THC has recently been published, accompanied by biochemical studies investigating this interaction. Due to their LPA-like structure, endocannabinoids have been shown to interact with ATX in a less potent manner. This finding opens new areas of research regarding cannabinoids and endocannabinoids, as it could establish the effect of these compounds at the molecular level, particularly in relation to inflammation, which cannot be explained by the interaction with CB1 and CB2 receptors alone. Further research is needed to elucidate the mechanism behind the interaction between cannabinoids and endocannabinoids in humans and to fully explore the therapeutic potential of such approaches.


Subject(s)
Cannabinoids , Medical Marijuana , Humans , Endocannabinoids , Phosphoric Diester Hydrolases/metabolism , Lysophospholipids/metabolism , Cannabinoids/pharmacology , Cannabinoids/therapeutic use
17.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674023

ABSTRACT

Cisplatin and other platinum-derived chemotherapy drugs have been used for the treatment of cancer for a long time and are often combined with other medications. Unfortunately, tumours often develop resistance to cisplatin, forcing scientists to look for alternatives or synergistic combinations with other drugs. In this work, we attempted to find a potential synergistic effect between cisplatin and cannabinoid delta-9-THC, as well as the high-THC Cannabis sativa extract, for the treatment of HT-29, HCT-116, and LS-174T colorectal cancer cell lines. However, we found that combinations of the high-THC cannabis extract with cisplatin worked antagonistically on the tested colorectal cancer cell lines. To elucidate the mechanisms of drug interactions and the distinct impacts of individual treatments, we conducted a comprehensive transcriptomic analysis of affected pathways within the colorectal cancer cell line HT-29. Our primary objective was to gain a deeper understanding of the underlying molecular mechanisms associated with each treatment modality and their potential interactions. Our findings revealed an antagonistic interaction between cisplatin and high-THC cannabis extract, which could be linked to alterations in gene transcription associated with cell death (BCL2, BAD, caspase 10), DNA repair pathways (Rad52), and cancer pathways related to drug resistance.


Subject(s)
Cannabis , Cisplatin , Colorectal Neoplasms , Dronabinol , Plant Extracts , Transcriptome , Humans , Cisplatin/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Dronabinol/pharmacology , Cannabis/chemistry , Plant Extracts/pharmacology , Transcriptome/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , HT29 Cells , Gene Expression Profiling/methods , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Apoptosis/drug effects
18.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891938

ABSTRACT

Neurological disorders present a wide range of symptoms and challenges in diagnosis and treatment. Cannabis sativa, with its diverse chemical composition, offers potential therapeutic benefits due to its anticonvulsive, analgesic, anti-inflammatory, and neuroprotective properties. Beyond cannabinoids, cannabis contains terpenes and polyphenols, which synergistically enhance its pharmacological effects. Various administration routes, including vaporization, oral ingestion, sublingual, and rectal, provide flexibility in treatment delivery. This review shows the therapeutic efficacy of cannabis in managing neurological disorders such as epilepsy, neurodegenerative diseases, neurodevelopmental disorders, psychiatric disorders, and painful pathologies. Drawing from surveys, patient studies, and clinical trials, it highlights the potential of cannabis in alleviating symptoms, slowing disease progression, and improving overall quality of life for patients. Understanding the diverse therapeutic mechanisms of cannabis can open up possibilities for using this plant for individual patient needs.


Subject(s)
Cannabis , Epilepsy , Neurodegenerative Diseases , Humans , Cannabis/chemistry , Neurodegenerative Diseases/drug therapy , Epilepsy/drug therapy , Mental Disorders/drug therapy , Animals , Pain/drug therapy , Anticonvulsants/therapeutic use , Cannabinoids/therapeutic use , Cannabinoids/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Plant Extracts/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Analgesics/therapeutic use , Analgesics/chemistry , Analgesics/pharmacology
19.
Schmerz ; 38(4): 250-258, 2024 Aug.
Article in German | MEDLINE | ID: mdl-38451340

ABSTRACT

BACKGROUND: The survey of Copeia captured early 2022 patient-reported outcomes (PRO) in Germany under cannabis medicinal product (CAM) therapy, with particular attention to symptoms, symptom changes, indications, side effects, dosages, and cost bearers. GOAL: This study investigated the question of whether associations emerge from the results that could play a role in the indication and treatment monitoring of CAM in chronically ill patients. MATERIALS AND METHODS: A standardized questionnaire was administered online nationwide in dialogue form over a 15-week period to collect itemized symptoms and PRO. Recruitment was supported by pharmacies, prescribing physicians, and patient associations. Inclusion criteria included physician-prescribed CAM therapy. RESULTS AND DISCUSSION: Of 1582 participants, 1030 data sets (65%) could be completely analyzed. There was a heterogeneous patient population, whose common feature was disease chronicity. The frequency distribution of symptoms showed a homogeneous pattern for the respective indications, in which the most frequent six (pain 71%, sleep disturbance 64%, stress/tension 52%, inner restlessness 52%, depressive mood 44% and muscle tension 43%) seem to have a special significance. According to subjective assessment, quality of life improved significantly in 84% of all participating patients. CONCLUSION: A symptom matrix (SMX) composed of different symptoms seems to play a special role in CAM therapy to improve the quality of life of chronically ill patients, regardless of the underlying disease. The SMX could contribute to the identification of an indication and to targeted treatment monitoring.


Subject(s)
Medical Marijuana , Patient Reported Outcome Measures , Quality of Life , Adult , Aged , Female , Humans , Male , Middle Aged , Chronic Disease , Germany , Medical Marijuana/therapeutic use , Medical Marijuana/adverse effects , Quality of Life/psychology , Surveys and Questionnaires
20.
Molecules ; 29(18)2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39339327

ABSTRACT

A protocol is proposed that combines the use of the known properties of a surrogate containing various functional groups together with n-alkanes as standards to evaluate the properties of much larger related substances using correlation gas chromatography. An objective of this work is to develop options that circumvent the lack of appropriate vaporization enthalpy standards that can be used for evaluation of various thermodynamic properties of larger complex molecules using gas chromatography. The surrogate in this case is 2,2,5,7,8-pentamethylchroman-6-ol (PMC) and is used to evaluate the vaporization enthalpies and vapor pressures of α-tocopherol (α-TOC) and Δ9-tetrahydrocannabinol (Δ9-THC). The results are compared to the available literature data and to estimated properties. Vaporization enthalpies are also evaluated by a proposed method that involves the use of synthetic and retrosynthetic analysis.

SELECTION OF CITATIONS
SEARCH DETAIL