Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Molecules ; 27(3)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35164306

ABSTRACT

The worldwide production of colored products and intermediates is increasing year on year. The consequence of this is an increase in the number of liquid effluents containing toxic dyes entering the aquatic environment. Therefore, it is extremely important to dispose of them. One of the techniques for the elimination of environmentally harmful dyes is adsorption. The main purpose of this study was to explore the possibility of using a carbon and silica (C/SiO2)-based composite for the removal of the azo dye C.I. Basic Red 46 (BR46). The adsorption capacity of C/SiO2 was found to be temperature dependent and increased from 41.90 mg/g to 176.10 mg/g with a temperature rise from 293 K to 333 K in accordance with the endothermic process. The Langmuir isotherm model seems to be the better one for the description of experimental data rather than Freundlich or Dubinin-Radushkevich. The free energy (ΔGo) confirmed the spontaneous nature of BR46 adsorption by C/SiO2. Kinetic parameters revealed that BR46 uptake followed the pseudo-second-order equation; however, the external diffusion plays a significant role. Surfactants of cationic, anionic and non-ionic type influenced BR46 retention by C/SiO2. The electrokinetic results (solid surface charge density and zeta potential) indicated that the adsorption of cationic dye and surfactant influences the structure of the electrical double layer formed at the solid-liquid interface.

2.
Bioresour Bioprocess ; 9(1): 18, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-38647816

ABSTRACT

We investigated the dye-removal potential of a collection of 61 cold-adapted yeasts from the King George Island, Antarctica, on agar plates supplemented with 100 mg L-1 of several textile dyes; among which isolates 81% decolorized Reactive Black 5 (RB-5), with 56% decolorizing Reactive Orange 16, but only 26% doing so with Reactive Blue 19 and Acid Blue 74. Furthermore, we evaluated the ligninolytic potential using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic-acid) diammonium salt-, 3,5-dimethoxy-4-hydroxybenzaldehydazine-, or manganese-supplemented plates but detected no activity, possibly due to a dye-removal mechanism involving reductases. The removal kinetics were studied in liquid medium supplemented with 100 mg L-1 of RB-5 in a selection of 9 yeasts. The highest volumetric-removal rates (η) were found for Candida sake 41E (4.14 mg L-1 h-1), Leucosporidium muscorum F20A (3.90 mg L-1 h-1), and Cystofilobasidium infirmominiatum F13E (3.90 mg L-1 h-1). Different UV-Vis spectra were obtained if the dye removal occurred by biodegradation or biosorption/bioaccumulation. L. muscorum F20A was selected to study the dye-removal mechanism of RB-5 and the effect of different chemical and environmental parameters on the process. Optimum dye-removal conditions were obtained with 10 g L-1 of glucose within an initial medium pH range of 5.0 to 6.0. Up to 700 mg L-1 of dye could be removed in 45 h. High-performance liquid chromatography profiles obtained were consistent with a biodegradation of the dye. Phytotoxicity was estimated by calculating the 50%-inhibition concentration (IC50) with Lactuca sativa L. seeds. These findings propose psychrophilic yeasts as a novel environmentally suitable alternative for the treatment of dye-industry wastewaters.

3.
Environ Technol ; 41(6): 669-681, 2020 Feb.
Article in English | MEDLINE | ID: mdl-30102127

ABSTRACT

The residue generated in the aluminium cold lamination (TTR) was submitted to a direct burning and then it was calcined at 500°C. BET, FTIR, SEM with EDX and TGA techniques were performed to characterize the adsorbent before and after the adsorption. BET analysis showed that TTR specific surface area was 55.37 m2 g-1 and there were no significant changes after the adsorptive process. Afterwards, the TTR was applied as adsorbent of the reactive Drimaren Blue (DB), Drimaren Red (DR) and Drimaren Gold (DG). Its employment consists in a sustainable alternative for the treatment of textile wastewater, once the TTR was used as low-cost adsorbent of textile dyes. Kinetic studies showed that the process reached the equilibrium state between 5 and 10 min. The pseudo-second-order model better fitted the adsorption kinetics, with kinetic rate constants 10.51, 34.71 and 31.51 mg min g-1 for DB, DR and DG respectively. The equilibrium experiments were performed to obtain the adsorption parameters for each dye; moreover, the maximum adsorption capacity was 6.27, 0.42 and 1.23 mg g-1 for DB, DR and DG, respectively. Thermodynamics studies allowed to obtain the values of enthalpy for DB, DR and DG, -7.90, 14.03 and -17.75 kJ mol-1, respectively. Furthermore, the negative values of Gibbs free energy confirmed the spontaneity of the adsorption. The results point to the physisorption characteristic of the process, in which the temperature negatively influenced the adsorption for the DB and DG; the opposite result was observed for the DR.


Subject(s)
Coloring Agents , Water Pollutants, Chemical , Adsorption , Aluminum , Hydrogen-Ion Concentration , Kinetics , Thermodynamics
4.
Environ Sci Pollut Res Int ; 26(28): 28500-28509, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30415369

ABSTRACT

In the textile industry, the amount of dye unfixed in fabrics is discarded with wastewaters. Effluents of this nature can be treated efficiently by adsorption on activated bone char, but the reuse of adsorbent is necessary for the technique to be economically feasible. Therefore, the objective of this work was to study the process of desorption of BF-5G blue dye from a bone char fixed-bed column. Solutions of sodium chloride, acetic acid and ethyl alcohol were tested as regenerating agents. Due to the hydrophobicity effect of organic solvent molecules, the highest desorption capacity was observed for ethyl alcohol solution, and the fixed bed was reused after six cycles of adsorption. The other solutions did not promote significant desorption. The results showed that adsorption of the dye involved irreversible interactions between adsorbate molecules and bone char. However, the use of acetic acid solution resulted in the neutralisation of some of the adsorbent surface charges, allowing the fixed bed to operate for a longer time in the second cycle than in the first.


Subject(s)
Bone and Bones/chemistry , Triazines/metabolism , Adsorption , Textile Industry , Triazines/chemistry , Wastewater
5.
Environ Sci Pollut Res Int ; 24(14): 12664-12672, 2017 May.
Article in English | MEDLINE | ID: mdl-27783248

ABSTRACT

In this paper, the possibility of reusing textile effluents for new dyeing baths has been investigated. For this purpose, different trichromies using Direct Red 80, Direct Blue 106, and Direct Yellow 98 on cotton have been used. Effluents have been treated by means of a photo-Fenton process at pH 5. Addition of humic-like substances isolated form urban wastes is necessary in order to prevent iron deactivation because of the formation of non-active iron hydroxides. Laboratory-scale experiments carried out with synthetic effluents show that comparable results were obtained when using as solvent water treated by photo-Fenton with SBO and fresh deionized water. Experiments were scaled up to pilot plant illuminated under sunlight, using in this case a real textile effluent. Decoloration of the effluent could be achieved after moderate irradiation and cotton dyed with this water presented similar characteristics as when deionized water was used.


Subject(s)
Waste Disposal, Fluid , Wastewater/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Sunlight , Textiles , Water Pollutants, Chemical/chemistry
6.
Chemosphere ; 171: 332-338, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28033567

ABSTRACT

In the present study, the electrochemical oxidation of real wastewaters discharged by textile industry was carried out using a boron-doped diamond (BDD) anode. The effect of operational variables, such as applied current density (20-100 mA·cm-2), NaCl concentration added to the real wastewaters (0-3 g·L-1), and pH value (2.0-10.0), on the kinetics of COD oxidation and on the energy consumption was carefully investigated. The obtained experimental results could be well matched with a proposed kinetic model, in which the indirect oxidation mediated by electrogenerated strong oxidants would be described through a pseudo-first-order kinetic constant k. Values of k exhibited a linear increase with increasing applied current density and decreasing pH value, and an exponential increase with NaCl concentration. Furthermore, high oxidation kinetics resulted in low specific energy consumption, but this conclusion was not suitable to the results obtained under different applied current density. Under the optimum operational conditions, it only took 3 h to complete remove the COD in the real textile wastewaters and the specific energy consumption could be as low as 11.12 kWh·kg-1 COD. The obtained results, low energy consumption and short electrolysis time, allowed to conclude that the electrochemical oxidation based on BDD anodes would have practical industrial application for the treatment of real textile wastewater.


Subject(s)
Biological Oxygen Demand Analysis , Boron/chemistry , Diamond/chemistry , Electrochemical Techniques/methods , Textiles/analysis , Wastewater/chemistry , Electrodes , Electrolysis , Kinetics , Oxidation-Reduction , Textile Industry , Wastewater/analysis
SELECTION OF CITATIONS
SEARCH DETAIL