Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 470
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(23): e2222096120, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37252989

ABSTRACT

Rational design and synthesis of high-performance electrocatalysts for ethanol oxidation reaction (EOR) is crucial to large-scale commercialization of direct ethanol fuel cells, but it is still an incredible challenge. Herein, a unique Pd metallene/Ti3C2Tx MXene (Pdene/Ti3C2Tx)-supported electrocatalyst is constructed via an in-situ growth approach for high-efficiency EOR. The resulting Pdene/Ti3C2Tx catalyst achieves an ultrahigh mass activity of 7.47 A mgPd-1 under alkaline condition, as well as high tolerance to CO poisoning. In situ attenuated total reflection-infrared spectroscopy studies combined with density functional theory calculations reveal that the excellent EOR activity of Pdene/Ti3C2Tx catalyst is attributed to the unique and stable interfaces which reduce the reaction energy barrier of *CH3CO intermediate oxidation and facilitate oxidative removal of CO poisonous species by increasing the Pd-OH binding strength.

2.
Proc Natl Acad Sci U S A ; 120(45): e2308035120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37883417

ABSTRACT

Metallic nickel (Ni) is a promising candidate to substitute Pt-based catalysts for hydrogen oxidation reaction (HOR), but huge challenges still exist in precise modulation of the electronic structure to boost the electrocatalytic performances. Herein, we present the use of single-layer Ti3C2Tx MXene to deliberately tailor the electronic structure of Ni nanoparticles via interfacial oxygen bridges, which affords Ni/Ti3C2Tx electrocatalyst with exceptional performances for HOR in an alkaline medium. Remarkably, it shows a high kinetic current of 16.39 mA cmdisk-2 at the overpotential of 50 mV for HOR [78 and 2.7 times higher than that of metallic Ni and Pt/C (20%), respectively], also with good durability and CO antipoisoning ability (1,000 ppm) that are not available for conventional Pt/C (20%) catalyst. The ultrahigh conductivity of single-layer Ti3C2Tx provides fast transmission of electrons for Ni nanoparticles, of which the uniform and small sizes endow them with high-density active sites. Further, the terminated -O/-OH functional groups on Ti3C2Tx directionally capture electrons from Ni nanoparticles via interfacial Ni-O bridges, leading to obvious electronic polarization. This could enhance the Nids-O2p interaction and weaken Nids-H1s interaction of Ni sites in Ni/Ti3C2Txenabling a suitable H-/OH-binding energy and thus enhancing the HOR activity.

3.
Nano Lett ; 24(2): 724-732, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38166126

ABSTRACT

Photothermal membrane distillation (PMD) has emerged as a promising and sustainable approach for seawater desalination and wastewater purification. However, the wide application of the technique is severely impeded by low freshwater production and membrane fouling/wetting issues. Herein, we developed an advanced hydrogel-engineered membrane with simultaneously enhanced photothermal conversion capacity and desired fouling and wetting resistance for PMD. By the synergies of photothermal Ti3C2Tx MXene nanosheets and the tannic acid-Fe3+ network in the hydrogel, the membrane was endowed with excellent surface self-heating ability, yielding the highest freshwater production rate (1.71 kg m-2 h-1) and photothermal efficiency among the fabricated hydrogel composite membranes under 1 sun irradiation. Meanwhile, the PMD membrane could robustly resist oil-induced fouling and surfactant-induced wetting, significantly extending the membrane lifespan in treating contaminated saline water. Furthermore, when desalinating real seawater, the membrane exhibited superior durability with a stable vapor flux and excellent ion rejection (e.g., 99.24% for boron) for 100 h.

4.
Nano Lett ; 24(10): 3196-3203, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38437624

ABSTRACT

Gelation is a promising method to assemble 3D macroscopic structures from MXene sheets for various applications. However, the fine control and scalable manufacturing of 3D MXene monoliths remains a great challenge. Herein, the controllable gelation of Ti3C2Tx MXene initiated by various ionic liquids (ILs) is first proposed, where the IL serve as linkers to bond the nanosheets together through electrostatic and hydrogen bonding interactions, forming 3D monoliths with well-adjustable structure. Furthermore, density functional theory calculations and experiments further reveal the cross-linking effect of different ILs. Typically, 3D porous structure with high specific surface area, suitable pore size, and improved electrolyte affinity is designed through the cross-linking of Ti3C2Tx with 1-vinyl-3-ethylimidazole bromide ([C2VIm]Br-Ti3C2Tx). Due to the strong coupling, the as-synthesized monolith possesses excellent rate performance and high energy density. The methodology is quite flexible, controllable, and universal that provides a new perspective for promoting innovative applications of 2D materials.

5.
Nano Lett ; 24(11): 3361-3368, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38446607

ABSTRACT

For the first time, a series of MXene (Ti3C2Tx)/Bi2WO6 Schottky junction piezocatalysts were constructed, and the piezocatalytic hydrogen evolution activity was explored. Optimal Ti3C2Tx/Bi2WO6 exhibits the highest piezocatalytic hydrogen evolution rate of 764.4 µmol g-1 h-1, which is nearly 8 times higher than that of pure Ti3C2Tx and twice as high as that of Bi2WO6. This value also surpasses that of most recently reported typical piezocatalysts. Moreover, related experimental results and density functional theory calculations reveal that Ti3C2Tx/Bi2WO6 can provide unique channels for efficient electron transfer, enhance piezoelectric properties, optimize the adsorption Gibbs free energy of water, reduce activation energy for hydrogen atoms, endow robust separation capacity of charge carrier, and restrict the electron-hole recombination rate, thus significantly promoting the efficiency of hydrogen evolution reaction. Ultimately, we have unraveled an innovative piezocatalytic mechanism. This work broadens the scope of MXene materials in a sustainable energy piezocatalysis application.

6.
Small ; 20(9): e2306241, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37857592

ABSTRACT

2D layer Ti3 C2 Tx material attracts enormous attention in lithium ion energy storage field owing to the unique surface chemistry properties, but the material still suffers from restacking issue and the restriction on capacity. Herein, copper phosphide (Cu3 P) nanostructures@Ti3 C2 Tx composites are prepared by the in situ generation of Cu-BDC precursor in the bulk material followed with phosphorization. The uniformly distributed copper phosphide nanostructures effectively expand the interlayer spacing promoting the structural stability, and achieves the effective connection with the bulk material accelerating the diffusion and migration of lithium ions. The electrochemical activity of Cu3 P also provides more lithium ion active sites for lithium storage. The X-ray photoelectron spectroscopy (XPS) analysis verifies that Ti─O─P bond with strong covalency allows the upper shift of maximum valence band and Fermi level, stimulating the charge transportation between Cu3 P and the bulk Ti3 C2 Tx for better electrode kinetics. 3Cu3 P@Ti3 C2 Tx exhibits excellent rate performance of 165.4 mAh g-1 at 3000 mA g-1 and the assembled 3Cu3 P@Ti3 C2 Tx //AC Lithium-ion hybrid capacitorsLIC exhibits superior energy density of 93.0 Wh kg-1 at the power density of 2367.3 W kg-1 . The results suggest that the interfacial modification of Ti3 C2 Tx with transition metal phosphides will be advantageous to its high energy density application in lithium-ion storage.

7.
Small ; 20(20): e2306434, 2024 May.
Article in English | MEDLINE | ID: mdl-38152953

ABSTRACT

MXenes, with their remarkable attributes, stand at the forefront of diverse applications. However, the challenge remains in sustaining their performance, especially concerning Ti3C2Tx MXene electrodes. Current self-healing techniques, although promising, often rely heavily on adjacent organic materials. This study illuminates a pioneering water-initiated self-healing mechanism tailored specifically for standalone MXene electrodes. Here, both water and select organic solvents seamlessly mend impaired regions. Comprehensive evaluations around solvent types, thermal conditions, and substrate nuances underline water's unmatched healing efficacy, attributed to its innate ability to forge enduring hydrogen bonds with MXenes. Optimal healing environments range from ambient conditions to a modest 50 °C. Notably, on substrates rich in hydroxyl groups, the healing efficiency remains consistently high. The proposed healing mechanism encompasses hydrogen bonding formation, capillary action-induced expansion of interlayer spacing, solvent lubrication, Gibbs free energy minimizing MXene nanosheet rearrangement, and solvent evaporation-triggered MXene layer recombination. MXenes' resilience is further showcased by their electrical revival from profound damages, culminating in the crafting of Joule-heated circuits and heaters.

8.
Small ; 20(24): e2309785, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38377279

ABSTRACT

Wearable soft contact lens sensors for continuous and nondestructive intraocular pressure (IOP) monitoring are highly desired as glaucoma and postoperative myopia patients grow, especially as the eyestrain crowd increases. Herein, a smart closed-loop system is presented that combines a Ti3C2Tx MXene-based soft contact lens (MX-CLS) sensor, wireless data transmission units, display, and warning components to realize continuous and nondestructive IOP monitoring/real-time display. The fabricated MX-CLS device exhibits an extremely high sensitivity of 7.483 mV mmHg-1, good linearity on silicone eyeballs, excellent stability under long-term pressure-release measurement, sufficient transparency with 67.8% transmittance under visible illumination, and superior biocompatibility with no discomfort when putting the MX-CLS sensor onto the Rabbit eyes. After integrating with the wireless module, users can realize real-time monitoring and warning of IOP via smartphones, the demonstrated MX-CLS device together with the IOP monitoring/display system opens up promising platforms for Ti3C2Tx materials as the base for multifunctional contact lens-based sensors and continuous and nondestructive IOP measurement system.


Subject(s)
Contact Lenses, Hydrophilic , Intraocular Pressure , Titanium , Intraocular Pressure/physiology , Animals , Rabbits , Titanium/chemistry , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation
9.
Small ; 20(3): e2304914, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37679061

ABSTRACT

Robust, ultrathin, and environmental-friendliness papers that synergize high-efficiency electromagnetic interference (EMI) shielding, personal thermal management, and wearable heaters are essential for next-generation smart wearable devices. Herein, MXene nanocomposite paper with a nacre-like structure for EMI shielding and electrothermal/photothermal conversion is fabricated by vacuum filtration of Ti3 C2 Tx MXene and modified sawdust. The hydrogen bonding and highly oriented structure enhance the mechanical properties of the modified sawdust/MXene composite paper (SM paper). The SM paper with 50 wt% MXene content shows a strength of 23 MPa and a toughness of 13 MJ·M-3 . The conductivity of the SM paper is 10 195 S·m-1 , resulting in an EMI shielding effectiveness (SE) of 67.9 dB and a specific SE value (SSE/t) of 8486 dB·cm2 ·g-1 . In addition, the SM paper exhibits excellent thermal management performance including high light/electro-to-thermal conversion, rapid Joule heating and photothermal response, and sufficient heating stability. Notably, the SM paper exhibits low infrared emissivity and distinguished infrared stealth performance, camouflaging a high-temperature heater surface of 147-81 °C. The SM-based e-skin achieves visualization of Joule heating and realizes human motions monitoring. This work presents a new strategy for designing MXene-based wearable devices with great EMI shielding, artificial intelligence, and thermal management applications.

10.
Small ; 20(16): e2306200, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38037679

ABSTRACT

The transport properties of charge carriers in MXene, a promising material, have been studied using terahertz time-domain spectroscopy (THz-TDS) to examine its potential applications in optical and electronic devices. However, previous studies have been limited by narrow frequency ranges, which have hindered the understanding of the intrinsic mechanisms of carrier transport in MXenes. To address this issue, ultrabroadband THz-TDS with frequencies of up to 15 THz to investigate the complex photoconductances of MXene (Ti3C2Tx) films with different thicknesses are employed. The findings indicate that the electronic localization is substrate-dependent, and this effect decreases with an increase in the number of layers. This is attributed to the screening effect of the high carrier density in Ti3C2Tx. Additionally, the layer-independent photocarrier relaxations revealed by optical pump THz probe spectroscopy (OPTP) provide evidence of the carrier heating-induced screening effect. These results are significant for practical applications in both scientific research and various industries.

11.
Small ; : e2403518, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016114

ABSTRACT

2D Ti3C2Tx MXene-based film electrodes with metallic conductivity and high pseudo-capacitance are of considerable interest in cutting-edge research of capacitive deionization (CDI). Further advancement in practical use is however impeded by their intrinsic limitations, e.g., tortuous ion diffusion pathway of layered stacking, vulnerable chemical stability, and swelling-prone nature of hydrophilic MXene nanosheet in aqueous environment. Herein, a nanoporous 2D/2D heterostructure strategy is established to leverage both merits of holey MXene (HMX) and holey graphene oxide (HGO) nanosheets, which optimize ion transport shortcuts, alleviate common restacking issues, and improve film's mechanical and chemical stability. In this design, the nanosized in-plane holes in both handpicked building blocks build up ion diffusion shortcuts in the composite laminates to accelerate the transport and storage of ions. As a direct outcome, the HMX/rHGO films exhibit remarkable desalination capacity of 57.91 mg g-1 and long-term stability in 500 mg L-1 NaCl solution at 1.2 V. Moreover, molecular dynamics simulations and ex situ wide angle X-ray scattering jointly demonstrate that the conductive 2D/2D networks and ultra-short ion diffusion channels play critical roles in the ion intercalation/deintercalation process of HMX/rHGO films. The study paves an alternative design concept of freestanding CDI electrodes with superior ion transport efficiency.

12.
Small ; 20(21): e2307165, 2024 May.
Article in English | MEDLINE | ID: mdl-38098311

ABSTRACT

This study provides meaningful insight into the charge storage in Ti3C2Tx MXene (M-transition metal, X-carbon, T-Cl, F, O) for electrochemical capacitor (EC) application. The experiments show that this 2D material is especially adapted for the hydrogen electrosorption under negative polarization. It is found that hydrogen bonding to the Ti3C2Tx surface occurs through interactions of various strength. Different mechanisms are suggested to explain the nature of H stored at the electrode/electrolyte interface depending on pH and potential range. For the negative potentials, both capacitive and faradaic currents are involved, and the electrode can operate in a relatively wide range. On the other hand, the narrow range of positive potentials limits whole voltage of EC. Such charge disproportion has a major impact on the performance failure of symmetric MXene-based ECs. New design of MXene cells with a wide operating voltage is introduced. To equalize the charge storage of both electrodes, the positive Ti3C2Tx electrode is replaced by the porous carbon (BP2000) with a wide working potential and a good capacitive response. Thus, EC operating voltage is considerably expanded to 1.3, 1.4, 2 V in acidic, basic, neutral medium, respectively. During cycling tests at 1 A g-1, the asymmetric cell MXene/BP2000 maintains 80% of initial capacitance after 22 000 cycles.

13.
Small ; : e2402143, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934343

ABSTRACT

MXene is considered as a promising solid lubricant due to facile shearing ability and tuneable surface chemistry. However, it faces challenges in high-humidity environments where excessive water molecules can significantly impact its 2D structure, thus deteriorating its lubricating properties. In this work, the self-assembled monolayers are formed on MXene by surface chlorination (MXene-Cl) and fluorination (MXene-F), and their friction behaviors in high/low humidity are investigated. The results indicate that MXene-F and MXene-Cl can maintain a relatively constant friction coefficient (CoF) (MXene-F ∼0.76, MXene-Cl ∼0.48) under both high (75%) and low (25%)-relative humidity (RH) environments. Meanwhile, the MXene-F and MXene-Cl display a lower CoF than the pristine MXene (MXene CoF∼1.18) in high humidity. The above phenomena are mainly attributed to the preservation of its 2D layered structure, the increased layer spacing, and superficial partial oxidation for SAMs-functionalized MXene under high humidity during friction. Interestingly, MXene-Cl with moderate water resistance has a lower CoF than that of MXene-F with complete water resistance. The nanostructured water adsorption capacity and larger interlayer spacing of MXene-Cl make it exhibit a lower CoF compared to MXene-F. The findings of this study offer valuable guidance for tailoring MXene by surface chemical functionalization as an efficient solid lubricant in high humidity.

14.
Small ; 20(11): e2306562, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37922534

ABSTRACT

A sonication-assisted liquid-phase preparation technique is developed to prepare boron quantum dots (BQDs) with a lateral size of 3 nm in a solution of NMP and NBA; it shows a direct bandgap semiconductor with a bandgap of 3 eV and a specific capacitance of 41 F g-1 . A BQDs(10)-Ti3 C2 Tx membrane electrode with excellent capacitance and high flexibility is prepared by using Ti3 C2 Tx nanosheets (NSs) as assembled units and BQDs as pillar; it gives a specific capacitance of 524 F g-1 at 1 A g-1 in 6 m H2 SO4 electrolyte, a high capacity retention of 75%, and a minimum relaxation time of 0.51 s. An all-solid-state BQDs(10)-Ti3 C2 Tx flexibility supercapacitor is assembled by using a BQDs(10)-Ti3 C2 Tx membrane as electrodes and PVA/H2 SO4 hydrogel as electrolyte; it not only shows an area specific capacitance of 552 mF cm-2 at 1.25 mA cm-2 , a retention rate of 75%, a capacity retention of 93% after 5000 cycles, and an energy density of 40.4 Wh cm-3 at a volume power density of 416 W cm-3 , but also provides superior flexibility and can be bent to different degrees, showing that the assembled BQDs(10)-Ti3 C2 Tx membrane electrode and BQDs(10)-Ti3 C2 Tx flexible supercapacitor display broad application prospects in field of portable/wearable electronic devices.

15.
Small ; 20(9): e2306716, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37863816

ABSTRACT

The interaction between catalyst and support plays an important role in electrocatalytic hydrogen evolution (HER), which may explain the improvement in performance by phase transition or structural remodeling. However, the intrinsic behavior of these catalysts (dynamic evolution of the interface under bias, structural/morphological transformation, stability) has not been clearly monitored, while the operando technology does well in capturing the dynamic changes in the reaction process in real time to determine the actual active site. In this paper, nitrogen-doped molybdenum atom-clusters on Ti3 C2 TX (MoACs /N-Ti3 C2 TX ) is used as a model catalyst to reveal the dynamic evolution of MoAcs on Ti3 C2 TX during the HER process. Operando X-ray absorption structure (XAS) theoretical calculation and in situ Raman spectroscopy showed that the Mo cluster structure evolves to a 6-coordinated monatomic Mo structure under working conditions, exposing more active sites and thus improving the catalytic performance. It shows excellent HER performance comparable to that of commercial Pt/C, including an overpotential of 60 mV at 10 mA cm-2 , a small Tafel slope (56 mV dec-1 ), and high activity and durability. This study provides a unique perspective for investigating the evolution of species, interfacial migration mechanisms, and sources of activity-enhancing compounds in the process of electroreduction.

16.
Small ; : e2310398, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38461535

ABSTRACT

Flexible magnesium (Mg)-air batteries provide an ideal platform for developing efficient energy-storage devices toward wearable electronics and bio-integrated power sources. However, high-capacity bio-adaptable Mg-air batteries still face the challenges in low discharge potential and inefficient oxygen electrodes, with poor kinetics property toward oxygen reduction reaction (ORR). Herein, spinel nickel cobalt oxides (NiCo2 O4 ) nanowires immobilized on nitrogen-doped Ti3 C2 Tx (NiCo2 O4 /N-Ti3 C2 Tx ) are reported via surface chemical-bonded effect as oxygen electrodes, wherein surface-doped pyridinic-N-C and Co-pyridinic-N moieties accounted for efficient ORR owing to increased interlayer spacing and changed surrounding environment around Co metals in NiCo2 O4 . Importantly, in polyethylene glycol (PVA)-NaCl neutral gel electrolytes, the NiCo2 O4 /N-Ti3 C2 Tx -assembled quasi-solid wearable Mg-air batteries delivered high open-circuit potential of 1.5 V, good flexibility under various bent angles, high power density of 9.8 mW cm-2 , and stable discharge duration to 12 h without obvious voltage drop at 5 mA cm-2 , which can power a blue flexible light-emitting diode (LED) array and red smart rollable wearable device. The present study stimulates studies to investigate Mg-air batteries involving human-body adaptable neutral electrolytes, which will facilitate the application of Mg-air batteries in portable, flexible, and wearable power sources for electronic devices.

17.
Small ; 20(6): e2304690, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37794605

ABSTRACT

MXenes are considered a promising negative electrode material for potassium ion batteries (PIBs) in view of their low potassium ion diffusion barrier and excellent electrical conductivity. However, the stacking phenomenon in practical applications severely reduces their active surface and leads to slow K+ diffusion. Herein, a facile composite template method is proposed to construct stacking-resistance 3D carbon-supported Ti3 C2 Tx (3D-C@Ti3 C2 Tx ) hollow spheres. Due to the unique structure, when used as a negative electrode material, as-prepared 3D-C@Ti3 C2 Tx hollow spheres show not only improved rate capability with 160.4 mAh g-1 at 100 mA g-1 and 133.7 mAh g-1 at 500 mA g-1 , but also stable cycling performance with 142.5 mAh g-1 specific capacity remained at 2 A g-1 after 4200 cycles. Furthermore, the full cells with 3D-C@Ti3 C2 Tx anode can operate stably for 1000 cycles at 100 mA g-1 . Moreover, the linear fit analysis demonstrates that 3D-C@Ti3 C2 Tx hollow spheres have a fast and stable capacitive potassium storage mechanism. This method is simple and easy to implement, which provide a feasible path to solve the stacking problem of 2D materials.

18.
Chemistry ; 30(10): e202302768, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38171767

ABSTRACT

Fe2 O3 with high theoretical capacity (1007 mA h g-1 ) and low cost is a potential anode material for lithium-ion batteries (LIBs), but its practical application is restricted by its low electrical conductivity and large volume changes during lithiation/delithiation. To solve these problems, Fe2 O3 @Ti3 C2 Tx composites were synthesized by a mussel-like modification method, which relies on the self-polymerization of dopamine under mild conditions. During polymerization, the electronegative group (-OH) on dopamine can easily coordinate with Fe3+ ions as well as form hydrogen bonds with the -OH terminal group on the surface of Ti3 C2 Tx , which induces a uniform distribution of Fe2 O3 on the Ti3 C2 Tx surface and mitigates self-accumulation of MXene nanosheets. In addition, the polydopamine-derived carbon layer protects Ti3 C2 Tx from oxidation during the hydrothermal process, which can further improve the electrical conductivity of the composites and buffer the volume expansion and particle agglomeration of Fe2 O3 . As a result, Fe2 O3 @Ti3 C2 Tx anodes exhibit ~100 % capacity retention with almost no capacity loss at 0.5 A g-1 after 250 cycles, and a stable capacity of 430 mA h g-1 at 2 A g-1 after 500 cycles. The unique structural design of this work provides new ideas for the development of MXene-based composites in energy storage applications.

19.
J Sep Sci ; 47(1): e2300620, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38066235

ABSTRACT

Herein, a magnetic borate-functionalized MXene composite with multiple boronic affinity sites was fabricated by embedding Fe3 O4 nanoparticles with 4-formylphenylboronic acid functionalized Ti3 C2 Tx nanosheets and served as sorbent for the simultaneous extraction of catecholamines (CAs) in urine samples. The morphology and structure of the magnetic materials were investigated using scanning microscopy, vibrating sample magnetometer, X-ray photoelectron spectrometer, and X-ray diffraction. The introduction of polyethyleneimine can amplify the bonded boronic acid groups, thereby effectively improving the adsorption capacities for CAs based on the multiple interactions of boronic affinity, hydrogen bonding, and metal coordination. The adsorption performance was investigated using the kinetics and isotherms models, and the main parameters that influence the extraction efficiency were optimized. Under the most favorable magnetic solid-phase extraction condition, a sensitive method for the analysis of CAs in urine samples was developed by combining magnetic solid-phase extraction conditions with high-performance liquid chromatography detection. The findings illustrated that the proposed approach possessed a wide linearity range of 0.05-250 ng/mL with an acceptable correlation coefficient (R2  ≥ 0.9984) and detection limits of 0.010-0.015 ng/mL for the target CAs. The research not only provides a notable composite with multiple boronic affinity sites but also offers an effective and feasible measure for the detection of CAs in biological samples.


Subject(s)
Catecholamines , Magnetite Nanoparticles , Nitrites , Transition Elements , Polyethyleneimine/chemistry , Adsorption , Boronic Acids/chemistry , Chromatography, High Pressure Liquid , Solid Phase Extraction , Magnetite Nanoparticles/chemistry , Magnetic Phenomena
20.
Mikrochim Acta ; 191(8): 451, 2024 07 06.
Article in English | MEDLINE | ID: mdl-38970693

ABSTRACT

Ti3C2Tx MXene/CuxO composites were prepared by acid etching combined with electrochemical technique. The abundant active sites on the surface of MXene greatly increase the loading of CuxO nanoparticles, and the synergistic effect between the different components of the composite can accelerate the oxidation reaction of glucose. The results indicate that at the working potential of 0.55 V (vs. Ag/AgCl), the glucose sensor based on Ti3C2Tx MXene/CuxO composite presents large linear concentration ranges from 1 µM to 4.655 mM (sensitivity of 361 µA mM-1 cm-2) and from 5.155 mM to 16.155 mM (sensitivity of 133 µA mM-1 cm-2). The limit of detection is 0.065 µM. In addition, the sensor effectively avoids the oxidative interference of common interfering species such as ascorbic acid, dopamine and uric acid. The sensor has good reproducibility, stability and acceptable recoveries for the detection of glucose in human sweat sample (97.5-103.3%) with RSD values less than 4%. Based on these excellent properties it has great potential for the detection of glucose in real samples.


Subject(s)
Copper , Electrochemical Techniques , Glucose , Limit of Detection , Titanium , Copper/chemistry , Humans , Titanium/chemistry , Glucose/analysis , Glucose/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Sweat/chemistry , Electrodes , Oxidation-Reduction , Reproducibility of Results , Biosensing Techniques/methods , Nanocomposites/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL