ABSTRACT
The HIRA histone chaperone complex is comprised of four protein subunits: HIRA, UBN1, CABIN1, and transiently associated ASF1a. All four subunits have been demonstrated to play a role in the deposition of the histone variant H3.3 onto areas of actively transcribed euchromatin in cells. The mechanism by which these subunits function together to drive histone deposition has remained poorly understood. Here we present biochemical and biophysical data supporting a model whereby ASF1a delivers histone H3.3/H4 dimers to the HIRA complex, H3.3/H4 tetramerization drives the association of two HIRA/UBN1 complexes, and the affinity of the histones for DNA drives release of ASF1a and subsequent histone deposition. These findings have implications for understanding how other histone chaperone complexes may mediate histone deposition.
Subject(s)
Cell Cycle Proteins , DNA , Histone Chaperones , Histones , Protein Multimerization , Transcription Factors , Histones/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/chemistry , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Histone Chaperones/metabolism , Histone Chaperones/chemistry , DNA/metabolism , DNA/chemistry , Protein Binding , Nuclear Proteins , Molecular ChaperonesABSTRACT
BACKGROUND: H3.3 is an ancient and conserved H3 variant and plays essential roles in transcriptional regulation. HIRA complex, which is composed of HIRA, UBN1 or UBN2, and Cabin1, is a H3.3 specific chaperone complex. However, it still remains largely uncharacterized how HIRA complex specifically recognizes and deposits H3.3 to the chromatin, such as promoters and enhancers. RESULTS: In this study, we demonstrate that the UBN1 or UBN2 subunit is mainly responsible for specific recognition and direct binding of H3.3 by the HIRA complex. While the HIRA subunit can enhance the binding affinity of UBN1 toward H3.3, Cabin1 subunit cannot. We also demonstrate that both Ala87 and Gly90 residues of H3.3 are required and sufficient for the specific recognition and binding by UBN1. ChIP-seq studies reveal that two independent HIRA complexes (UBN1-HIRA and UBN2-HIRA) can cooperatively deposit H3.3 to cis-regulatory regions, including active promoters and active enhancers in mouse embryonic stem (mES) cells. Importantly, disruption of histone chaperone activities of UBN1 and UBN2 by FID/AAA mutation results in the defect of H3.3 deposition at promoters of developmental genes involved in neural differentiation, and subsequently causes the failure of activation of these genes during neural differentiation of mES cells. CONCLUSION: Together, our results provide novel insights into the mechanism by which the HIRA complex specifically recognizes and deposits H3.3 at promoters and enhancers of developmental genes, which plays a critical role in neural differentiation of mES cells.
Subject(s)
Gene Expression Regulation , Histones/genetics , Mouse Embryonic Stem Cells/metabolism , Nuclear Proteins/genetics , Regulatory Sequences, Nucleic Acid , Adaptor Proteins, Signal Transducing , Animals , Calcineurin/genetics , Calcineurin/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Histone Chaperones/genetics , Histone Chaperones/metabolism , Histones/metabolism , Intracellular Signaling Peptides and Proteins , Mice , Nuclear Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Promoter Regions, Genetic , Transcription Factors/genetics , Transcription Factors/metabolismABSTRACT
SRSF1, a member of the SR protein family, is an important splicing factor and regulator of splicing. Multiple splicing isoforms have been reported for this gene. SRSF1-3, a splicing isoform of SRSF1, is necessary for AID-dependent SHM of IgV genes. However, its precise role in SHM remains enigmatic. Transcriptomic analysis of SRSF1-3 reconstituted cells shows upregulation of transcription factor SATB2 and chromatin regulator UBN1. The increased SATB2 and UBN1 are strikingly enriched in the MAR and promoter regions of the IgL gene, respectively. Furthermore, UBN1 enrichment at the promoter region was coupled with a hundred-fold enhanced occupancy of the histone variant H3.3 at the IgL promoter, that is a hallmark of efficient SHM. The enhanced occupancy of SATB2 at the MAR, UBN1 and histone variant H3.3 at the IgL promoter leads to an increase in IgL transcription, revealing a role of SRSF1-3 in SHM. Thus, SRSF1-3 is likely involved in the regulation of SHM, via upregulation of a crucial transcription factor SATB2, as well as, by overexpression of a chromatin modulator of Ig genes, UBN1, which further assists in the recruitment of the histone variant H3.3. Furthermore, the splicing isoform SRSF1-3 regulates alternate splicing pattern of splicing isoforms for various crucial genes. The present study provides the first evidence that a splicing isoform of an SR protein can regulate the post-transcriptional processing of RNA in vivo.
Subject(s)
Gene Expression Regulation , Genes, Immunoglobulin , Histones/physiology , Immunoglobulin Variable Region/genetics , RNA Splicing/physiology , Serine-Arginine Splicing Factors/physiology , Transcription Factors/physiology , Alternative Splicing , Animals , B-Lymphocytes/physiology , Cell Line , Chickens , Transcriptional ActivationABSTRACT
Incorporation of variant histone sequences, in addition to post-translational modification of histones, serves to modulate the chromatin environment. Different histone chaperone proteins mediate the storage and chromatin deposition of variant histones. Although the two non-centromeric histone H3 variants, H3.1 and H3.3, differ by only 5 aa, replacement of histone H3.1 with H3.3 can modulate the transcription for highly expressed and developmentally required genes, lead to the formation of repressive heterochromatin, or aid in DNA and chromatin repair. The human histone cell cycle regulator (HIRA) complex composed of HIRA, ubinuclein-1, CABIN1, and transiently anti-silencing function 1, forms one of the two complexes that bind and deposit H3.3/H4 into chromatin. A number of recent biochemical and structural studies have revealed important details underlying how these proteins assemble and function together as a multiprotein H3.3-specific histone chaperone complex. Here, we present a review of existing data and present a new model for the assembly of the HIRA complex and for the HIRA-mediated incorporation of H3.3/H4 into chromatin.