Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 302
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Anal Bioanal Chem ; 2024 Oct 23.
Article in English | MEDLINE | ID: mdl-39441433

ABSTRACT

Cucurbitacin B (CuB) is a natural triterpenoid with diverse pharmacological effects including potent anticancer activity. However, its oral bioavailability is hampered by limited metabolism in vivo. We characterized CuB's in vivo metabolism in rats to uncover bioactive metabolites retaining therapeutic potential, using a robust UHPLC-Q-TOF-MS/MS workflow. This workflow combined molecular networking, fragmentation filtering, and mass defect filtering to identify CuB metabolites in rat urine, plasma, and feces following oral administration. Thirteen metabolites were identified and seven were confirmed. Major phase I transformations involved hydrolysis, reduction, epoxidation, and amination. Phase II conjugation included cysteine, glutathione, glucuronide, and gluconic acid conjugates. Notably, one of the main metabolites formed was the cysteine conjugate CuB-Cys. CuB-Cys maintained similar in vitro antiproliferative activity to CuB on HepG2, MCF-7, and PANC-1 cancer cell lines. However, it demonstrated lower cytotoxicity towards non-cancerous L02 cells, highlighting improved therapeutic selectivity. Mechanistically, CuB-Cys induced greater apoptotic signaling in HepG2 cells than CuB via enhanced caspase activation and disrupted BAX-Bcl-2 balance. This represents the first systematic characterization of CuB's in vivo metabolic pathway. The identification and confirmation of CuB-Cys provide insight for drug development efforts aiming to maintain therapeutic efficacy while reducing toxicity, via metabolite-based approaches. Our findings shed light on strategies for improving CuB's clinical potential.

2.
J Sep Sci ; 47(9-10): e2300867, 2024 May.
Article in English | MEDLINE | ID: mdl-38726736

ABSTRACT

Shengxian decoction, a traditional Chinese medicinal prescription, has been shown to alleviate doxorubicin-induced chronic heart failure. This study established an ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry method to separate and characterize the complex chemical compositions of Shengxian decoction, and the absorbed compounds in the bio-samples of the cardiotoxicity rats with chronic heart failure after its oral delivery. Note that 116 chemical compounds were identified from Shengxian decoction in vitro, 81 more than previously detected. Based on the three-dimensional data of these compounds, 28 absorbed compounds were confirmed in vivo. Network pharmacology and molecular docking experiments indicated that timosaponin B-II, timosaponin A-III, gitogenin, and 7,8-didehydrocimigenol were recognized as the key effective compounds to exert effects against doxorubicin cardiotoxicity by acting on targets such as caspase 3, cyclin-dependent kinase 1, cyclin-dependent kinase 4, receptor tyrosine-protein kinase erbB-2, and mitogen-activated protein kinase 1 in p53 and phosphatidylinositol 3-kinase-Akt signaling pathways. This study developed the understanding of the composition of Shengxian decoction for the treatment of doxorubicin cardiotoxicity, as well as a feasible strategy to elucidate the effective constituents in traditional Chinese medicines.


Subject(s)
Doxorubicin , Drugs, Chinese Herbal , Network Pharmacology , Rats, Sprague-Dawley , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/analysis , Animals , Rats , Chromatography, High Pressure Liquid , Male , Mass Spectrometry , Cardiotoxicity , Molecular Docking Simulation , Drug Combinations
3.
Biomed Chromatogr ; : e6028, 2024 Oct 21.
Article in English | MEDLINE | ID: mdl-39434492

ABSTRACT

Population growth and improved industrialization have led to a sharp rise in the demand for plant medicine. In recent years, there has been a general concern about developing new medicinal resources, cutting down on pharmaceutical waste, and discovering new, effective components of traditional Chinese medicine. A novel medication called Wuteng tablets is made from Schisandra chinensis stems and shows promise as a treatment for Alzheimer's disease. This work is the first development of an overall identification technique based on ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-Q/TOF-MS). Using the MS-DIAL integrated informatics platform and UNIFI software, the chemical components of Wuteng tablets were identified, and the amount of lignin in the tablets was ascertained. This study will identify the chemical components of such medications, aid in the development and utilization of medicinal plant resources, and serve as a foundation for the analysis of the components of their biopharmaceutical origin.

4.
Biomed Chromatogr ; 38(11): e6014, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39299923

ABSTRACT

Xiao-Jian-Zhong-Tang (XJZT) has the effect of warming the middle and tonifying the deficiency, easing the urgency and relieving pain according to the theory of traditional Chinese medicine (TCM), and is able to treat spleen deficiency type chronic atrophic gastritis (CAG). Metabolites of TCM in cecum contents are common metabolites of intestinal bacteria and hosts, which can reflect the metabolic status in disease states. The present work was performed to study the effect of XJZT against CAG coupled with the cecal metabolites analysis and bioinformatics. A total of nine prototypical components and 144 metabolites were firstly identified in the cecum metabolites of XJZT using ultra-high performance liquid chromatography added to the quadrupole-time of flight mass spectrometry (UHPLC-Q-TOF/MS), which underwent the metabolism of oxidation, reduction, methylation, and glucuronic acid reaction Furthermore, different prototypical compounds might metabolize into identical metabolites in the presence of intestinal flora. Bioinformatics was further used to correlate these metabolites with the disease and intestinal flora. Components and targets were screened by Cytoscape, and molecular docking of key targets and core components showed good binding ability. This study provided important information for exploring the mechanism of TCM formulae.


Subject(s)
Computational Biology , Drugs, Chinese Herbal , Gastritis, Atrophic , Rats, Sprague-Dawley , Animals , Gastritis, Atrophic/metabolism , Gastritis, Atrophic/microbiology , Gastritis, Atrophic/drug therapy , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Rats , Computational Biology/methods , Chromatography, High Pressure Liquid/methods , Male , Molecular Docking Simulation , Mass Spectrometry/methods , Metabolome/drug effects , Metabolome/physiology , Metabolomics/methods
5.
Phytochem Anal ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39233523

ABSTRACT

INTRODUCTION: Insight into comparing key active ingredients of Radix Bupleuri (RB) based on different processing technologies is a key step to reveal the material basis of drug efficacy and a challenging task for developing traditional Chinese medicine (TCM). OBJECTIVE: This work aims to establish a comprehensive comparative analysis method of TCM and its processed products, which can be used to analyze the changing trend of active components of RB before and after processing. METHODS: First, RB was processed with rice vinegar, rice wine, and honey. Then, ultra-high-performance liquid chromatography (UHPLC) and gas chromatography (GC) coupled with mass spectrometry (MS) technology as well as multiple statistical analyses were used to comprehensively evaluate the compositional variation of polar and volatile compounds in RB under different processing processes. Meanwhile, in UHPLC-MS, a sequential window acquisition of all theoretical fragment ion spectral and information-dependent acquisition mutual authentication (SIMA) was developed. RESULTS: A total of 30 polar components and 33 volatile components were identified as chemical markers (mainly type II saikosaponins, terpenes, and fatty acid esters). These may be the material basis for giving unique pharmacological activities to RB and its processed products. CONCLUSIONS: These findings provided a solid foundation for the differentiated clinical application of RB, and the SIMA method held great potential for achieving accurate analysis of TCM processing ingredients.

6.
Phytochem Anal ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806285

ABSTRACT

INTRODUCTION: Fructus Gardeniae (ZZ), a traditional Chinese herb, has been used in treating patients with jaundice, inflammation, etc. When mixed with ginger juice and stir-baked, ginger juice-processed Fructus Gardeniae (JZZ) is produced, and the chemical compositions in ZZ would be changed by adding the ginger juice. OBJECTIVE: To illuminate the differential components between ZZ and JZZ. METHODS: HPLC, UHPLC-Q-TOF-MS, and Heracles NEO ultra-fast gas phase electronic nose were applied to identify the differential components between ZZ and JZZ. RESULTS: HPLC fingerprints of ZZ and JZZ were established, and 24 common peaks were found. The content determination results showed that the contents of shanzhiside, geniposidic acid, genipin-1-ß-D-gentiobioside and geniposide increased, while the contents of crocin I and crocin II decreased in JZZ. By UHPLC-Q-TOF-MS, twenty-six possible common components were inferred, among which 11 components were different. In further investigation, eight components were identified as the possible distinctive non-volatile compounds between ZZ and JZZ. By Heracles NEO ultra-fast gas phase electronic nose, four substances were inferred as the possible distinctive volatile compounds in JZZ. CONCLUSION: Shanzhiside, caffeic acid, genipin-1-ß-D-gentiobioside, geniposide, rutin, crocin I, crocin II, and 4-Sinapoyl-5-caffeoylquinic acid were identified as the possible differential non-volatile components between ZZ and JZZ. Aniline, 3-methyl-3-sulfanylbutanol-1-ol, E-3-octen-2-one, and decyl propaonate were inferred as the possible distinctive volatile compounds in JZZ. This experiment explored a simple approach with objective and stable results, which would provide new ideas for studying decoction pieces with similar morphological appearance, especially those with different odors.

7.
Phytochem Anal ; 35(7): 1550-1564, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38816275

ABSTRACT

INTRODUCTION: The fruit wastes, in particular agricultural wastes, are considered potential and inexpensive sources of bioactive compounds. OBJECTIVE: The current study was aimed at the preparation of an optimized extract of sugarcane bagasse using microwave-assisted extraction (MAE) technology and comparative evaluation of chemical composition, antioxidant, and antidiabetic activities with extract prepared through maceration technique. METHODOLOGY: Box-Behnken Design (BDD) with response surface methodology was applied to observe interactions of three independent variables (ethanol concentrations [%], microwave power [W], and extraction time [min]) on the dependent variables (total phenolic content [TPC] and antioxidant status via 2,2-diphenyl-1-picrylhydrazyl [DPPH] to establish optimal extraction conditions. The ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) analysis was applied for untargeted metabolite profiling, and in vitro assays were used for evaluation of the antidiabetic and antioxidant potential of the extract. Moreover, an in silico study was used to predict the interaction of five dominant compounds from the UHPLC-Q-TOF-MS profile against the dipeptidyl peptidase-IV (DPP-IV) enzyme. RESULTS: The optimal conditions for the extraction were established at 60% (v/v) ethanol, 500 W microwave power, and 5 min time with TPC 12.83 ± 0.66 mg GAE/g d.w. and DPPH 45.09 ± 0.07%. The UHPLC-Q-TOF-MS analysis revealed the presence of a total of 106 compounds in the extract. Moreover, the extract prepared through MAE technology presented higher TPC and DPPH findings than the extract prepared through maceration. Similarly, the extract was also found with good antidiabetic activity by inhibiting the DPP-IV enzyme which was also rectified theoretically by a molecular docking study. CONCLUSION: The current study presents a sustainable and an optimized approach for the preparation of sugarcane bagasse extract with functional phytoconstituents and higher antidiabetic and antioxidant activities.


Subject(s)
Antioxidants , Cellulose , Hypoglycemic Agents , Metabolomics , Microwaves , Saccharum , Saccharum/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Cellulose/chemistry , Chromatography, High Pressure Liquid/methods , Metabolomics/methods , Biphenyl Compounds/chemistry , Plant Extracts/chemistry , Picrates , Mass Spectrometry/methods , Phenols/chemistry , Phenols/analysis
8.
Phytochem Anal ; 35(2): 288-307, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37814999

ABSTRACT

BACKGROUND AND OBJECTIVE: The herb Rheum tanguticum (RT), a member of the Polygonaceae family, is listed in the Chinese Pharmacopoeia and has been widely used to treat cardiovascular and gastrointestinal disease. The research aimed to identify the different substances from two kinds of RT extraction methods and the in vivo biotransformation of RT components. METHODS: In this study, by using ultrahigh-performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS/MS), we have investigated the metabolomic variation and the in vivo metabolism of RT. A post-acquisition data processing software, PeakView, was applied to an accurate qualitative analysis of the chemical components in RT. RESULTS: Through plant metabolomics analysis, 24 related, differentially expressed metabolites of RT water extract and alcohol extract were obtained. Combined with novel identification strategies and systematic in vivo metabolism analysis, a total of 101 compounds were discovered or tentatively identified in rat serum (including 15 prototype compounds and 86 metabolites). CONCLUSION: In this study, a combination of extraction methods, liquid chromatography-mass spectrometry (LC-MS) technology, and in vivo animal metabolism studies have been established for the screening, identification, and research of chemical active components of natural medicines. LC-MS analysis combined with plant metabolomics was used to study the differential metabolites between different extraction methods of RT. Based on UHPLC-Q-TOF-MS/MS technology, the composition and metabolism of rat plasma before and after RT administration were analysed in vivo, and 15 prototype components and 86 metabolites were detected.


Subject(s)
Ethanol , Rheum , Animals , Rats , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Metabolomics
9.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3312-3319, 2024 Jun.
Article in Zh | MEDLINE | ID: mdl-39041094

ABSTRACT

Urine metabolomics based on ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS) was utilized to investigate the metabolic regulation mechanism of Tingli Dazao Xiefei Decoction(TLDZ) in rats with allergic asthma. SD male rats were divided into a normal group, a model group, a dexamethasone group, and a TLDZ group. The allergic asthma model was established by intraperitoneal injection of ovalbumin(OVA) to induce allergy, combined with atomization excitation. Urine metabolites from all rats were collected by UHPLC-Q-TOF-MS. The metabolic profiles of rats in each group were built by principal component analysis(PCA). Besides, the differential metabolites between the model group and the TLDZ group were selected by orthogonal partial least squares discriminant analysis(OPLS-DA), t-test(P<0.05), and variable importance in the projection(VIP) values of more than 3. The differential metabolites were identified through HMDB, METLIN, and other online databa-ses. Heat maps and clustering analysis for relative quantitative information of biomarkers in each group were drawn by MeV 4.8.0 software. Finally, MetaboAnalyst, MBRole, and KEGG databases were used to enrich related metabolic pathways and construct metabolic networks. The result demonstrated that TLDZ could effectively regulate the disordered urine metabolic profiles of asthmatic rats. Combined with multivariate statistical analysis and online databases, a total of 45 differential metabolites with significant changes(P<0.05) between the model group and the TLDZ group were screened out. Metabolic pathways including histidine metabolism, tryptophan metabolism, and arginine and proline metabolism were enriched. TLDZ could improve asthma by regulating related metabolic pathways and interfering with pathological processes such as immune homeostasis airway inflammation. The study investigates the molecular mechanism of anti-asthma of TLDZ from the perspective of urine metabolomics, and combined with previous pharmacological studies, it provides a scientific basis for the clinical development and application of TLDZ in the treatment of asthma.


Subject(s)
Asthma , Drugs, Chinese Herbal , Metabolomics , Rats, Sprague-Dawley , Animals , Asthma/drug therapy , Asthma/urine , Asthma/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Male , Rats , Chromatography, High Pressure Liquid , Humans , Urine/chemistry , Tandem Mass Spectrometry
10.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2953-2964, 2024 Jun.
Article in Zh | MEDLINE | ID: mdl-39041155

ABSTRACT

A sensitive and efficient ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry(UHPLC-Q-TOF-MS) approach was established. Based on the self-developed information library, the chemical components from Euodiae Fructus were systematically characterized and identified. The chromatographic separation conditions(e. g., stationary phase,mobile phase, column temperature, and elution gradient) and MS detection conditions(nozzle voltage, capillary voltage, fragmentor,and collision energy) were optimized. Ultimately, an HSS T3 column(2. 1 mm×100 mm, 1. 8 µm) maintained at 35 ℃ was used,and 0. 1% formic acid water-acetonitrile at the flow rate of 0. 4 m L·min~(-1) was used as the mobile phase. Electrospray ionization was adopted to collect the positive and negative ion mass spectrometry data in Auto MS/MS mode. According to the reference compound comparison, fragment ion information interpretation, literature, and retrieval in the self-developed information library, 92 compounds were characterized or derived from the decoction of Euodiae Fructus, including 33 alkaloids, 23 flavonoids, 12 terpenoids, 12phenylpropanoids, and 12 others. Among them, 17 compounds were identified by comparison with the reference compounds, and 11compounds were unreported from Euodiae Fructus. This study realizes the rapid characterization and identification of multi-class chemical components in the decoction of Euodiae Fructus and provides a reference for the studies regarding its effective substances and quality control.


Subject(s)
Drugs, Chinese Herbal , Evodia , Fruit , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Fruit/chemistry , Evodia/chemistry , Mass Spectrometry/methods , Tandem Mass Spectrometry/methods , Molecular Structure , Spectrometry, Mass, Electrospray Ionization/methods
11.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1641-1660, 2024 Mar.
Article in Zh | MEDLINE | ID: mdl-38621949

ABSTRACT

This study explored the existence forms(original constituents and metabolites) of Tiantian Capsules, Aloe, and Tiantian Capsules without Aloe in rats for the first time, aiming to clarify the contribution of Aloe to the existence form of Tiantian Capsules. Rats were administrated with corresponding drugs by gavage once a day for seven consecutive days. All urine and feces samples were collected during the seven days of administration, and blood samples were collected 0.5, 1, and 1.5 h after the last administration. UHPLC-Q-TOF-MS was employed to detect and identify the original constituents and metabolites in the samples. A total of 34, 28, and 2 original constituents and 64, 94, and 0 metabolites were identified in the samples of rats administrated with Aloe, Tiantian Capsules, and Tiantian Capsules without Aloe, respectively. The main metabolic reactions were methylation, hydrogenation, hydroxylation, dehydroxylation, glucuronidation, and sulfation. This study clarified for the first time the existence forms and partial metabolic pathways of Aloe, Tiantian Capsules, and Tiantian Capsules without Aloe in rats, laying a foundation for revealing their effective forms. The findings are of great significance to the research on the functioning mechanism and quality control of Aloe and Tiantian Capsules.


Subject(s)
Aloe , Drugs, Chinese Herbal , Rats , Animals , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/metabolism , Administration, Oral , Feces , Capsules
12.
Zhongguo Zhong Yao Za Zhi ; 49(2): 420-430, 2024 Jan.
Article in Zh | MEDLINE | ID: mdl-38403318

ABSTRACT

The chemical constituents of Schizonepetae Spica were qualitatively analyzed by UHPLC-Q-TOF-MS/MS. An Agilent poroshell 120 SB-C_(18) column(3.0 mm×100 mm, 2.7 µm) was used for gradient elution with 0.1% formic acid water(A)-acetonitrile(B) solution as mobile phase at the flow rate of 0.4 mL·min~(-1) and column temperature of 45 ℃. The data were collected by scanning in positive and negative ion modes, and the compounds were identified by comparison of reference materials and PeakView software. Ninety-seven compounds were identified from Schizonepetae Spica, including 28 flavonoids, 23 phenolic acids, 23 fatty acids, 15 terpenoids, and 8 other compounds. The UHPLC-Q-TOF-MS/MS method established in this study can identify the chemical components of Schizonepetae Spica rapidly, accurately, and comprehensively, and provide a basis for the basic study of pharmacodynamic substances of Schizonepetae Spica.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Flavonoids/analysis , Terpenes
13.
BMC Gastroenterol ; 23(1): 161, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37208605

ABSTRACT

INTRODUCTION: Chronic erosive gastritis (CEG) is closely related to gastric cancer, which requires early diagnosis and intervention. The invasiveness and discomfort of electronic gastroscope have limited its application in the large-scale screening of CEG. Therefore, a simple and noninvasive screening method is needed in the clinic. OBJECTIVES: The aim of this study is to screen potential biomarkers that can identify diseases from the saliva samples of CEG patients using metabolomics. METHODS: Saliva samples from 64 CEG patients and 30 healthy volunteers were collected, and metabolomic analysis was performed using UHPLC-Q-TOF/MS in the positive and negative ion modes. Statistical analysis was performed using both univariate (Student's t-test) and multivariate (orthogonal partial least squares discriminant analysis) tests. Receiver operating characteristic (ROC) analysis was conducted to determine significant predictors in the saliva of CEG patients. RESULTS: By comparing the saliva samples from CEG patients and healthy volunteers, 45 differentially expressed metabolites were identified, of which 37 were up-regulated and 8 were down-regulated. These differential metabolites were related to amino acid, lipid, phenylalanine metabolism, protein digestion and absorption, and mTOR signaling pathway. In the ROC analysis, the AUC values of 7 metabolites were greater than 0.8, among which the AUC values of 1,2-dioleoyl-sn-glycoro-3-phosphodylcholine and 1-stearoyl-2-oleoyl-sn-glycoro-3-phospholine (SOPC) were greater than 0.9. CONCLUSIONS: In summary, a total of 45 metabolites were identified in the saliva of CEG patients. Among them, 1,2-dioleoyl-sn-glycoro-3-phosphorylcholine and 1-stearoyl-2-oleoyl-sn-glycoro-3-phosphorine (SOPC) might have potential clinical application value.


Subject(s)
Gastritis , Metabolome , Humans , Metabolomics/methods , Biomarkers/metabolism , Amino Acids , Gastritis/diagnosis
14.
Anal Bioanal Chem ; 415(5): 961-974, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36602568

ABSTRACT

Quality control of Radix Bupleuri (RB) can be challenging due to the complexity of origin, the similar morphological characteristics, and the diversity of the multiple components. In this study, an integrated strategy for extensive identification of metabolites in plants based on multiple data processing methods was proposed to distinguish four commercially available RB species. First, the pre-processed mass spectrometry data was uploaded to Global Natural Products Social Molecular Networking (GNPS) for spectral library search and molecular network analysis, which can effectively differentiate isomers and reduce molecular redundancy. Second, the possible cleavage mode was summarized from the characteristic MS/MS fragment ions of saikoside standard, and then the possible structure of saikoside in the sample was deduced according to the cleavage patterns. Third, collected all kinds of RB components reported in the literature and matched the information in the samples to obtain more comprehensive information about metabolites. Finally, chemical markers were found employing chemometrics. This strategy not only increases the variety and number of identified components, but also improves the accuracy of the data. Based on this strategy, a total of 132 components were identified from different species of RB, and 14 chemical constituents were considered to be potential chemical markers to distinguish four kinds of RB. Among them, saikogenin a, hydroxy-saikosaponin a, hydroxy-saikosaponin d, and rutinum were of great significance for identification. The method proposed in this study not only successfully identified and distinguished four species of RB, but also laid a good theoretical foundation for regulating the RB market. This strategy provides promising perspectives in the accurate analysis of the ingredients of traditional Chinese medicine.


Subject(s)
Drugs, Chinese Herbal , Drugs, Chinese Herbal/chemistry , Tandem Mass Spectrometry , Plant Extracts , Quality Control , Chromatography, High Pressure Liquid/methods
15.
Biomed Chromatogr ; 37(10): e5715, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37607558

ABSTRACT

Huangqi Guizhi Wuwu decoction (HGWD) is an effective traditional Chinese medicine prescription, which is used for treating blood arthralgia in the clinic. However, its material basis has not been studied yet. Herein, a new and highly sensitive ultra-high-performance liquid chromatography-quadrupole-time of flight-MS (UHPLC-Q-TOF-MS) technique is proposed and used for the high-resolution and accurate identification of the material basis of HGWD. Seventy-eight compounds have been identified in HGWD. The advantages of information-dependent acquisition (IDA), sequential window acquisition of all theoretical fragment-ion spectra (SWATH), and MSALL in the quantitative and qualitative analyses of compounds were compared. For the identification of compounds, the best mode with the highest accuracy is the IDA. For the quantification of compounds, MSALL shows the best repeatability and linearity. This research provides a theoretical basis for the study of quality control of traditional Chinese medicine preparations.


Subject(s)
Neuroprotective Agents , Chromatography, High Pressure Liquid , Medicine, Chinese Traditional , Quality Control , Tandem Mass Spectrometry
16.
Biomed Chromatogr ; 37(8): e5653, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37052131

ABSTRACT

Gansuibanxia decoction (GSBXD), a traditional Chinese medicine (TCM) formula with 2000 years of history, has good efficacies on treating cancerous ascites, pleural effusion, etc. However, little is known about its metabolite profiles owing to the lack of in vivo studies. In this study, we explored the prototypes and metabolites of GSBXD in rat plasma and urine using UHPLC-Q-TOF/MS technology. A total of 82 GSBXD-related xenobiotic bioactive components (38 prototypes and 44 metabolites) were confirmed or tentatively characterized, including 32 prototypes and 29 metabolites in plasma, and 25 prototypes and 29 metabolites in urine. The results showed that the bioactive components absorbed in vivo mainly contained diterpenoids, triterpenoids, flavonoids and monoterpene glycosides. Both phase I reactions (methylation, reduction, demethylation, hydrolysis, hydroxylation and oxidation) and phase II reactions (glucuronidation and sulfation) were involved in the metabolism of GSBXD in vivo. This study will provide a foundation for the quality control, pharmacological study and clinical application of GSBXD.


Subject(s)
Drugs, Chinese Herbal , Rats , Animals , Chromatography, High Pressure Liquid/methods , Medicine, Chinese Traditional , Plasma/chemistry , Flavonoids/analysis
17.
Biomed Chromatogr ; 37(10): e5704, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37496363

ABSTRACT

Waste medicinal plants are widely used in drug production. With the increasing demand for botanical drugs, there is an urgent need to identify new and effective drugs and improve the utilization of medicinal plant resources. Wuteng tablets (WTP) are extracted from the stem of Schisandra chinensis and have a good therapeutic effect on Alzheimer's disease. In this study, a holistic identification strategy based on UHPLC-Q/TOF-MS was developed for the first time to investigate the metabolites and metabolic pathways involved in the in vitro metabolism and liver microsomal incubation and in the in vivo metabolic system of rats after WTP administration. After the oral administration of WTP, 21 metabolites were identified in the serum and 25 metabolites were identified in the urine, of which six were new metabolites; 33 metabolites were inferred from the microsomal metabolites in vitro. The metabolic pathways related to WTP mainly involve demethylation, hydroxylation, dehydroxylation and dehydrogenation. In this study, the metabolites and metabolic pathways of WTP were elucidated via UHPLC-Q/TOF-MS, which provided a basis for an in-depth study of the pharmacodynamic and pharmacotoxicological effects of WTP.


Subject(s)
Alzheimer Disease , Drugs, Chinese Herbal , Rats , Animals , Rats, Sprague-Dawley , Chromatography, High Pressure Liquid , Administration, Oral , Alzheimer Disease/metabolism , Metabolic Networks and Pathways
18.
Chem Biodivers ; 20(4): e202201132, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36843209

ABSTRACT

As a traditional Chinese medicine, Rhododendron molle G. Don has a long history of treating rheumatoid arthritis. In this study, RAW 264.7 cells induced by lipopolysaccharide (LPS) were established as cell inflammatory model to evaluate the anti-inflammatory activity of chloroform extract from R. molle leaves (CERL), ethyl acetate extract from R. molle leaves (EERL) and butanol extract from R. molle leaves (BERL) and analyze the potential anti-inflammatory components of R. molle. Potential anti-inflammatory components analysis of CERL were performed by HPLC and UHPLC-Q-TOF-MS. Prediction of potential anti-inflammatory components by molecular docking experiments. Compared with negative control group, 25 µg/mL CERL could reduce the release level of NO by 62 %, and the mRNA expression levels of COX-2, IL-6, IL-1ß and TNF-α were reduced by 69.74 %, 86.25 %, 77.94 % and 56.80 %, respectively. Western-Blot showed similar results. CERL, EERL and BERL exerted their inhibitory activity in dose-dependent manner. All results showed that the higher the concentration, the better the anti-inflammatory activity. CERL showed the best inhibitory activity, the second was EERL, and then was BERL. 21 terpenoids and 4 flavonoids were identified in CERL by UHPLC-Q-TOF-MS. Molecular docking results showed that triterpenoids in CERL had better interaction with target proteins (TNF-α, IL-1ß). It indicated that triterpenoids may be potential anti-inflammatory components of R. molle leaves. This study explored the anti-inflammatory activities of CERL, EERL, BERL, which laid a foundation for further promoting the clinical application of R. molle.


Subject(s)
Plant Extracts , Rhododendron , Animals , Mice , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , RAW 264.7 Cells/drug effects , Rhododendron/chemistry , Tumor Necrosis Factor-alpha
19.
Phytochem Anal ; 34(7): 755-771, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36529443

ABSTRACT

INTRODUCTION: Doxorubicin-induced cardiotoxicity (DIC) is a serious obstacle to oncologic treatment. Mountain cultivated ginseng (MCG) exhibits stronger pharmacological effects than cultivated ginseng (CG) mainly due to the differences in ginsenosides. However, the material basis and the underlying mechanism of the protective effects of total saponins of MCG (TSMCG) against DIC are unclear. OBJECTIVES: We aimed to elucidate the material basis and the pharmacodynamic effects of TSMCG on DIC as well as the underlying mechanisms. METHODS: To comprehensively analyze the effective substances, the chemical components of TSMCG and their prototypes or metabolites in vivo were characterized through UHPLC/Q-TOF-MS. Then, an absorbed component-target-disease network was established to explore the mechanisms underlying the protective effects of TSMCG against DIC. H9c2 cells were employed for pharmacodynamic assays. The mechanism was verified by Western blot and molecular docking simulations. RESULTS: A total of 56 main ginsenosides were identified in TSMCG, including 27 ginsenosides of PPD type, 15 ginsenosides of PPT type, two ginsenosides of OA types, and 12 ginsenosides of other types. Moreover, 55 ginsenoside prototypes or metabolites in vivo were tentatively characterized. Ginsenoside Ra1 , a differential compound between MCG and CG, could be metabolized by oxidation and deglycosylation. Network pharmacology showed that AKT1, p53, and STAT3 are core targets of 62 intersecting genes. Molecular docking results indicated that most of the ginsenosides have favorable affinity with these core targets. After doxorubicin exposure, TSMCG could increase cell viability and inhibit apoptosis in a dose-dependent manner. CONCLUSION: Our work reveals a novel comprehensive strategy to study the material basis of the protective effects of TSMCG against DIC and the underlying mechanisms through integrating in vivo substance identification, metabolic profiling, network pharmacology, pharmacodynamic evaluation, and mechanism verification.


Subject(s)
Ginsenosides , Panax , Saponins , Saponins/pharmacology , Ginsenosides/pharmacology , Panax/chemistry , Cardiotoxicity , Molecular Docking Simulation , Network Pharmacology , Doxorubicin/pharmacology , Doxorubicin/metabolism
20.
Int J Mol Sci ; 24(8)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37108473

ABSTRACT

Isopropoxy benzene guanidine (IBG) is a guanidine derivative with antibacterial activity against multidrug-resistant bacteria. A few studies have revealed the metabolism of IBG in animals. The aim of the current study was to identify potential metabolic pathways and metabolites of IBG. The detection and characterization of metabolites were performed with high-performance liquid chromatography tandem mass spectrometry (UHPLC-Q-TOF-MS/MS). Seven metabolites were identified from the microsomal incubated samples by using the UHPLC-Q-TOF-MS/MS system. The metabolic pathways of IBG in the rat liver microsomes involved O-dealkylation, oxygenation, cyclization, and hydrolysis. Hydroxylation was the main metabolic pathway of IBG in the liver microsomes. This research investigated the in vitro metabolism of IBG to provide a basis for the further pharmacology and toxicology of this compound.


Subject(s)
Microsomes, Liver , Tandem Mass Spectrometry , Rats , Animals , Tandem Mass Spectrometry/methods , Microsomes, Liver/metabolism , Benzene , Guanidine/pharmacology , Chromatography, High Pressure Liquid/methods
SELECTION OF CITATIONS
SEARCH DETAIL