Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 232
Filter
Add more filters

Publication year range
1.
Cell ; 172(3): 491-499.e15, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29358049

ABSTRACT

Non-coding "ultraconserved" regions containing hundreds of consecutive bases of perfect sequence conservation across mammalian genomes can function as distant-acting enhancers. However, initial deletion studies in mice revealed that loss of such extraordinarily constrained sequences had no immediate impact on viability. Here, we show that ultraconserved enhancers are required for normal development. Focusing on some of the longest ultraconserved sites genome wide, located near the essential neuronal transcription factor Arx, we used genome editing to create an expanded series of knockout mice lacking individual or combinations of ultraconserved enhancers. Mice with single or pairwise deletions of ultraconserved enhancers were viable and fertile but in nearly all cases showed neurological or growth abnormalities, including substantial alterations of neuron populations and structural brain defects. Our results demonstrate the functional importance of ultraconserved enhancers and indicate that remarkably strong sequence conservation likely results from fitness deficits that appear subtle in a laboratory setting.


Subject(s)
Conserved Sequence , Embryonic Development/genetics , Enhancer Elements, Genetic , Animals , Brain/abnormalities , Brain/embryology , Brain/metabolism , Female , Gene Deletion , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Male , Mice , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Mol Cell ; 71(6): 956-972.e9, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30146317

ABSTRACT

Gene regulation requires selective targeting of DNA regulatory enhancers over megabase distances. Here we show that Evf2, a cloud-forming Dlx5/6 ultraconserved enhancer (UCE) lncRNA, simultaneously localizes to activated (Umad1, 1.6 Mb distant) and repressed (Akr1b8, 27 Mb distant) chr6 target genes, precisely regulating UCE-gene distances and cohesin binding in mouse embryonic forebrain GABAergic interneurons (INs). Transgene expression of Evf2 activates Lsm8 (12 Mb distant) but fails to repress Akr1b8, supporting trans activation and long-range cis repression. Through both short-range (Dlx6 antisense) and long-range (Akr1b8) repression, the Evf2-5'UCE links homeodomain and mevalonate pathway-regulated enhancers to IN diversity. The Evf2-3' end is required for long-range activation but dispensable for RNA cloud localization, functionally dividing the RNA into 3'-activator and 5'UCE repressor and targeting regions. Together, these results support that Evf2 selectively regulates UCE interactions with multi-megabase distant genes through complex effects on chromosome topology, linking lncRNA-dependent topological and transcriptional control with interneuron diversity and seizure susceptibility.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Homeodomain Proteins/genetics , Prosencephalon/embryology , Alcohol Oxidoreductases/genetics , Animals , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Conserved Sequence , Enhancer Elements, Genetic/genetics , Homeodomain Proteins/physiology , Interneurons/physiology , Mice , Neurogenesis/genetics , Neurogenesis/physiology , RNA, Long Noncoding/genetics , Transcription Factors , Cohesins
3.
Mol Biol Evol ; 41(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39058500

ABSTRACT

Ultraconserved elements were discovered two decades ago, arbitrarily defined as sequences that are identical over a length ≥ 200 bp in the human, mouse, and rat genomes. The definition was subsequently extended to sequences ≥ 100 bp identical in at least three of five mammalian genomes (including dog and cow), and shown to have undergone rapid expansion from ancestors in fish and strong negative selection in birds and mammals. Since then, many more genomes have become available, allowing better definition and more thorough examination of ultraconserved element distribution and evolutionary history. We developed a fast and flexible analytical pipeline for identifying ultraconserved elements in multiple genomes, dedUCE, which allows manipulation of minimum length, sequence identity, and number of species with a detectable ultraconserved element according to specified parameters. We suggest an updated definition of ultraconserved elements as sequences ≥ 100 bp and ≥97% sequence identity in ≥50% of placental mammal orders (12,813 ultraconserved elements). By mapping ultraconserved elements to ∼200 species, we find that placental ultraconserved elements appeared early in vertebrate evolution, well before land colonization, suggesting that the evolutionary pressures driving ultraconserved element selection were present in aquatic environments in the Cambrian-Devonian periods. Most (>90%) ultraconserved elements likely appeared after the divergence of gnathostomes from jawless predecessors, were largely established in sequence identity by early Sarcopterygii evolution-before the divergence of lobe-finned fishes from tetrapods-and became near fixed in the amniotes. Ultraconserved elements are mainly located in the introns of protein-coding and noncoding genes involved in neurological and skeletomuscular development, enriched in regulatory elements, and dynamically expressed throughout embryonic development.


Subject(s)
Conserved Sequence , Evolution, Molecular , Vertebrates , Animals , Humans , Vertebrates/genetics , Genome , Phylogeny
4.
Syst Biol ; 73(3): 495-505, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38733598

ABSTRACT

Asymmetrical rates of cladogenesis and extinction abound in the tree of life, resulting in numerous minute clades that are dwarfed by larger sister groups. Such taxa are commonly regarded as phylogenetic relicts or "living fossils" when they exhibit an ancient first appearance in the fossil record and prolonged external morphological stasis, particularly in comparison to their more diversified sister groups. Due to their special status, various phylogenetic relicts tend to be well-studied and prioritized for conservation. A notable exception to this trend is found within Amblypygi ("whip spiders"), a visually striking order of functionally hexapodous arachnids that are notable for their antenniform first walking leg pair (the eponymous "whips"). Paleoamblypygi, the putative sister group to the remaining Amblypygi, is known from Late Carboniferous and Eocene deposits but is survived by a single living species, Paracharon caecusHansen (1921), that was last collected in 1899. Due to the absence of genomic sequence-grade tissue for this vital taxon, there is no global molecular phylogeny for Amblypygi to date, nor a fossil-calibrated estimation of divergences within the group. Here, we report a previously unknown species of Paleoamblypygi from a cave site in Colombia. Capitalizing upon this discovery, we generated the first molecular phylogeny of Amblypygi, integrating ultraconserved element sequencing with legacy Sanger datasets and including described extant genera. To quantify the impact of sampling Paleoamblypygi on divergence time estimation, we performed in silico experiments with pruning of Paracharon. We demonstrate that the omission of relicts has a significant impact on the accuracy of node dating approaches that outweighs the impact of excluding ingroup fossils, which bears upon the ancestral range reconstruction for the group. Our results underscore the imperative for biodiversity discovery efforts in elucidating the phylogenetic relationships of "dark taxa," and especially phylogenetic relicts in tropical and subtropical habitats. The lack of reciprocal monophyly for Charontidae and Charinidae leads us to subsume them into one family, Charontidae, new synonymy.


Subject(s)
Fossils , Phylogeny , Animals , Spiders/classification , Spiders/genetics
5.
Syst Biol ; 73(3): 532-545, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38320290

ABSTRACT

Rates of nucleotide substitution vary substantially across the Tree of Life, with potentially confounding effects on phylogenetic and evolutionary analyses. A large acceleration in mitochondrial substitution rate occurs in the cockroach family Nocticolidae, which predominantly inhabit subterranean environments. To evaluate the impacts of this among-lineage rate heterogeneity on estimates of phylogenetic relationships and evolutionary timescales, we analyzed nuclear ultraconserved elements (UCEs) and mitochondrial genomes from nocticolids and other cockroaches. Substitution rates were substantially elevated in nocticolid lineages compared with other cockroaches, especially in mitochondrial protein-coding genes. This disparity in evolutionary rates is likely to have led to different evolutionary relationships being supported by phylogenetic analyses of mitochondrial genomes and UCE loci. Furthermore, Bayesian dating analyses using relaxed-clock models inferred much deeper divergence times compared with a flexible local clock. Our phylogenetic analysis of UCEs, which is the first genome-scale study to include all 13 major cockroach families, unites Corydiidae and Nocticolidae and places Anaplectidae as the sister lineage to the rest of Blattoidea. We uncover an extraordinary level of genetic divergence in Nocticolidae, including two highly distinct clades that separated ~115 million years ago despite both containing representatives of the genus Nocticola. The results of our study highlight the potential impacts of high among-lineage rate variation on estimates of phylogenetic relationships and evolutionary timescales.


Subject(s)
Cockroaches , Phylogeny , Animals , Cockroaches/genetics , Cockroaches/classification , Genome, Mitochondrial , Evolution, Molecular
6.
Mol Ecol ; 33(3): e17221, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38018028

ABSTRACT

The annual flooding cycle of Amazonian rivers sustains the largest floodplains on Earth, which harbour a unique bird community. Recent studies suggest that habitat specialization drove different patterns of population structure and gene flow in floodplain birds. However, the lack of a direct estimate of habitat affinity prevents a proper test of its effects on population histories. In this work, we used occurrence data, satellite images and genomic data (ultra-conserved elements) from 24 bird species specialized on a variety of seasonally flooded environments to classify habitat affinities and test its influence on evolutionary histories of Amazonian floodplain birds. We demonstrate that birds with higher specialization in river islands and dynamic environments have gone through more recent demographic expansion and currently have less genetic diversity than floodplain generalist birds. Our results indicate that there is an intrinsic relationship between habitat affinity and environmental dynamics, influencing patterns of population structure, demographic history and genetic diversity. Within the floodplains, historical landscape changes have had more severe impacts on island specialists, making them more vulnerable to current and future anthropogenic changes, as those imposed by hydroelectric dams in the Amazon Basin.


Subject(s)
Biological Evolution , Ecosystem , Animals , Brazil , Birds/genetics , Rivers , Demography
7.
Mol Phylogenet Evol ; 199: 108143, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38977042

ABSTRACT

Cyphophthalmi (the mite harvesters) are a group of Opiliones with broad interest due to their species being classic examples of short-range endemics and displaying model biogeographical patterns for poor dispersers. Cyphophthalmi phylogeny has received attention using morphology, Sanger-based sequencing data, or transcriptomics. Here we turn to a new type of data, ultraconserved elements (UCEs) and provide a first phylogeny for the entire suborder Cyphophthalmi using such data and including representatives from 36 of the 46 currently recognized genera. Phylogenetic analysis of four occupancy matrices (50%, 75%, 90% and 95%), for a total of 840, 567, 129, and 23 loci, respectively, yielded a well resolved phylogeny with monophyly of Pettalidae, Parasironidae, Stylocellidae and Troglosironidae. However, Neogoveidae appeared paraphyletic with respect to Ogoveidae in all datasets and to Troglosironidae in some, and the traditional Sironidae, which was monophyletic, now appeared paraphyletic with respect to the recently erected family Parasironidae. Our phylogenomic results using UCE data resolve the position of several problematic genera (e.g., Pettalus) and add support to other parts of the tree that received low support in Sanger-based phylogenies. Our work also stresses the possibility to add museum samples to phylogenies although methods for optimizing DNA yield from such small-bodied specimens need further improvement. Finally, this backbone phylogeny demonstrates the feasibility of an all-species phylogeny using UCEs for Cyphophthalmi, and by extension, for all Opiliones.


Subject(s)
Phylogeny , Animals , Mites/genetics , Mites/classification , Sequence Analysis, DNA
8.
Mol Phylogenet Evol ; 191: 107977, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38008369

ABSTRACT

A highly endemic ant fauna is found in the arid regions of southern Africa, including species in the genus Ocymyrmex. This genus of ants has higher species richness in the western arid regions of southern Africa compared to tropical and subtropical parts of the continent. The processes that have produced these patterns of diversity and distribution of arid adapted ants in southern Africa have never been investigated. The diversification of many other taxa in the region has been associated with past climate fluctuations that occurred during the Miocene epoch. In this study, the nature and timing of historical processes that may have led to the diversification within Ocymyrmex were assessed. We hypothesized that past climate oscillations, characterized by long periods of aridification, have driven the current distribution of Ocymyrmex species that resulted in the highest species richness of the genus in the Deserts & xeric shrublands biome in southern Africa. Ninety-four Ocymyrmex worker specimens from Botswana, Kenya, Namibia, South Africa, Tanzania and Zimbabwe, representing 21 currently described species and six morphospecies, were included in a phylogenomic analysis. Phylogenies for the genus, based on next generation sequencing data from ultraconserved elements, were inferred using Maximum Likelihood, and a dating analysis was performed using secondary age estimates as calibration points. A distribution database of Ocymyrmex records was used to assign species ranges, which were then coded according to major biomes in southern Africa and used as input for biogeographical analysis. We explored the phylogenomic relationships of Ocymyrmex and analysed these within a biogeographical and paleoclimatic framework to disentangle the potential processes responsible for diversification in this group. Dating analyses estimated that the crown age of Ocymyrmex dates to the Oligocene, around 32 Ma. Diversification within this group occurred between the mid-Miocene (∼12.5 Ma) and Pleistocene (∼2 Ma). Our biogeographic analyses suggest that Ocymyrmex species originated in the south-western region of southern Africa, which is now part of the Deserts & xeric shrublands biome and diversified into eastern subtropical areas during the Pliocene. Paleoclimatic changes resulting in increased aridity during the Miocene likely drove the diversification of the genus Ocymyrmex. It is most likely that the diversification of grasslands, because of historical climate change, facilitated the diversification of these ants to the eastern parts of southern Africa when open grasslands replaced forests during the early Miocene.


Subject(s)
Ants , Animals , Phylogeny , Ants/genetics , Ecosystem , Forests , Africa, Southern
9.
Mol Phylogenet Evol ; 192: 107990, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38072142

ABSTRACT

Goniodorididae is a family of small dorid nudibranchs distributed worldwide that feed on entoprocts, ascidians, and bryozoans. The evolutionary relationships between its taxa have been uncertain due to the limited taxa available for phylogenetic analyses; some genera being paraphyletic. The family includes a remarkable number of synonymized genera in which the species richness is unequally distributed, while some genera have dozens of species others are monospecific. Some clades are very uniform morphologically while others are considered highly variable. To increase backbone phylogenetic resolution a target enrichment approach of ultra-conserved elements was aimed at representative Goniodorididae species for the first time. Additionally, we increase species representation by including mitochondrial markers cytochrome c oxidase subunit I and ribosomal RNA 16S as well as nuclear Histone 3 and ribosomal RNA 18S from 109 Goniodorididae species, out of approximately 160 currently valid species. Maximum likelihood and Bayesian inference analyses were performed to infer the phylogeny of the family. As a result, two subfamilies and eleven genera were elucidated. The synonymized genera Bermudella, Cargoa, and Ceratodoris are here resurrected and a new genus, Naisdoris gen. nov., is described. The clades included taxa with shared prey preference, showing that trophic behavior could have driven species evolution and morphological uniqueness within the family Goniodorididae.


Subject(s)
Gastropoda , Animals , Phylogeny , Bayes Theorem , Mollusca/genetics , RNA, Ribosomal, 16S/genetics
10.
Mol Phylogenet Evol ; 199: 108144, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38972494

ABSTRACT

Phylogenomic approaches have recently helped elucidate various insect relationships, but large-scale comprehensive analyses on relationships within sawflies and woodwasps are still lacking. Here, we infer the relationships and long-term biogeographic history of these hymenopteran groups using a large dataset of 354 UCE loci collected from 385 species that represent all major lineages. Early Hymenoptera started diversifying during the Early Triassic âˆ¼249 Ma and spread all over the ancient supercontinent Pangaea. We recovered Xyeloidea as a monophyletic sister group to other Hymenoptera and Pamphilioidea as sister to Unicalcarida. Within the diverse family Tenthredinidae, our taxonomically and geographically expanded taxon sampling highlights the non-monophyly of several traditionally defined subfamilies. In addition, the recent removal of Athalia and related genera from the Tenthredinidae into the separate family Athaliidae is supported. The deep historical biogeography of the group is characterised by independent dispersals and re-colonisations between the northern (Laurasia) and southern (Gondwana) palaeocontinents. The breakup of these landmasses led to ancient vicariance in several Gondwanan lineages, while interchange across the Northern Hemisphere has continued until the Recent. The little-studied African sawfly fauna is likewise a diverse mixture of groups with varying routes of colonization. Our results reveal interesting parallels in the evolution and biogeography of early hymenopterans and other ancient insect groups.


Subject(s)
Hymenoptera , Phylogeny , Phylogeography , Animals , Hymenoptera/genetics , Hymenoptera/classification , Sequence Analysis, DNA , Bayes Theorem
11.
Mol Phylogenet Evol ; 193: 108026, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38341007

ABSTRACT

Ricinulei or hooded tick-spiders are a cryptic and ancient group of arachnids. The order consists of around 100 highly endemic extant species restricted to the Afrotropics and the Neotropics along with 22 fossil species. Their antiquity and low vagility make them an excellent group with which to interrogate biogeographic questions. To date, only four molecular analyses have been conducted on the group and they failed to resolve the relationships of the main lineages and even recovering the non-monophyly of the three genera. These studies were limited to a few Sanger loci or phylogenomic analyses with at most seven ingroup samples. To increase phylogenetic resolution in this little-understood and poorly studied group, we present the most comprehensive phylogenomic study of Ricinulei to date leveraging the Arachnida ultra-conserved element probe set. With a data set of 473 loci across 96 ingroup samples, analyses resolved a monophyletic Neotropical clade consisting of four main lineages. Two of them correspond to the current genera Cryptocellus and Pseudocellus while topology testing revealed one lineage to likely be a phylogenetic reconstruction artefact. The fourth lineage, restricted to Northwestern, Andean South America, is consistent with the Cryptocellus magnus group, likely corresponding to the historical genus Heteroricinoides. Since we did not sample the type species for this old genus, we do not formally re-erect Heteroricinoides but our data suggest the need for a thorough morphological re-examination of Neotropical Ricinulei.


Subject(s)
Arachnida , Spiders , Animals , Arachnida/genetics , Phylogeny , South America
12.
Mol Phylogenet Evol ; 197: 108109, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38768874

ABSTRACT

We use ultraconserved elements (UCE) and Sanger data to study the phylogeny, age, and biogeographical history of harmochirine jumping spiders, a group that includes the species-rich genus Habronattus, whose remarkable courtship has made it the focus of studies of behaviour, sexual selection, and diversification. We recovered 1947 UCE loci from 43 harmochirine taxa and 4 outgroups, yielding a core dataset of 193 UCEs with at least 50 % occupancy. Concatenated likelihood and ASTRAL analyses confirmed the separation of harmochirines into two major clades, here designated the infratribes Harmochirita and Pellenita. Most are African or Eurasian with the notable exception of a clade of pellenites containing Habronattus and Pellenattus of the Americas and Havaika and Hivanua of the Pacific Islands. Biogeographical analysis using the DEC model favours a dispersal of the clade's ancestor from Eurasia to the Americas, from which Havaika's ancestor dispersed to Hawaii and Hivanua's ancestor to the Marquesas Islands. Divergence time analysis on 32 loci with 85 % occupancy, calibrated by fossils and island age, dates the dispersal to the Americas at approximately 4 to 6 million years ago. The explosive radiation of Habronattus perhaps began only about 4 mya. The phylogeny clarifies both the evolution of sexual traits (e.g., the terminal apophyses was enlarged in Pellenes and not subsequently lost) and the taxonomy. Habronattus is confirmed as monophyletic. Pellenattus is raised to the status of genus, and 13 species moved into it as new combinations. Bianor stepposus Logunov, 1991 is transferred to Sibianor, and Pellenes bulawayoensis Wesolowska, 1999 is transferred to Neaetha. A molecular clock rate estimate for spider UCEs is presented and its utility to inform prior distributions is discussed.


Subject(s)
Phylogeny , Phylogeography , Spiders , Animals , Spiders/genetics , Spiders/classification , Sequence Analysis, DNA , Bayes Theorem , Models, Genetic , Likelihood Functions
13.
Mol Phylogenet Evol ; 197: 108111, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38801965

ABSTRACT

Swallows (Hirundinidae) are a globally distributed family of passerine birds that exhibit remarkable similarity in body shape but tremendous variation in plumage, sociality, nesting behavior, and migratory strategies. As a result, swallow species have become models for empirical behavioral ecology and evolutionary studies, and variation across the Hirundinidae presents an excellent opportunity for comparative analyses of trait evolution. Exploiting this potential requires a comprehensive and well-resolved phylogenetic tree of the family. To address this need, we estimated swallow phylogeny using genetic data from thousands of ultraconserved element (UCE) loci sampled from nearly all recognized swallow species. Maximum likelihood, coalescent-based, and Bayesian approaches yielded a well-resolved phylogenetic tree to the generic level, with minor disagreement among inferences at the species level, which likely reflect ongoing population genetic processes. The UCE data were particularly useful in helping to resolve deep nodes, which previously confounded phylogenetic reconstruction efforts. Divergence time estimates from the improved swallow tree support a Miocene origin of the family, roughly 13 million years ago, with subsequent diversification of major groups in the late Miocene and Pliocene. Our estimates of historical biogeography support the hypothesis that swallows originated in the Afrotropics and have subsequently expanded across the globe, with major in situ diversification in Africa and a secondary major radiation following colonization of the Neotropics. Initial examination of nesting and sociality indicates that the origin of mud nesting - a relatively rare nest construction phenotype in birds - was a major innovation coincident with the origin of a clade giving rise to over 40% of extant swallow diversity. In contrast, transitions between social and solitary nesting appear less important for explaining patterns of diversification among swallows.


Subject(s)
Bayes Theorem , Phylogeny , Phylogeography , Swallows , Animals , Swallows/genetics , Swallows/classification , Likelihood Functions , Models, Genetic , Sequence Analysis, DNA , Evolution, Molecular
14.
Mol Phylogenet Evol ; 198: 108118, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38849066

ABSTRACT

Sea anemones (Order Actiniaria) are a diverse group of marine invertebrates ubiquitous across marine ecosystems. Despite their wide distribution and success, a knowledge gap persists in our understanding of their diversity within tropical systems, owed to sampling bias of larger and more charismatic species overshadowing cryptic lineages. This study aims to delineate the sea anemone diversity in Mo'orea (French Polynesia) with the use of a dataset from the Mo'orea Biocode's "BioBlitz" initiative, which prioritized the sampling of more cryptic and understudied taxa. Implementing a target enrichment approach, we integrate 71 newly sequenced samples into an expansive phylogenetic framework and contextualize Mo'orea's diversity within global distribution patterns of sea anemones. Our analysis corroborates the presence of several previously documented sea anemones in French Polynesia and identifies for the first time the occurrence of members of genera Andvakia and Aiptasiomorpha. This research unveils the diverse sea anemone ecosystem in Mo'orea, spotlighting the area's ecological significance and emphasizing the need for continued exploration. Our methodology, encompassing a broad BLAST search coupled with phylogenetic analysis, proved to be a practical and effective approach for overcoming the limitations posed by the lack of comprehensive sequence data for sea anemones. We discuss the merits and limitations of current molecular methodologies and stress the importance of further research into lesser-studied marine organisms like sea anemones. Our work sets a precedent for future phylogenetic studies stemming from BioBlitz endeavors.


Subject(s)
Phylogeny , Sea Anemones , Animals , Polynesia , Sea Anemones/genetics , Sea Anemones/classification , Biodiversity , Sequence Analysis, DNA
15.
Mol Phylogenet Evol ; 198: 108133, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38897426

ABSTRACT

Small carpenter bees in the genus Ceratina are behaviourally diverse, species-rich, and cosmopolitan, with over 370 species and a range including all continents except Antarctica. Here, we present the first comprehensive phylogeny of the genus based on ultraconserved element (UCE) phylogenomic data, covering a total of 185 ingroup specimens representing 22 of the 25 current subgenera. Our results support most recognized subgenera as natural groups, but we also highlight several groups in need of taxonomic revision - particularly the nominate subgenus Ceratina sensu stricto - and several clades that likely need to be described as new subgenera. In addition to phylogeny, we explore the evolutionary history of Ceratina through divergence time estimation and biogeographic reconstruction. Our findings suggest that Ceratinini split from its sister tribe Allodapini about 72 million years ago. The common ancestor of Ceratina emerged in the Afrotropical realm approximately 42 million years ago, near the Middle Eocene Climatic Optimum. Multiple subsequent dispersal events led to the present cosmopolitan distribution of Ceratina, with the majority of transitions occurring between the Afrotropics, Indomalaya, and the Palearctic. Additional movements also led to the arrival of Ceratina in Madagascar, Australasia, and a single colonization of the Americas. Dispersal events were asymmetrical overall, with temperate regions primarily acting as destinations for migrations from tropical source regions.


Subject(s)
Phylogeny , Phylogeography , Animals , Bees/genetics , Bees/classification , Bayes Theorem , Sequence Analysis, DNA
16.
Mol Phylogenet Evol ; 200: 108169, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39121953

ABSTRACT

Springtails (Collembola) stand as one of the most abundant, widespread, and ancient terrestrial arthropods on earth. However, their evolutionary history and deep phylogenetic relationships remain elusive. In this study, we employed phylogenomic approaches to elucidate the basal relationships among Collembola. We sampled whole-genome data representing all major collembolan lineages in proportion to their known diversity. To account for potential phylogenomic biases, we implemented various data extraction, locus sampling, and signal filtering strategies to generate matrices. Subsequently, we applied a diverse array of tree-searching and rate-modelling methods to reconstruct the phylogeny. Our analyses, utilizing different matrices and methods, converged on the same unrooted relationships among collembolan ingroups, supporting the current ordinal classification and challenging the monophyly of Arthropleona and Symphypleona s.l. However, discrepancies across analyses existed in the root of Collembola. Among various root positions, those based on more informative matrices and biologically realistic models, favoring a basal topology of Entomobryomorpha + (Symphypleona s.s. + (Neelipleona + Poduromorpha)), were supported by subsequent methodological assessment, topology tests, and rooting analyses. This optimal topology suggests multiple independent reduction of the pronotum in non-poduromorph orders and aligns with the plesiomorphic status of neuroendocrine organs and epicuticular structure of Entomobryomorpha. Fossil-calibrated dating analyses based on the optimal topology indicated late-Paleozoic to mid-Mesozoic origins of the crown Collembola and four orders. In addition, our results questioned the monophyly of Isotomidae and Neanuridae, underscoring the need for further attention to the systematics of these families. Overall, this study provides novel insights into the phylogenetic backbone of Collembola, which will inform future studies on the systematics, ecology, and evolution of this significant arthropod lineage.


Subject(s)
Arthropods , Phylogeny , Animals , Arthropods/genetics , Arthropods/classification , Models, Genetic , Bayes Theorem , Biological Evolution
17.
Syst Biol ; 72(6): 1247-1261, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37561391

ABSTRACT

Convergent evolution is defined as the independent evolution of similar phenotypes in different lineages. Its existence underscores the importance of external selection pressures in evolutionary history, revealing how functionally similar adaptations can evolve in response to persistent ecological challenges through a diversity of evolutionary routes. However, many examples of convergence, particularly among closely related species, involve parallel changes in the same genes or developmental pathways, raising the possibility that homology at deeper mechanistic levels is an important facilitator of phenotypic convergence. Using the genus Ranitomeya, a young, color-diverse radiation of Neotropical poison frogs, we set out to 1) provide a phylogenetic framework for this group, 2) leverage this framework to determine if color phenotypes are convergent, and 3) to characterize the underlying coloration mechanisms to test whether color convergence occurred through the same or different physical mechanisms. We generated a phylogeny for Ranitomeya using ultraconserved elements and investigated the physical mechanisms underlying bright coloration, focusing on skin pigments. Using phylogenetic comparative methods, we identified several instances of color convergence, involving several gains and losses of carotenoid and pterin pigments. We also found a compelling example of nonparallel convergence, where, in one lineage, red coloration evolved through the red pterin pigment drosopterin, and in another lineage through red ketocarotenoids. Additionally, in another lineage, "reddish" coloration evolved predominantly through structural color mechanisms. Our study demonstrates that, even within a radiation of closely related species, convergent evolution can occur through both parallel and nonparallel mechanisms, challenging the assumption that similar phenotypes among close relatives evolve through the same mechanisms.


Subject(s)
Poison Frogs , Poisons , Animals , Phylogeny , Pigmentation/genetics , Anura , Pterins/metabolism , Biological Evolution
18.
BMC Bioinformatics ; 23(Suppl 6): 569, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36879192

ABSTRACT

BACKGROUND: Recent studies have indicated that a special class of long non-coding RNAs (lncRNAs), namely Transcribed-Ultraconservative Regions are transcribed from specific DNA regions (T-UCRs), 100[Formula: see text] conserved in human, mouse, and rat genomes. This is noticeable, as lncRNAs are usually poorly conserved. Despite their peculiarities, T-UCRs remain very understudied in many diseases, including cancer and, yet, it is known that dysregulation of T-UCRs is associated with cancer as well as with human neurological, cardiovascular, and developmental pathologies. We have recently reported the T-UCR uc.8+ as a potential prognostic biomarker in bladder cancer. RESULTS: The aim of this work is to develop a methodology, based on machine learning techniques, for the selection of a predictive signature panel for bladder cancer onset. To this end, we analyzed the expression profiles of T-UCRs from surgically removed normal and bladder cancer tissues, by using custom expression microarray. Bladder tissue samples from 24 bladder cancer patients (12 Low Grade and 12 High Grade), with complete clinical data, and 17 control samples from normal bladder epithelium were analysed. After the selection of preferentially expressed and statistically significant T-UCRs, we adopted an ensemble of statistical and machine learning based approaches (i.e., logistic regression, Random Forest, XGBoost and LASSO) for ranking the most important diagnostic molecules. We identified a signature panel of 13 selected T-UCRs with altered expression profiles in cancer, able to efficiently discriminate between normal and bladder cancer patient samples. Also, using this signature panel, we classified bladder cancer patients in four groups, each characterized by a different survival extent. As expected, the group including only Low Grade bladder cancer patients had greater overall survival than patients with the majority of High Grade bladder cancer. However, a specific signature of deregulated T-UCRs identifies sub-types of bladder cancer patients with different prognosis regardless of the bladder cancer Grade. CONCLUSIONS: Here we present the results for the classification of bladder cancer (Low and High Grade) patient samples and normal bladder epithelium controls by using a machine learning application. The T-UCR's panel can be used for learning an eXplainable Artificial Intelligent model and develop a robust decision support system for bladder cancer early diagnosis providing urinary T-UCRs data of new patients. The use of this system instead of the current methodology will result in a non-invasive approach, reducing uncomfortable procedures (such as cystoscopy) for the patients. Overall, these results raise the possibility of new automatic systems, which could help the RNA-based prognosis and/or the cancer therapy in bladder cancer patients, and demonstrate the successful application of Artificial Intelligence to the definition of an independent prognostic biomarker panel.


Subject(s)
RNA, Long Noncoding , Urinary Bladder Neoplasms , Humans , Animals , Mice , Rats , Urinary Bladder , RNA, Long Noncoding/genetics , Artificial Intelligence , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/genetics , Machine Learning , Biomarkers
19.
J Cell Biochem ; 124(3): 396-408, 2023 03.
Article in English | MEDLINE | ID: mdl-36748954

ABSTRACT

Altered expression and functional roles of the transcribed ultraconserved regions (T-UCRs), as genomic sequences with 100% conservation between the genomes of human, mouse, and rat, in the pathophysiology of neoplasms has already been investigated. Nevertheless, the relevance of the functions for T-UCRs in gastric cancer (GC) is still the subject of inquiry. In the current study, we first used a genome-wide profiling approach to analyze the expression of T-UCRs in GC patients. Then, we constructed a three-component regulatory network and investigated potential diagnostic and prognostic values of the T-UCRs. The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) dataset was used as a resource for the RNA-sequencing data. FeatureCounts was utilized to quantify the number of reads mapped to each T-UCR. Differential expression analysis was then conducted using DESeq2. In the following, interactions between T-UCRs, microRNAs (miRNAs), and messenger RNAs (mRNAs) were combined into a three-component network. Enrichment analyses were performed and a protein-protein interaction (PPI) network was constructed. The R Survival package was utilized to identify survival-related significantly differentially expressed T-UCRs (DET-UCRs). Using an in-house cohort of GC tissues, expression of two DET-UCRs was furthermore experimentally verified. Our results showed that several T-UCRs were dysregulated in TCGA-STAD tumoral samples compared to nontumoral counterparts. The three-component network was constructed which composed of DET-UCRs, miRNAs, and mRNAs nodes. Functional enrichment and PPI network analyses revealed important enriched signaling pathways and gene ontologies such as "pathway in cancer" and regulation of cell proliferation and apoptosis. Five T-UCRs were significantly correlated with the overall survival of GC patients. While no expression of uc.232 was observed in our in-house cohort of GC tissues, uc.343 showed an increased expression, although not statistically significant, in gastric tumoral tissues. The constructed three-component regulatory network of T-UCRs in GC presents a comprehensive understanding of the underlying gene expression regulation processes involved in tumor development and can serve as a basis to investigate potential prognostic biomarkers and therapeutic targets.


Subject(s)
Adenocarcinoma , MicroRNAs , RNA, Long Noncoding , Stomach Neoplasms , Humans , Rats , Mice , Animals , Stomach Neoplasms/genetics , Prognosis , Conserved Sequence/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Adenocarcinoma/genetics , Biomarkers , Gene Regulatory Networks , Biomarkers, Tumor/genetics
20.
Proc Biol Sci ; 290(2008): 20231107, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37788705

ABSTRACT

Deep-sea lineages are generally thought to arise from shallow-water ancestors, but this hypothesis is based on a relatively small number of taxonomic groups. Anthozoans, which include corals and sea anemones, are significant contributors to the faunal diversity of the deep sea, but the timing and mechanisms of their invasion into this biome remain elusive. Here, we reconstruct a fully resolved, time-calibrated phylogeny of 83 species in the order Antipatharia (black coral) to investigate their bathymetric evolutionary history. Our reconstruction indicates that extant black coral lineages first diversified in continental slope depths (∼250-3000 m) during the early Silurian (∼437 millions of years ago (Ma)) and subsequently radiated into, and diversified within, both continental shelf (less than 250 m) and abyssal (greater than 3000 m) habitats. Ancestral state reconstruction analysis suggests that the appearance of morphological features that enhanced the ability of black corals to acquire nutrients coincided with their invasion of novel depths. Our findings have important conservation implications for anthozoan lineages, as the loss of 'source' slope lineages could threaten millions of years of evolutionary history and confound future invasion events, thereby warranting protection.


Subject(s)
Anthozoa , Sea Anemones , Animals , Anthozoa/genetics , Ecosystem , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL