Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters

Publication year range
1.
J Biol Chem ; 300(6): 107331, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703997

ABSTRACT

Mono-O-glycosylation of target proteins by bacterial toxins or effector proteins is a well-known mechanism by which bacteria interfere with essential functions of host cells. The respective glycosyltransferases are important virulence factors such as the Clostridioides difficile toxins A and B. Here, we describe two glycosyltransferases of Yersinia species that have a high sequence identity: YeGT from the zoonotic pathogen Yersinia enterocolitica and YkGT from the murine pathogen Yersinia kristensenii. We show that both modify Rho family proteins by attachment of GlcNAc at tyrosine residues (Tyr-34 in RhoA). Notably, the enzymes differed in their target protein specificity. While YeGT modified RhoA, B, and C, YkGT possessed a broader substrate spectrum and glycosylated not only Rho but also Rac and Cdc42 subfamily proteins. Mutagenesis studies indicated that residue 177 is important for this broader target spectrum. We determined the crystal structure of YeGT shortened by 16 residues N terminally (sYeGT) in the ligand-free state and bound to UDP, the product of substrate hydrolysis. The structure assigns sYeGT to the GT-A family. It shares high structural similarity to glycosyltransferase domains from toxins. We also demonstrated that the 16 most N-terminal residues of YeGT and YkGT are important for the mediated translocation into the host cell using the pore-forming protective antigen of anthrax toxin. Mediated introduction into HeLa cells or ectopic expression of YeGT and YkGT caused morphological changes and redistribution of the actin cytoskeleton. The data suggest that YeGT and YkGT are likely bacterial effectors belonging to the family of tyrosine glycosylating bacterial glycosyltransferases.


Subject(s)
Bacterial Proteins , Tyrosine , Yersinia , Glycosylation , Humans , Yersinia/metabolism , Yersinia/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Tyrosine/metabolism , Tyrosine/chemistry , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/chemistry , rhoA GTP-Binding Protein/metabolism , Yersinia enterocolitica/metabolism , Yersinia enterocolitica/genetics , Animals , HeLa Cells , Mice , Crystallography, X-Ray , Yersinia Infections/metabolism , Yersinia Infections/microbiology
2.
J Clin Microbiol ; 62(8): e0004024, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38990041

ABSTRACT

Yersinia enterocolitica (Y. enterocolitica) is the most frequent etiological agent of yersiniosis and has been responsible for several national outbreaks in Norway and elsewhere. A standardized high-resolution method, such as core genome Multilocus Sequence Typing (cgMLST), is needed for pathogen traceability at the national and international levels. In this study, we developed and implemented a cgMLST scheme for Y. enterocolitica. We designed a cgMLST scheme in SeqSphere + using high-quality genomes from different Y. enterocolitica biotype sublineages. The scheme was validated if more than 95% of targets were found across all tested Y. enterocolitica: 563 Norwegian genomes collected between 2012 and 2022 and 327 genomes from public data sets. We applied the scheme to known outbreaks to establish a threshold for identifying major complex types (CTs) based on the number of allelic differences. The final cgMLST scheme included 2,582 genes with a median of 97.9% (interquartile range 97.6%-98.8%) targets found across all tested genomes. Analysis of outbreaks identified all outbreak strains using single linkage clustering at four allelic differences. This threshold identified 311 unique CTs in Norway, of which CT18, CT12, and CT5 were identified as the most frequently associated with outbreaks. The cgMLST scheme showed a very good performance in typing Y. enterocolitica using diverse data sources and was able to identify outbreak clusters. We recommend the implementation of this scheme nationally and internationally to facilitate Y. enterocolitica surveillance and improve outbreak response in national and cross-border outbreaks.


Subject(s)
Disease Outbreaks , Genome, Bacterial , Multilocus Sequence Typing , Yersinia Infections , Yersinia enterocolitica , Yersinia enterocolitica/genetics , Yersinia enterocolitica/classification , Yersinia enterocolitica/isolation & purification , Multilocus Sequence Typing/methods , Humans , Yersinia Infections/epidemiology , Yersinia Infections/microbiology , Yersinia Infections/diagnosis , Norway/epidemiology , Genome, Bacterial/genetics , Epidemiological Monitoring , Molecular Epidemiology/methods , Genotype , Bacterial Typing Techniques/methods
3.
Crit Rev Food Sci Nutr ; : 1-15, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441497

ABSTRACT

The cold chain is an integral part of the modern food industry. Low temperatures can effectively alleviate food loss and the transmission of foodborne diseases caused by microbial reproduction. However, recent reports have highlighted shortcomings in the current cold chain technology's ability to prevent and control cold-tolerant foodborne pathogens. Furthermore, it has been observed that certain cold-chain foods have emerged as new sources of infection for foodborne disease outbreaks. Consequently, there is a pressing need to enhance control measures targeting cold-tolerant pathogens within the existing cold chain system. This paper aims to review the recent advancements in understanding the cold tolerance mechanisms of key model organisms, identify key issues in current research, and explore the potential of utilizing big data and omics technology in future studies.

4.
BMC Infect Dis ; 24(1): 59, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191305

ABSTRACT

BACKGROUND: Yersinia enterocolitica is a gram-negative zoonotic bacterial pathogen that is typically transmitted via the fecal-oral route. The most common clinical manifestation of a Y. enterocolitica infection is self-limited gastroenteritis. Although various extraintestinal manifestations of Y. enterocolitica infection have been reported, there are no reports of thyroid abscesses. CASE PRESENTATION: An 89-year-old Japanese man with follicular adenoma of the left thyroid gland was admitted to our hospital with a 2-day history of fever and left neck pain. Laboratory tests revealed low levels of thyroid stimulating hormone and elevated levels of free thyroxine 4. Contrast-enhanced computed tomography showed low-attenuation areas with peripheral enhancement in the left thyroid gland. He was diagnosed with thyroid abscess and thyrotoxicosis, and treatment with intravenous piperacillin-tazobactam was initiated after collecting blood, drainage fluid, and stool samples. The isolated Gram-negative rod bacteria from blood and drainage fluid cultures was confirmed to be Y. enterocolitica. He was diagnosed with thyroid abscess and thyrotoxicosis due to be Y. enterocolitica subsp. palearctica. The piperacillin-tazobactam was replaced with levofloxacin. CONCLUSION: We report a novel case of a thyroid abscess associated with thyrotoxicosis caused by Y. enterocolitica subsp. palearctica in a patient with a follicular thyroid adenoma.


Subject(s)
Adenoma , Thyroid Neoplasms , Thyrotoxicosis , Yersinia enterocolitica , Male , Humans , Aged, 80 and over , Abscess/diagnosis , Thyrotoxicosis/complications , Thyrotoxicosis/diagnosis , Piperacillin , Tazobactam
5.
Biotechnol Lett ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985258

ABSTRACT

Diclofenac is a hepatotoxic non-steroidal anti-inflammatory drug (NSAID) that affects liver histology and its protein expression levels. Here, we studied the effect of diclofenac on rat liver when co-administrated with either Yersinia enterocolitica strain 8081 serotype O:8 biovar 1B (D*Y) or Lactobacillus fermentum strain 9338 (D*L). Spectroscopic analysis of stool samples showed biotransformation of diclofenac. When compared with each other, D*Y rats lack peaks at 1709 and 1198 cm-1, while D*L rats lack peaks at 1411 cm-1. However, when compared to control, both groups lack peaks at 1379 and 1170 cm-1. Assessment of serum biomarkers of hepatotoxicity indicated significantly altered activities of AST (D*Y: 185.65 ± 8.575 vs Control: 61.9 ± 2.607, D*L: 247.5 ± 5.717 vs Control: 61.9 ± 2.607), ALT (D*Y: 229.8 ± 6.920 vs Control: 70.7 ± 3.109, D*L: 123.75 ± 6.068 vs Control: 70.7 ± 3.109), and ALP (D*Y: 276.4 ± 18.154 vs Control: 320.6 ± 9.829, D*L: 298.5 ± 12.336 vs Control: 320.6 ± 9.829) in IU/L. The analysis of histological alterations showed hepatic sinusoidal dilation with vein congestion and cell infiltration exclusively in D*Y rats along with other histological changes that are common to both test groups, thereby suggesting more pronounced alterations in D*Y rats. Further, LC-MS/MS based label-free quantitation of proteins from liver tissues revealed 74.75% up-regulated, 25.25% down-regulated in D*Y rats and 51.16% up-regulated, 48.84% down-regulated in D*L experiments. The proteomics-identified proteins majorly belonged to metabolism, apoptosis, stress response and redox homeostasis, and detoxification and antioxidant defence that demonstrated the potential damage of rat liver, more pronounced in D*Y rats. Altogether the results are in favor that the administration of lactobacilli somewhat protected the rat hepatic cells against the diclofenac-induced toxicity.

6.
Foodborne Pathog Dis ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38447128

ABSTRACT

In this study, a polymerase chain reaction (PCR) directed to the yst chromosomal gene (yst-PCR) was used as a rapid, sensitive, and specific method to detect Yersinia enterocolitica strains belonging to different biotypes in foods; a competitive Internal Amplification Control (cIAC) is also developed. The cIAC had a molecular weight of 417 bp and was detected until a concentration of 0.85 ng/µL. No other strains of other Yersinia species, nor Enterobacteriales order were detected by this PCR. In pure culture, the detection limit (DL) of the yst-PCR was lower for ystA+ strain (10 colony-forming unit [CFU]/mL) than for ystB+ strain (1 × 102 CFU/mL); which was the concentration detected in Y. enterocolitica inoculated minced meat. The proposed protocol included an enrichment step in peptone sorbitol bile (PSB) broth at 25°C for 24 h followed by isolation on Mac Conkey agar and chromogenic medium. An aliquot of the PSB broth homogenate and a loopful from the confluent zone of solid media were collected to perform DNA extraction for yst-PCR, and typical colonies were characterized by biochemical assays. Among 30 non-contaminated food samples, 4 samples were yst-positive and no Y. enterocolitica isolates were obtained. It is suggested that this yst-PCR could be used in the investigation of Y. enterocolitica in foods.

8.
Int J Food Microbiol ; 412: 110554, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38176093

ABSTRACT

Yersinia enterocolitica is an underreported cause of foodborne gastroenteritis. Little is known of the diversity of Y. enterocolitica isolated from food and which food commodities contribute to human disease. In this study, Y. enterocolitica was isolated from 37/50 raw chicken, 8/10 pork, 8/10 salmon and 1/10 leafy green samples collected at retail in the UK. Up to 10 presumptive Y. enterocolitica isolates per positive sample underwent whole genome sequencing (WGS) and were compared with publicly available genomes. In total, 207 Y. enterocolitica isolates were analyzed and belonged to 38 sequence types (STs). Up to five STs of Y. enterocolitica were isolated from individual food samples and isolates belonging to the same sample and ST differed by 0-74 single nucleotide polymorphisms (SNPs). Biotype was predicted for 205 (99 %) genomes that all belonged to biotype 1A, previously described as non-pathogenic. However, around half (51 %) of food samples contained isolates belonging to the same ST as previously isolated from UK human cases. The closest human-derived isolates shared between 17 and 7978 single nucleotide polymorphisms (SNPs) with the food isolates. Extensive food surveillance is required to determine what food sources are responsible for Y. enterocolitica infections and to re-examine the role of biotype 1A as a human pathogen.


Subject(s)
Yersinia Infections , Yersinia enterocolitica , Humans , Yersinia enterocolitica/genetics , Food Chain , Food Microbiology , Food , Polymorphism, Single Nucleotide , Yersinia Infections/veterinary , Yersinia Infections/epidemiology
9.
Heliyon ; 10(10): e31446, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38826713

ABSTRACT

No licensed vaccine exists for the lethal plague and yersiniosis. Therefore, a combination of recombinant YopE and LcrV antigens of Yersinia pestis was evaluated for its vaccine potential in a mouse model. YopE and LcrV in formulation with alum imparted a robust humoral immune response, with isotyping profiles leaning towards the IgG1 and IgG2b subclasses. It was also observed that a significantly enhanced expression of IFN-γ, TNF-α, IL-6, IL-2, and IL-1ß from the splenic cells of vaccinated mice, as well as YopE and LcrV-explicit IFN-γ eliciting T-cells. The cocktail of YopE + LcrV formulation conferred complete protection against 100 LD50Y. pestis infection, while individually, LcrV and YopE provided 80 % and 60 % protection, respectively. Similarly, the YopE + LcrV vaccinated animal group had significantly lower colony forming unit (CFU) counts in the spleen and blood compared to the groups administered with YopE or LcrV alone when challenged with Yersinia pseudotuberculosis and Yersinia enterocolitica. Histopathologic evidence reinforces these results, indicating the YopE + LcrV formulation provided superior protection against acute lung injury as early as day 3 post-challenge. In conclusion, the alum-adjuvanted YopE + LcrV is a promising vaccine formulation, eliciting a robust antibody response including a milieu of pro-inflammatory cytokines and T-cell effector functions that contribute to the protective immunity against Yersinia infections. YopE and LcrV, conserved across all three human-pathogenic Yersinia species, provide cross-protection. Therefore, our current vaccine (YopE + LcrV) targets all three pathogens: Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica. However, the efficacy should be tested in other higher mammalian models.

10.
Ir J Med Sci ; 193(4): 1885-1890, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38381378

ABSTRACT

INTRODUCTION: Three Yersinia species were identified from samples of drinking water from diverse geographic regions of Ireland. Conventional commercial biochemical identification systems classified them as Yersinia enterocolitica. Since this organism is the most common cause of bacterial gastroenteritis in some countries, further investigation was warranted. The aim of the study was to provide a microbial characterisation of three Yersinia species, to determine their pathogenicity, and to review the incidence rate of Yersinia enterocolitica detection in our region. METHODS: Organism identification was performed using conventional commercial diagnostic systems MALDI-TOF, API 20E, API 50CHE, TREK Sensititre GNID and Vitek 2 GN, and whole genome sequencing (WGS) was performed. Historical data for detections was extracted from the lab system for 2008 to 2023. RESULTS: All three isolates gave "good" identifications of Yersinia enterocolitica on conventional systems. Further analysis by WGS matched two of the isolates with recently described Yersinia proxima, and the third was a member of the non-pathogenic Yersinia enterocolitica clade 1Aa. DISCUSSION: Our analysis of these three isolates deemed them to be Yersinia species not known currently to be pathogenic, but determining this necessitated the use of next-generation sequencing and advanced bioinformatics. Our work highlights the importance of having this technology available to public laboratories, either locally or in a national reference laboratory. The introduction of molecular technologies for the detection of Yersinia species may increase the rate of detections. Accurate identification of significant pathogens in environmental, public health and clinical microbiology laboratories is critically important for the protection of society.


Subject(s)
Drinking Water , Yersinia enterocolitica , Yersinia enterocolitica/isolation & purification , Yersinia enterocolitica/genetics , Ireland/epidemiology , Drinking Water/microbiology , Humans , Yersinia Infections/epidemiology , Yersinia Infections/microbiology , Whole Genome Sequencing , Water Microbiology
11.
Infect Genet Evol ; 123: 105652, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39103026

ABSTRACT

PURPOSE: We aimed to characterise Yersinia enterocolitica from human clinical specimens in Switzerland using epidemiological, microbiological and whole-genome sequencing (WGS) data. METHODS: Isolates (n = 149) were collected between January 2019 and December 2023. Epidemiological data was noted and strains were characterized by biochemical and serological typing, antimicrobial susceptibility testing (AST), and WGS-based analysis. RESULTS: Most of the isolates (86%) were from stool specimens and 52% were from male patients. The patients' median age was 28 years (range < 1-94 years). Typing assigned the isolates to bioserotype 4/O:3 (44%), biotype 1A (34%), bioserotype 2/O:9 (21%), and bioserotype 3/O:3 (1%). WGS identified Y. enterocolitica (n = 147), Y. alsatica (n = 1) and Y. proxima (n = 1). Seven isolates were multidrug resistant (MDR) and harboured plasmid pAB829 carrying aph(3″)-Ib, aph(6)-Id, and tet(Y) (n = 1), pAC120 carrying aph(6)-Id and tet(A) (n = 2), or a 12.6 kb Tn2670-like transposon containing catA1, aadA12, sul1, and qacEΔ1 (n = 4). Virulence factors (VFs) included ail (n = 99), invB, (n = 145), ystA (n = 99), ystB (n = 48) and pYV-associated VFs (n = 93). MLST and cgMLST analysis showed that BT 1A strains consisted of several STs and were highly diverse, whereas BT 2/O:9 strains were all ST12 and clustered closely, and BT 4/O:3 strains mostly belonged to ST18 but were more diverse. SNP analysis revealed two highly clonal BT 4/O:3 subpopulations with wide spatio-temporal distribution. CONCLUSIONS: Y. enterocolitica BT 1A, BT 2/O:9 and BT 4/O:3 are frequently associated with human yersiniosis in Switzerland. WGS-based subtyping of Y. enterocolitica is a powerful tool to explore the genetic diversity and the pathogenic potential of human isolates.

12.
Pathogens ; 13(1)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38251361

ABSTRACT

Yersiniosis is a common zoonotic enteric disease among humans, which has been linked to pigs and contaminated food, especially pork. The epidemiology of yersiniosis is still obscure, and studies on yersiniosis in pets are very scarce. In this study, we performed pheno- and genotypic characterisation of 50 Yersinia strains isolated from pets in Finland between 2012 and 2023. Y. enterocolitica 4/O:3/ST135, the most common type in human yersiniosis, was also the most common type (68%) found in clinical faecal samples in our study. Also, human pathogenic Y. enterocolitica 2/O:9/ST139 and Y. pseudotuberculosis O:1/ST9 and O:1/ST42 strains carrying all essential pathogenic genes were identified. Three Y. enterocolitica 4/O:3/ST9 strains were multi-drug-resistant and two of them were highly related, showing one allelic difference (AD) with core genome multi-locus sequence typing. Non-pathogenic, genotypically highly diverse Y. enterocolitica 1A strains, showing more than 1000 ADs and missing the essential virulence genes, were also recognised in dogs and cats. Our study demonstrates that pets can excrete human pathogenic Yersinia in their faeces and may serve as an infection source for human yersiniosis, especially in families with small children in close contact with their pets.

13.
Microbiol Spectr ; 12(6): e0050424, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38651883

ABSTRACT

Enteric yersiniosis, the third most common food-borne zoonosis in Europe, is mainly caused by the pathogen Yersinia enterocolitica. In France, the yersiniosis microbiological surveillance is conducted at the Yersinia National Reference Laboratory (YNRL). Since 2017, isolates have been characterized by whole genome sequencing (WGS) followed by a 500-gene Yersinia-cgMLST. We report here the data of the WGS-based surveillance on Y. enterocolitica isolates for the 2017-2021 period. The YNRL characterized 7,642 Y. enterocolitica strains distributed in 2,497 non-pathogenic isolates from lineages 1Aa and 1Ab, and 5,145 specimens belonging to 8 pathogenic lineages. Among pathogenic isolates, lineage 4 was the most common (87.2%) followed by lineages 2/3-9b (10.6%), 2/3-5a (1.2%), 2/3-9a (0.6%), 3-3b, 3-3c, 1B, and 3-3d (0.1% per each). Importantly, we developed a routine surveillance system based on a new typing method consisting of a 1,727-genes core genome Multilocus Sequence Typing (cgMLST) specific to the species Y. enterocolitica followed by isolate clustering. Thresholds of allelic distances (AD) were determined and fixed for the clustering of isolates: AD ≤ 5 for lineages 4, 2/3-5a, and 2/3-9a, and AD ≤ 3 for lineage 2/3-9b. Clustering programs were implemented in 2019 in routine surveillance to detect genomic clusters of pathogenic isolates. In total, 419 clusters with at least 2 isolates were identified, representing 2,504 of the 3,503 isolates characterized between 2019 and 2021. Most clusters (n = 325) comprised 2 to 5 isolates. The new typing method proved to be useful for the molecular investigation of unusual grouping of cases as well as for the detection of genomic clusters in routine surveillance. IMPORTANCE: We describe here the new typing method used for molecular surveillance of Yersinia enterocolitica infections in France based on a novel core genome Multilocus Sequence Typing (cgMLST) specific to Y. enterocolitica species. This method can reliably identify the pathogenic Y. enterocolitica subspecies and compare the isolates with a high discriminatory power. Between 2017 and 2021, 5,145 pathogenic isolates belonging to 8 lineages were characterized and lineage 4 was by far the most common followed by lineage 2/3-9b. A clustering program was implemented, and detection thresholds were cross-validated by the molecular and epidemiological investigation of three unusual groups of Y. enterocolitica infections. The routine molecular surveillance system has been able to detect genomic clusters, leading to epidemiological investigations.


Subject(s)
Disease Outbreaks , Multilocus Sequence Typing , Whole Genome Sequencing , Yersinia Infections , Yersinia enterocolitica , Yersinia enterocolitica/genetics , Yersinia enterocolitica/isolation & purification , Yersinia enterocolitica/classification , Yersinia Infections/epidemiology , Yersinia Infections/microbiology , Humans , France/epidemiology , Multilocus Sequence Typing/methods , Phylogeny , Genome, Bacterial/genetics , Genomics/methods , Epidemiological Monitoring
14.
Cureus ; 16(2): e53780, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38465053

ABSTRACT

Ulcerative colitis (UC), one of the two major inflammatory bowel diseases (IBD), is a chronic immune-mediated inflammatory disorder with varying degrees of colonic mucosal involvement. Patients often present with inflammation limited to the rectum, also known as ulcerative proctitis, proximal colonic involvement, or pancolitis which affects the entire colon. Clinical manifestations of UC flare-ups include hematochezia, diarrhea, and abdominal pain. Yersinia enterocolitica, an acute cause of infectious diarrhea, is usually caused by the ingestion of food products contaminated with toxins and pathogens. The most common clinical presentation of a patient with acute Y. enterocolitica infection is self-limiting gastroenteritis. Microbial properties such as tissue invasion and immunological capability may be associated with the development of chronic conditions such as UC. IBD has been extensively studied, but the inter-relationship between IBD and infectious causes of diarrhea is still up for debate. We present a case of atypical Y. enterocolitica infection with a long-standing history of UC that was initially misdiagnosed as an acute UC flare-up.

15.
Front Microbiol ; 15: 1328766, 2024.
Article in English | MEDLINE | ID: mdl-38721607

ABSTRACT

Aeromonas species cause a wide spectrum of human diseases, primarily gastroenteritis, septicemia, and wound infections. Several studies have shown that about 40% of these cases involve mixed or polymicrobial infections between Aeromonas spp. and bacteria from other genera. However, the immune response of macrophages in front of the bacteria present in the mixed infections, as well as their impact on antimicrobial therapy, have not been investigated. This study evaluated the cell damage and immune response of the mouse macrophage BALB/c cell line (J774A.1) after performing a single and a mixed infection with a strain of Aeromonas caviae and Yersinia enterocolitica, both recovered from the same fecal sample from a patient with diarrhea. Macrophage cell damage was measured by the release of lactate dehydrogenase (LDH) while the immune response was evaluated studying the expression by RT-qPCR of six relevant immune-related genes. Additionally, the antimicrobial susceptibility pattern of the single and mixed strains in front of seventeen antibiotics was evaluated to determine the potential impact on the infection treatment. Macrophages infected with the mixture of the two strains showed a higher cell damage in comparison with the single infections and the immune-related genes, i.e., cytokines and chemokines genes (TNF-α, CCL20), and apoptotic and pyroptotic genes (TP53 and IL-1ß) were overexpressed. After infection with the mixed cultures, an increase in the antimicrobial resistance was observed for ciprofloxacin, trimethoprim, chloramphenicol, gentamicin and ertapenem. This study increased the knowledge about the synergetic effect of the bacteria involved in mixed infection and on their potential impact on the treatment and evolution of the infection.

16.
J Orthop Case Rep ; 14(8): 55-60, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39157498

ABSTRACT

Introduction: Yersinia enterocolitica (is a gram-negative bacillus found in pigs and transmitted orally. It can contaminate a joint prosthesis following bacteremia. It is a potentially fatal and extremely rare infection, with fewer than 10 cases reported in the literature. Case Report: This article describes two cases of patients who had a total hip arthroplasty infection, managed in our department. Both patients underwent emergency surgery for resection arthroplasty antibiotic therapy. Despite early management, both patients were died. Conclusion: It is crucial to consider Yersinia infection in the context of prosthetic joint infection, even years after the operation, especially if it occurs following a digestive pathology. Rapid diagnosis and prompt initiation of appropriate management are essential.

17.
J Microbiol Biotechnol ; 34(8): 1-10, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39081257

ABSTRACT

Yersinia enterocolitica is a globally distributed food-borne gastrointestinal pathogen. The O-antigen variation-determined serotype is an important characteristic of Y. enterocolitica, allowing intraspecies classification for diagnosis and epidemiology purposes. Among the 11 serotypes associated with human yersiniosis, O:3, O:5,27, O:8, and O:9 are the most prevalent, and their O-antigen gene clusters have been well defined. In addition to the O-antigen, several virulence factors are involved in infection and pathogenesis of Y. enterocolitica strains, and these are closely related to their biotypes, reflecting pathogenic properties. In this study, we identified the O-AGC of a Y. enterocolitica strain WL-21 of serotype O:10, and confirmed its functionality in O-antigen synthesis. Furthermore, we analyzed in silico the putative O-AGCs of uncommon serotypes, and found that the O-AGCs of Y. enterocolitica were divided into two genetic patterns: (1) O-AGC within the hemH-gsk locus, possibly synthesizing the O-antigen via the Wzx/Wzy dependent pathway, and (2) O-AGC within the dcuC-galU-galF locus, very likely assembling the O-antigen via the ABC transporter dependent pathway. By screening the virulence genes against genomes from GenBank, we discovered that strains representing different serotypes were grouped according to different virulence gene profiles, indicating strong links between serotypes and virulence markers and implying an interaction between them and the synergistic effect in pathogenicity. Our study provides a framework for further research on the origin and evolution of O-AGCs from Y. enterocolitica, as well as on differences in virulent mechanisms among distinct serotypes.

18.
Animals (Basel) ; 14(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396530

ABSTRACT

Wildlife can represent a reservoir of zoonotic pathogens and a public health problem. In the present study, we investigated the spread of zoonotic pathogens (Salmonella spp., Yersinia enterocolitica, Listeria monocytogenes, Shiga-toxin-producing Escherichia coli (STEC), and hepatitis E virus (HEV)) considering the presence of virulence and antibiotic resistance genes in game meat from animals hunted in northwest Italy. During two hunting seasons (2020 to 2022), samples of liver and/or muscle tissue were collected from chamois (n = 48), roe deer (n = 26), deer (n = 39), and wild boar (n = 35). Conventional microbiology and biomolecular methods were used for the detection, isolation, and characterization of the investigated pathogens. Two L. monocytogenes serotype IIa strains were isolated from wild boar liver; both presented fosfomycin resistance gene and a total of 22 virulence genes were detected and specified in the text. Eight Y. enterocolitica biotype 1A strains were isolated from chamois (2), wild boar (5), and deer (1) liver samples; all showed streptogramin and beta-lactam resistance genes; the virulence genes found were myfA (8/8 strains), ymoA (8/8), invA (8/8), ystB (8/8), and ail (4/8). Our data underscore the potential role of wildlife as a carrier of zoonotic and antibiotic-resistant pathogens in northwest Italy and a food safety risk for game meat consumers.

19.
Open Forum Infect Dis ; 11(6): ofae199, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38868306

ABSTRACT

Background: In the US, yersinosis was understood to predominantly occur in winter and among Black or African American infants and Asian children. Increased use of culture-independent diagnostic tests (CIDTs) has led to marked increases in yersinosis diagnoses. Methods: We describe differences in the epidemiology of yersiniosis diagnosed by CIDT versus culture in 10 US sites, and identify determinants of health associated with diagnostic method. Results: Annual reported incidence increased from 0.3/100 000 in 2010 to 1.3/100 000 in 2021, particularly among adults ≥18 years, regardless of race and ethnicity, and during summer months. The proportion of CIDT-diagnosed infections increased from 3% in 2012 to 89% in 2021. An ill person's demographic characteristics and location of residence had a significant impact on their odds of being diagnosed by CIDT. Conclusions: Improved detection due to increased CIDT use has altered our understanding of yersinosis epidemiology, however differential access to CIDTs may still affect our understanding of yersinosis.

20.
Food Res Int ; 192: 114789, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147464

ABSTRACT

Yersinia enterocolitica (Ye) is a foodborne pathogen isolated from humans, food, animals, and the environment. Yersiniosis is the third most frequently reported foodborne zoonosis in the European Union. Ye species are divided into six biotypes 1A, 1B, 2, 3, 4, and 5, based on biochemical reactions and about 70 serotypes. Biotype 1A is non-pathogenic, 1B is highly pathogenic, and biotypes 2-5 have moderate or low pathogenicity. The reference analysis method for detecting pathogenic Ye species underestimates the presence of the pathogen due to similarities between Yersinia enterocolitica-like species and other Yersiniaceae and/or Enterobacteriaceae, low concentrations of distribution pathogenic strains and the heterogeneity of Yersinia enterocolitica species. In this study, the real-time PCR method ISO/TS 18867 to identify pathogenic biovars of Ye in bivalve molluscs was validated. The sensitivity, specificity and accuracy of the molecular method were evaluated using molluscs experimentally contaminated. The results fully agree with those obtained with the ISO 10273 method. Finally, we evaluated the presence of Ye in seventy commercial samples of bivalve molluscs collected in the Gulf of Naples using ISO/TS 18867. Only one sample tested resulted positive for the ail gene, which is considered the target gene for detection of pathogenic Ye according to ISO/TS 18867. Additionally, the presence of the ystB gene, used as target for Ye biotype 1A, was assessed in all samples using a real-time PCR SYBR Green platform. The results showed amplification ystB gene aim two samples.


Subject(s)
Bivalvia , Real-Time Polymerase Chain Reaction , Yersinia enterocolitica , Yersinia enterocolitica/genetics , Yersinia enterocolitica/isolation & purification , Yersinia enterocolitica/classification , Animals , Real-Time Polymerase Chain Reaction/methods , Bivalvia/microbiology , Italy , Food Microbiology , Benzothiazoles , DNA, Bacterial/genetics , Organic Chemicals , Diamines , Reproducibility of Results , Food Contamination/analysis , Sensitivity and Specificity , Shellfish/microbiology , Quinolines
SELECTION OF CITATIONS
SEARCH DETAIL