Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33361330

ABSTRACT

The paucity of knowledge about cardiomyocyte maturation is a major bottleneck in cardiac regenerative medicine. In development, cardiomyocyte maturation is characterized by orchestrated structural, transcriptional, and functional specializations that occur mainly at the perinatal stage. Sarcomeres are the key cytoskeletal structures that regulate the ultrastructural maturation of other organelles, but whether sarcomeres modulate the signal transduction pathways that are essential for cardiomyocyte maturation remains unclear. To address this question, here we generated mice with cardiomyocyte-specific, mosaic, and hypomorphic mutations of α-actinin-2 (Actn2) to study the cell-autonomous roles of sarcomeres in postnatal cardiomyocyte maturation. Actn2 mutation resulted in defective structural maturation of transverse-tubules and mitochondria. In addition, Actn2 mutation triggered transcriptional dysregulation, including abnormal expression of key sarcomeric and mitochondrial genes, and profound impairment of the normal progression of maturational gene expression. Mechanistically, the transcriptional changes in Actn2 mutant cardiomyocytes strongly correlated with those in cardiomyocytes deleted of serum response factor (SRF), a critical transcription factor that regulates cardiomyocyte maturation. Actn2 mutation increased the monomeric form of cardiac α-actin, which interacted with the SRF cofactor MRTFA and perturbed its nuclear localization. Overexpression of a dominant-negative MRTFA mutant was sufficient to recapitulate the morphological and transcriptional defects in Actn2 and Srf mutant cardiomyocytes. Together, these data indicate that Actn2-based sarcomere organization regulates structural and transcriptional maturation of cardiomyocytes through MRTF-SRF signaling.


Subject(s)
Actinin/genetics , Myocytes, Cardiac/metabolism , Sarcomeres/metabolism , Actinin/metabolism , Animals , Cell Nucleus/metabolism , Cytoskeleton/metabolism , Gene Expression Regulation/genetics , Mice , Mitochondria/metabolism , Morphogenesis , Mutation , Myocytes, Cardiac/pathology , Sarcomeres/pathology , Serum Response Factor/metabolism , Signal Transduction , Trans-Activators/metabolism , Transcription Factors/metabolism
2.
J Transl Med ; 21(1): 399, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37337244

ABSTRACT

BACKGROUND: Bone marrow metastasis (BMM) is underestimated in gastric cancer (GC). GC with BMM frequently complicate critical hematological abnormalities like diffused intravascular coagulation and microangiopathic hemolytic anemia, which constitute a highly aggressive GC (HAGC) subtype. HAGC present a very poor prognosis with peculiar clinical and pathological features when compared with not otherwise specified advanced GC (NAGC). But the molecular mechanisms underlying BMM from GC remain rudimentary. METHODS: The transcriptomic difference between HAGC and NAGC were analyzed. Genes that were specifically upregulated in HAGC were identified, and their effect on cell migration and invasion was studied. The function of ACTN2 gene were confirmed by GC cell lines, bone-metastatic animal model and patients' tissues. Furthermore, the molecular mechanism of ACTN2 derived-BMM was explored by multiple immunofluorescence staining, western blot, chromatin immunoprecipitation, and luciferase reporter assays. RESULTS: We elucidated the key mechanisms of BMM depending on the transcriptomic difference between HAGC and NAGC. Five genes specifically upregulated in HAGC were assessed their effect on cell migration and invasion. The ACTN2 gene encoding protein α-Actinin-2 was detected enhanced the metastatic capability and induced BMM of GC cells in mouse models. Mechanically, α-Actinin-2 was involved in filopodia formation where it promoted the Actin filament cross-linking by replacing α-Actinin-1 to form α-Actinin-2:α-Actinin-4 complexes in GC cells. Moreover, NF-κB subunit RelA and α-Actinin-2 formed heterotrimers in the nuclei of GC cells. As a direct target of RelA:α-Actinin-2 heterotrimers, the ACTN2 gene was a positive auto-regulatory loop for α-Actinin-2 expression. CONCLUSIONS: We demonstrated a link between filopodia, BMM and ACTN2 activation, where a feedforward activation loop between ACTN2 and RelA is established via actin in response to distant metastasis. Given the novel filopodia formation function and the new mechanism of BMM in GC, we propose ACTN2 as a druggable molecular vulnerability that may provide potential therapeutic benefit against BMM of GC.


Subject(s)
Actinin , Bone Marrow Neoplasms , Stomach Neoplasms , Animals , Mice , Actinin/genetics , Actinin/metabolism , Cell Line, Tumor , NF-kappa B/metabolism , Pseudopodia/metabolism , Pseudopodia/pathology , Stomach Neoplasms/pathology
3.
Int J Mol Sci ; 24(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37834023

ABSTRACT

The ACTN2 gene encodes α-actinin 2, located in the Z-disc of the sarcomeres in striated muscle. In this study, we sought to investigate the effects of an ACTN2 missense variant of unknown significance (p.A868T) on cardiac muscle structure and function. Left ventricular free wall samples were obtained at the time of cardiac transplantation from a heart failure patient with the ACTN2 A868T heterozygous variant. This variant is in the EF 3-4 domain known to interact with titin and α-actinin. At the ultrastructural level, ACTN2 A868T cardiac samples presented small structural changes in cardiomyocytes when compared to healthy donor samples. However, contractile mechanics of permeabilized ACTN2 A868T variant cardiac tissue displayed higher myofilament Ca2+ sensitivity of isometric force, reduced sinusoidal stiffness, and faster rates of tension redevelopment at all Ca2+ levels. Small-angle X-ray diffraction indicated increased separation between thick and thin filaments, possibly contributing to changes in muscle kinetics. Molecular dynamics simulations indicated that while the mutation does not significantly impact the structure of α-actinin on its own, it likely alters the conformation associated with titin binding. Our results can be explained by two Z-disc mediated communication pathways: one pathway that involves α-actinin's interaction with actin, affecting thin filament regulation, and the other pathway that involves α-actinin's interaction with titin, affecting thick filament activation. This work establishes the role of α-actinin 2 in modulating cross-bridge kinetics and force development in the human myocardium as well as how it can be involved in the development of cardiac disease.


Subject(s)
Actinin , Myofibrils , Humans , Actinin/genetics , Actinin/metabolism , Connectin/genetics , Connectin/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myofibrils/metabolism , Sarcomeres/metabolism
4.
Hum Mutat ; 43(12): 1745-1756, 2022 12.
Article in English | MEDLINE | ID: mdl-36116040

ABSTRACT

ACTN2 encodes alpha-actinin-2, a protein expressed in human cardiac and skeletal muscle. The protein, located in the sarcomere Z-disk, functions as a link between the anti-parallel actin filaments. This important structural protein also binds N-terminal titins, and thus contributes to sarcomere stability. Previously, ACTN2 mutations have been solely associated with cardiomyopathy, without skeletal muscle disease. Recently, however, ACTN2 mutations have been associated with novel congenital and distal myopathy. Previously reported variants are in varying locations across the gene, but the potential clustering effect of pathogenic locations is not clearly understood. Further, the genotype-phenotype correlations of these variants remain unclear. Here we review the previously reported ACTN2-related molecular and clinical findings and present an additional variant, c.1840-2A>T, that further expands the mutation and phenotypic spectrum. Our results show a growing body of clinical, genetic, and functional evidence, which underlines the central role of ACTN2 in the muscle tissue and myopathy. However, limited segregation and functional data are available to support the pathogenicity of most previously reported missense variants and clear-cut genotype-phenotype correlations are currently only demonstrated for some ACTN2-related myopathies.


Subject(s)
Actinin , Heart , Humans , Actinin/genetics , Actinin/chemistry , Mutation , Muscle, Skeletal/metabolism , Mutation, Missense
5.
Int J Mol Sci ; 22(6)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802723

ABSTRACT

The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.


Subject(s)
Cardiomyopathies/metabolism , Muscle Proteins/metabolism , Muscular Diseases/metabolism , Animals , Humans , Models, Biological , Muscle Proteins/chemistry , Muscle Proteins/genetics , Mutation/genetics
6.
Int J Mol Sci ; 21(16)2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32824180

ABSTRACT

Cardiomyopathies affect individuals worldwide, without regard to age, sex and ethnicity and are associated with significant morbidity and mortality. Inherited cardiomyopathies account for a relevant part of these conditions. Although progresses have been made over the years, early diagnosis and curative therapies are still challenging. Understanding the events occurring in normal and diseased cardiac cells is crucial, as they are important determinants of overall heart function. Besides chemical and molecular events, there are also structural and mechanical phenomena that require to be investigated. Cell structure and mechanics largely depend from the cytoskeleton, which is composed by filamentous proteins that can be cross-linked via accessory proteins. Alpha-actinin 2 (ACTN2), filamin C (FLNC) and dystrophin are three major actin cross-linkers that extensively contribute to the regulation of cell structure and mechanics. Hereby, we review the current understanding of the roles played by ACTN2, FLNC and dystrophin in the onset and progress of inherited cardiomyopathies. With our work, we aim to set the stage for new approaches to study the cardiomyopathies, which might reveal new therapeutic targets and broaden the panel of genes to be screened.


Subject(s)
Actinin/metabolism , Cardiomyopathies/metabolism , Cytoskeleton/metabolism , Dystrophin/metabolism , Filamins/metabolism , Actinin/genetics , Animals , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Dystrophin/genetics , Filamins/genetics , Humans
7.
Acta Neuropathol ; 137(3): 501-519, 2019 03.
Article in English | MEDLINE | ID: mdl-30701273

ABSTRACT

The identification of genes implicated in myopathies is essential for diagnosis and for revealing novel therapeutic targets. Here we characterize a novel subclass of congenital myopathy at the morphological, molecular, and functional level. Through exome sequencing, we identified de novo ACTN2 mutations, a missense and a deletion, in two unrelated patients presenting with progressive early-onset muscle weakness and respiratory involvement. Morphological and ultrastructural analyses of muscle biopsies revealed a distinctive pattern with the presence of muscle fibers containing small structured cores and jagged Z-lines. Deeper analysis of the missense mutation revealed mutant alpha-actinin-2 properly localized to the Z-line in differentiating myotubes and its level was not altered in muscle biopsy. Modelling of the disease in zebrafish and mice by exogenous expression of mutated alpha-actinin-2 recapitulated the abnormal muscle function and structure seen in the patients. Motor deficits were noted in zebrafish, and muscle force was impaired in isolated muscles from AAV-transduced mice. In both models, sarcomeric disorganization was evident, while expression of wild-type alpha-actinin-2 did not result in muscle anomalies. The murine muscles injected with mutant ACTN2 displayed cores and Z-line defects. Dominant ACTN2 mutations were previously associated with cardiomyopathies, and our data demonstrate that specific mutations in the well-known Z-line regulator alpha-actinin-2 can cause a skeletal muscle disorder.


Subject(s)
Actinin/genetics , Muscle, Skeletal/pathology , Myotonia Congenita/genetics , Myotonia Congenita/pathology , Animals , Female , Humans , Male , Mice , Mutation , Zebrafish
8.
J Physiol ; 595(7): 2271-2284, 2017 04 01.
Article in English | MEDLINE | ID: mdl-27779751

ABSTRACT

KEY POINTS: Ion channels are transmembrane proteins that are synthesized within the cells but need to be trafficked to the cell membrane for the channels to function. Small-conductance, Ca2+ -activated K+ channels (SK, KCa 2) are unique subclasses of K+ channels that are regulated by Ca2+ inside the cells; they are expressed in human atrial myocytes and responsible for shaping atrial action potentials. We have previously shown that interacting proteins of SK2 channels are important for channel trafficking to the membrane. Using total internal reflection fluorescence (TIRF) and confocal microscopy, we studied the mechanisms by which the surface membrane localization of SK2 (KCa 2.2) channels is regulated by their interacting proteins. Understanding the mechanisms of SK channel trafficking may provide new insights into the regulation controlling the repolarization of atrial myocytes. ABSTRACT: The normal function of ion channels depends critically on the precise subcellular localization and the number of channel proteins on the cell surface membrane. Small-conductance, Ca2+ -activated K+ channels (SK, KCa 2) are expressed in human atrial myocytes and are responsible for shaping atrial action potentials. Understanding the mechanisms of SK channel trafficking may provide new insights into the regulation controlling the repolarization of atrial myocytes. We have previously demonstrated that the C- and N-termini of SK2 channels interact with the actin-binding proteins α-actinin2 and filamin A, respectively. However, the roles of the interacting proteins on SK2 channel trafficking remain incompletely understood. Using total internal reflection fluorescence (TIRF) microscopy, we studied the mechanisms of surface membrane localization of SK2 (KCa 2.2) channels. When SK2 channels were co-expressed with filamin A or α-actinin2, the membrane fluorescence intensity of SK2 channels increased significantly. We next tested the effects of primaquine and dynasore on SK2 channels expression. Treatment with primaquine significantly reduced the membrane expression of SK2 channels. In contrast, treatment with dynasore failed to alter the surface membrane expression of SK2 channels. Further investigations using constitutively active or dominant-negative forms of Rab GTPases provided additional insights into the distinct roles of the two cytoskeletal proteins on the recycling processes of SK2 channels from endosomes. α-Actinin2 facilitated recycling of SK2 channels from both early and recycling endosomes while filamin A probably aids the recycling of SK2 channels from recycling endosomes.


Subject(s)
Actinin/physiology , Filamins/physiology , Myocytes, Cardiac/physiology , Small-Conductance Calcium-Activated Potassium Channels/physiology , Animals , Cell Membrane/drug effects , Cell Membrane/physiology , Endosomes/metabolism , HEK293 Cells , Heart Atria/cytology , Humans , Hydrazones/pharmacology , Male , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Primaquine/pharmacology
9.
Korean J Parasitol ; 55(4): 375-384, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28877568

ABSTRACT

Trichomonas vaginalis is a pathogen that triggers severe immune responses in hosts. T. vaginalis α-actinin 2, Tvα-actinin 2, has been used to diagnose trichomoniasis. This study was undertaken to examine the role of Tvα-actinin 2 as an antigenic molecule to induce immune responses from humans. Western blot analysis using anti-Tvα-actinin 2 antibodies indicated its presence in the secreted proteins of T. vaginalis. ELISA was employed to measure cytokine production by vaginal epithelial cells, prostate cells, mouse dendritic cells (DCs), or T cells stimulated with T. vaginalis or Tvα-actinin 2 protein. Both T. vaginalis and rTvα-actinin 2 induced cytokine production from epithelial cell lines, including IL-10. Moreover, CD4+CD25- regulatory T cells (Treg cells) incubated with rTvα-actinin 2-treated DCs produced high levels of IL-10. These data indicate that Tvα-actinin 2 modulates immune responses via IL-10 production by Treg cells.


Subject(s)
Actinin/immunology , Dendritic Cells/immunology , Host-Parasite Interactions/immunology , Interleukin-10/biosynthesis , T-Lymphocytes, Regulatory/immunology , Trichomonas vaginalis/immunology , Animals , Antibodies, Protozoan/immunology , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Epithelial Cells/immunology , Humans , Mice, Inbred BALB C , Organic Chemicals/immunology
10.
JACC Case Rep ; 6: 101704, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36704056

ABSTRACT

Spontaneous coronary artery dissection in infants is a rare phenomenon. We present 2 neonates with severe ventricular dysfunction due to coronary artery dissection. Neither patient had evidence of extracardiac fibromuscular dysplasia or other comorbidities that would explain the presentation. (Level of Difficulty: Advanced.).

11.
Front Mol Biosci ; 9: 837971, 2022.
Article in English | MEDLINE | ID: mdl-35463945

ABSTRACT

Angiogenin (ANG) is the first human tumor-derived angiogenic protein, which can promote angiogenesis and tumor growth. In a previous study, we identified alpha-actinin 2 (ACTN2), a cytoskeletal protein, as a direct interacting protein with angiogenin. However, the interaction between ANG and ACTN2 was not characterized in detail, which may provide information on the molecular mechanisms of ANG functions. In this study, we mapped the accurate binding domain and sites in ANG and ACTN2, respectively. In ANG, the residues from 83 to 105 are the smallest motif that can bind to ACTN2. We then use site mutation analysis to identify the precise binding sites of ANG in the interaction and found that the 101st residue arginine (R101) represents the critical residue involved in the ANG-ACTN2 interaction. In ACTN2, the residues from 383 to 632, containing two spectrin domains in the middle of the rod structure of ACTN2, play an important role in the interaction. Furthermore, we validated the interaction of ACTN2-383-632 to ANG by glutathione-S-transferase (GST) pull-down assay. In functional analysis, overexpressed ACTN2-383-632 could impair tumor cell motility observably, including cell migration and invasion. Meanwhile, ACTN2-383-632 overexpression inhibited tumor cell proliferation and survival as well. These data suggest that an excess expression of ACTN2 segment ACTN2-383-632 can inhibit tumor cell motility and proliferation by interfering with the interaction between ANG and ACTN2, which provides a potential mechanism of ANG action in tumor growth and metastasis.

12.
Cells ; 11(17)2022 09 02.
Article in English | MEDLINE | ID: mdl-36078153

ABSTRACT

Genetic variants in α-actinin-2 (ACTN2) are associated with several forms of (cardio)myopathy. We previously reported a heterozygous missense (c.740C>T) ACTN2 gene variant, associated with hypertrophic cardiomyopathy, and characterized by an electro-mechanical phenotype in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Here, we created with CRISPR/Cas9 genetic tools two heterozygous functional knock-out hiPSC lines with a second wild-type (ACTN2wt) and missense ACTN2 (ACTN2mut) allele, respectively. We evaluated their impact on cardiomyocyte structure and function, using a combination of different technologies, including immunofluorescence and live cell imaging, RNA-seq, and mass spectrometry. This study showed that ACTN2mut presents a higher percentage of multinucleation, protein aggregation, hypertrophy, myofibrillar disarray, and activation of both the ubiquitin-proteasome system and the autophagy-lysosomal pathway as compared to ACTN2wt in 2D-cultured hiPSC-CMs. Furthermore, the expression of ACTN2mut was associated with a marked reduction of sarcomere-associated protein levels in 2D-cultured hiPSC-CMs and force impairment in engineered heart tissues. In conclusion, our study highlights the activation of proteolytic systems in ACTN2mut hiPSC-CMs likely to cope with ACTN2 aggregation and therefore directs towards proteopathy as an additional cellular pathology caused by this ACTN2 variant, which may contribute to human ACTN2-associated cardiomyopathies.


Subject(s)
Actinin , Cardiomyopathy, Hypertrophic , Protein Aggregation, Pathological , Actinin/genetics , Actinin/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Sarcomeres/metabolism
13.
Exp Neurol ; 335: 113512, 2021 01.
Article in English | MEDLINE | ID: mdl-33098872

ABSTRACT

α-actinin-2 (α-actn-2) is an F-actin-crosslinking protein, localized in dendritic spines. In vitro studies suggested that it is involved in spinogenesis, morphogenesis, actin organization, cell migration and anchoring of the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptors in dendritic spines. However, little is known regarding its function in vivo. We examined the levels of α-actn-2 expression within the dentate gyrus (DG) during the development of chronic limbic seizures (epileptogenesis) induced by pilocarpine in rats. In this model, plasticity of the DG glutamatergic granule cells including spine loss, spinogenesis, morphogenesis, neo-synaptogenesis, aberrant migration, and alterations of NMDA receptors have been well characterized. We showed that α-actn-2 immunolabeling was reduced in the inner molecular layer at 1-2 weeks post-status epilepticus (SE), when granule cell spinogenesis and morphogenesis occur. This low level persisted at the chronic stage when new functional synapses are established. This decreased of α-actn-2 protein is concomitant with the recovery of drebrin A (DA), another actin-binding protein, at the chronic stage. Indeed, we demonstrated in cultured cells that in contrast to DA, α-actn-2 did not protect F-actin destabilization and DA inhibited α-actn-2 binding to F-actin. Such alteration could affect the anchoring of NR1 in dendritic spines. Furthermore, we showed that the expression of α-actn-2 and NR1 are co-down-regulated in membrane fractions of pilocarpine animals at chronic stage. Last, we showed that α-actn-2 is expressed in migrating newly born granule cells observed within the hilus of pilocarpine-treated rats. Altogether, our results suggest that α-actn-2 is not critical for the structural integrity and stabilization of granule cell dendritic spines. Instead, its expression is regulated when spinogenesis and morphogenesis occur and within migrating granule cells. Our data also suggest that the balance between α-actn-2 and DA expression levels may modulate NR1 anchoring within dendritic spines.


Subject(s)
Actinin/biosynthesis , Cell Movement/genetics , Dendritic Spines , Dentate Gyrus/physiopathology , Neuronal Plasticity/genetics , Seizures/physiopathology , Actinin/genetics , Actins/metabolism , Animals , Convulsants , Male , Neurogenesis/genetics , Neuropeptides/metabolism , Pilocarpine , Rats , Rats, Wistar , Receptors, GABA/metabolism , Seizures/chemically induced , Synapses
14.
J Microbiol Biotechnol ; 27(10): 1844-1854, 2017 Oct 28.
Article in English | MEDLINE | ID: mdl-28838225

ABSTRACT

Trichomonas vaginalis is a pathogen that triggers severe immune responses in hosts. T. vaginalis α-actinin 2 (Tvα-actinin 2) has been used to diagnose trichomoniasis. Tvα-actinin 2 was dissected into three parts; the N-terminal, central, and C-terminal portions of the protein (#1, #2, and #3, respectively). Western blot of these Tvα-actinin 2 proteins with pooled patients' sera indicated that #2 and #3, but not #1, reacted with those sera. Immunofluorescence assays of two different forms of T. vaginalis (trophozoites and amoeboid forms), using anti-Tvα-actinin 2 antibodies, showed localization of Tvα-actinin 2 close to the plasma membranes of the amoeboid form. Fractionation experiments indicated the presence of Tvα-actinin 2 in cytoplasmic, membrane, and secreted proteins of T. vaginalis. Binding of fluorescence-labeled Trichomonas to vaginal epithelial cells and prostate cells was decreased in the antibody blocking experiment using anti-Tvα-actinin 2 antibodies. Pretreatment of T. vaginalis with anti-rTvα-actinin 2 antibodies also resulted in reduction in its cytotoxicity. Flow cytometry, ligand-binding immunoblotting assay, and observation by fluorescence microscopy were used to detect the binding of recombinant Tvα-actinin 2 to human epithelial cell lines. Specifically, the truncated N-terminal portion of Tvα-actinin 2, Tvα-actinin 2 #1, was shown to bind directly to vaginal epithelial cells. These data suggest that α-actinin 2 is one of the virulence factors responsible for the pathogenesis of T. vaginalis by serving as an adhesin to the host cells.


Subject(s)
Actinin/physiology , Trichomonas vaginalis/metabolism , Actinin/genetics , Antigens, Protozoan/genetics , Antigens, Protozoan/physiology , Carrier Proteins/genetics , Carrier Proteins/physiology , Cell Line , Epithelial Cells , Female , Gene Expression Regulation , Humans , Recombinant Proteins , Trichomonas Infections/immunology , Trichomonas vaginalis/genetics , Trichomonas vaginalis/immunology , Trophozoites , Vagina , Virulence Factors
15.
Mol Neurobiol ; 54(4): 2928-2938, 2017 05.
Article in English | MEDLINE | ID: mdl-27023225

ABSTRACT

UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) is the gene mutated in GNE myopathy. In an attempt to elucidate GNE functions that could account for the muscle pathophysiology of this disorder, the interaction of GNE with α-actinins has been investigated. Surface plasmon resonance and microscale thermophoresis analysis revealed, that in vitro, GNE interacts with α-actinin 2, and that this interaction has a 10-fold higher affinity compared to the GNE-α-actinin 1 interaction. Further, GNE carrying the M743T mutation, the most frequent mutation in GNE myopathy, has a 10-fold lower binding affinity to α-actinin 2 than intact GNE. It is possible that this decrease eventually affects the interaction, thus causing functional imbalance of this complex in skeletal muscle that could contribute to the myopathy phenotype. In vivo, using bi-molecular fluorescent complementation, we show the specific binding of the two proteins inside the intact cell, in a unique interaction pattern between the two partners. This interaction is disrupted in the absence of the C-terminal calmodulin-like domain of α-actinin 2, which is altered in α-actinin 1. Moreover, the binding of GNE to α-actinin 2 prevents additional binding of α-actinin 1 but not vice versa. These results suggest that the interaction between GNE and α-actinin 1 and α-actinin 2 occur at different sites in the α-actinin molecules and that for α-actinin 2 the interaction site is located at the C-terminus of the protein.


Subject(s)
Actinin/metabolism , Multienzyme Complexes/metabolism , Muscular Diseases/genetics , Muscular Diseases/metabolism , Mutation/genetics , Fluorescence , HEK293 Cells , HeLa Cells , Humans , Mutant Proteins/metabolism , Protein Binding , Protein Interaction Mapping
16.
FEBS Lett ; 589(16): 2155-62, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26143257

ABSTRACT

Kindlin-2, as an integrin-interacting protein, was known to be required for the maintenance of cardiac structure and function in zebrafish. However, the mechanism remains unclear. We found that Kindlin-2 interacts and colocalizes with α-actinin-2 at the Z-disc of mouse cardiac muscles and there Kindlin-2 also interacts with ß1 integrin. Knockdown of Kindlin-2 influences the association of ß1 integrin with α-actinin-2 and disrupts the structure of the Z-disc and leads to cardiac dysfunction. Our data indicated that Kindlin-2 is a novel α-actinin-2-interacting protein and plays an important role in the regulation of cardiac structure and function.


Subject(s)
Actinin/metabolism , Cytoskeletal Proteins/metabolism , Integrin beta1/metabolism , Muscle Proteins/metabolism , Myocardium/metabolism , Sarcomeres/metabolism , Animals , Animals, Newborn , Cells, Cultured , Cytoskeletal Proteins/antagonists & inhibitors , Cytoskeletal Proteins/genetics , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Male , Mice, Inbred ICR , Muscle Proteins/antagonists & inhibitors , Muscle Proteins/genetics , Myocardial Contraction , Myocardium/cytology , Myocardium/ultrastructure , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/ultrastructure , Protein Transport , RNA Interference , Rats, Sprague-Dawley , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Sarcomeres/ultrastructure , Stroke Volume , Ultrasonography , Ventricular Dysfunction/diagnostic imaging , Ventricular Dysfunction/etiology , Ventricular Dysfunction/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL