Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
Annu Rev Biochem ; 83: 249-73, 2014.
Article in English | MEDLINE | ID: mdl-24905783

ABSTRACT

Proteolytic enzymes are key signaling molecules in both normal physiological processes and various diseases. After synthesis, protease activity is tightly controlled. Consequently, levels of protease messenger RNA and protein often are not good indicators of total protease activity. To more accurately assign function to new proteases, investigators require methods that can be used to detect and quantify proteolysis. In this review, we describe basic principles, recent advances, and applications of biochemical methods to track protease activity, with an emphasis on the use of activity-based probes (ABPs) to detect protease activity. We describe ABP design principles and use case studies to illustrate the application of ABPs to protease enzymology, discovery and development of protease-targeted drugs, and detection and validation of proteases as biomarkers.


Subject(s)
Peptide Hydrolases/chemistry , Peptide Hydrolases/physiology , Animals , Biochemistry/methods , Biomarkers/chemistry , Caspases/chemistry , Chemistry, Pharmaceutical/methods , Drug Design , Escherichia coli/enzymology , Humans , Peptides/chemistry , Proteomics/methods , Substrate Specificity
2.
Semin Cell Dev Biol ; 132: 74-85, 2022 12.
Article in English | MEDLINE | ID: mdl-34961664

ABSTRACT

Protein ubiquitination is a key post-translational modification in regulating many fundamental cellular processes and dysregulation of these processes can give rise to a vast array of diseases. Unravelling the molecular mechanisms of ubiquitination hence is an important area in current ubiquitin research with as aim to understand this enigmatic process. The complexity of ubiquitin (Ub) signaling arises from the large variety of Ub conjugates, where Ub is attached to other Ub proteins, Ub-like proteins, and protein substrates. The chemical preparation of such Ub conjugates in high homogeneity and in adequate amounts contributes greatly to the deciphering of Ub signaling. The strength of these chemically synthesized conjugates lies in the chemo-selectivity in which they can be created that are sometimes difficult to obtain using biochemical methodology. In this review, we will discuss the progress in the chemical protein synthesis of state-of-the-art Ub and Ub-like chemical probes, their unique concepts and related discoveries in the ubiquitin field.


Subject(s)
Protein Processing, Post-Translational , Ubiquitin , Ubiquitin/metabolism , Ubiquitination , Proteins/metabolism , Signal Transduction
3.
Chembiochem ; 25(10): e202300821, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38564329

ABSTRACT

Bile acids are bioactive metabolites that are biotransformed into secondary bile acids by the gut microbiota, a vast consortium of microbes that inhabit the intestines. The first step in intestinal secondary bile acid metabolism is carried out by a critical enzyme, bile salt hydrolase (BSH), that catalyzes the gateway reaction that precedes all subsequent microbial metabolism of these important metabolites. As gut microbial metabolic activity is difficult to probe due to the complex nature of the gut microbiome, approaches are needed to profile gut microbiota-associated enzymes such as BSH. Here, we develop a panel of BSH activity-based probes (ABPs) to determine how changes in diurnal rhythmicity of gut microbiota-associated metabolism affects BSH activity and substrate preference. This panel of covalent probes enables determination of BSH activity and substrate specificity from multiple gut anerobic bacteria derived from the human and mouse gut microbiome. We found that both gut microbiota-associated BSH activity and substrate preference is rhythmic, likely due to feeding patterns of the mice. These results indicate that this ABP-based approach can be used to profile changes in BSH activity in physiological and disease states that are regulated by circadian rhythms.


Subject(s)
Amidohydrolases , Bile Acids and Salts , Gastrointestinal Microbiome , Animals , Mice , Humans , Amidohydrolases/metabolism , Bile Acids and Salts/metabolism , Bile Acids and Salts/chemistry , Substrate Specificity , Mice, Inbred C57BL , Bacteria/metabolism , Bacteria/enzymology , Circadian Rhythm , Molecular Probes/chemistry , Molecular Probes/metabolism
4.
Chembiochem ; : e202400659, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39313481

ABSTRACT

Conjugation of ubiquitin (Ub) and structurally related ubiquitin-like proteins (Ubl's), essential for many cellular processes, employs muti-step reactions orchestrated by specific E1, E2 and E3 enzymes. The E1 enzyme activates the Ub/Ubl C-terminus in an ATP-dependent process that results in the formation of a thioester linkage with the E1 active site cysteine. The thioester activated Ub/Ubl is transferred to the active site of an E2 enzyme which then interacts with an E3 enzyme to promote conjugation to the target substrate. The E1-E2-E3 enzymatic cascades utilize labile intermediates, extensive conformational changes, and vast combinatorial diversity of short-lived protein-protein complexes to conjugate Ub/Ubl to various substrates in a regulated manner. In this review, we discuss various chemical tools and methods used to study the consecutive steps of Ub/Ubl activation and conjugation, which are often too elusive for direct studies. We focus on methods developed to probe enzymatic activities and capture and characterize stable mimics of the transient intermediates and transition states thereby providing insights into fundamental mechanisms in the Ub/Ubl conjugation pathways.

5.
Biol Chem ; 405(5): 351-365, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38410910

ABSTRACT

Proteases function within sophisticated networks. Altering the activity of one protease can have sweeping effects on other proteases, leading to changes in their activity, structure, specificity, localisation, stability, and expression. Using a suite of chemical tools, we investigated the impact of cathepsin X, a lysosomal cysteine protease, on the activity and expression of other cysteine proteases and their inhibitors in dendritic cells. Among all proteases examined, cathepsin X gene deletion specifically altered cathepsin L levels; pro-cathepsin L and its single chain accumulated while the two-chain form was unchanged. This effect was recapitulated by chemical inhibition of cathepsin X, suggesting a dependence on its catalytic activity. We demonstrated that accumulation of pro- and single chain cathepsin L was not due to a lack of direct cleavage by cathepsin X or altered glycosylation, secretion, or mRNA expression but may result from changes in lysosomal oxidative stress or pH. In the absence of active cathepsin X, nuclear cathepsin L and cleavage of the known nuclear cathepsin L substrate, Lamin B1, were diminished. Thus, cathepsin X activity selectively regulates cathepsin L, which has the potential to impact the degree of cathepsin L proteolysis, the nature of substrates that it cleaves, and the location of cleavage.


Subject(s)
Cathepsin L , Cathepsin L/metabolism , Cathepsin L/deficiency , Cathepsin L/genetics , Animals , Mice , Cell Nucleus/metabolism , Substrate Specificity , Mice, Knockout , Dendritic Cells/metabolism
6.
Biochem Soc Trans ; 52(2): 923-935, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38629725

ABSTRACT

Serine proteases are one of the largest mechanistic classes of proteases. They regulate a plethora of biochemical pathways inside and outside the cell. Aberrant serine protease activity leads to a wide variety of human diseases. Reagents to visualize these activities can be used to gain insight into the biological roles of serine proteases. Moreover, they may find future use for the detection of serine proteases as biomarkers. In this review, we discuss small molecule tools to image serine protease activity. Specifically, we outline different covalent activity-based probes and their selectivity against various serine protease targets. We also describe their application in several imaging methods.


Subject(s)
Serine Proteases , Serine Proteases/metabolism , Humans , Molecular Probes/chemistry , Molecular Probes/metabolism , Animals , Molecular Imaging/methods
7.
Appl Environ Microbiol ; 90(1): e0054823, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38126750

ABSTRACT

Penicillin-binding proteins (PBPs) play critical roles in cell wall construction, cell shape maintenance, and bacterial replication. Bacteria maintain a diversity of PBPs, indicating that despite their apparent functional redundancy, there is differentiation across the PBP family. Apparently-redundant proteins can be important for enabling an organism to cope with environmental stressors. In this study, we evaluated the consequence of environmental pH on PBP enzymatic activity in Bacillus subtilis. Our data show that a subset of PBPs in B. subtilis change activity levels during alkaline shock and that one PBP isoform is rapidly modified to generate a smaller protein (i.e., PBP1a to PBP1b). Our results indicate that a subset of the PBPs are favored for growth under alkaline conditions, while others are readily dispensable. Indeed, we found that this phenomenon could also be observed in Streptococcus pneumoniae, implying that it may be generalizable across additional bacterial species and further emphasizing the evolutionary benefit of maintaining many, seemingly-redundant periplasmic enzymes.IMPORTANCEMicrobes adapt to ever-changing environments and thrive over a vast range of conditions. While bacterial genomes are relatively small, significant portions encode for "redundant" functions. Apparent redundancy is especially pervasive in bacterial proteins that reside outside of the inner membrane. While conditions within the cytoplasm are carefully controlled, those of the periplasmic space are largely determined by the cell's exterior environment. As a result, proteins within this environmentally exposed region must be capable of functioning under a vast array of conditions, and/or there must be several similar proteins that have evolved to function under a variety of conditions. This study examines the activity of a class of enzymes that is essential in cell wall construction to determine if individual proteins might be adapted for activity under particular growth conditions. Our results indicate that a subset of these proteins are preferred for growth under alkaline conditions, while others are readily dispensable.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Penicillin-Binding Proteins , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Cell Wall/metabolism , Cytoplasm/metabolism
8.
Chemistry ; : e202402988, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39305182

ABSTRACT

Cyclophellitol is a potent and selective mechanism-based retaining ß-glucosidase inhibitor that has served as a versatile starting point for the development of activity-based glycosidase probes (ABPs). We developed routes of synthesis of eight mono- and dideoxycyclophellitols and cyclophellitol aziridines, the latter as ABPs carrying either a biotin or fluorophore linked to the aziridine nitrogen. We reveal the potency of these 24 compounds as inhibitors of the three human retaining ß-glucosidases, GBA1, GBA2 and GBA3. We show that 3,6-dideoxy-ß-galacto-cyclophellitol aziridine selectively captures GBA3 over GBA1 and GBA2 in extracts of cells overexpressing both GBA2 and GBA3. We also identify a probe that selectively labels GBA1 and GBA2 over GBA3 at lower concentrations. In sum, the here-presented studies reveal new chemistries to prepare chiral, substituted cyclitol epoxides and aziridines, add to the growing suite of cyclophellitols varying in configuration and substitution pattern, and yielded a reagent that may find use to investigate the physiological role and therapeutic relevance of the most elusive of the three retaining ß-glucosidases: GBA3.

9.
Chembiochem ; 24(16): e202300157, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37096389

ABSTRACT

Synthetic chemical probes are powerful tools for investigating biological processes. They are particularly useful for proteomic studies such as activity-based protein profiling (ABPP). These chemical methods initially used mimics of natural substrates. As the techniques gained prominence, more and more elaborate chemical probes with increased specificity towards given enzyme/protein families and amenability to various reaction conditions were used. Among the chemical probes, peptidyl-epoxysuccinates represent one of the first types of compounds used to investigate the activity of the cysteine protease papain-like family of enzymes. Structurally derived from the natural substrate, a wide body of inhibitors and activity- or affinity-based probes bearing the electrophilic oxirane unit for covalent labeling of active enzymes now exists. Herein, we review the literature regarding the synthetic approaches to epoxysuccinate-based chemical probes together with their reported applications, from biological chemistry and inhibition studies to supramolecular chemistry and the formation of protein arrays.


Subject(s)
Cysteine Proteases , Proteomics , Proteomics/methods , Proteins , Molecular Probes/chemistry
10.
Chembiochem ; 24(21): e202300444, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37607867

ABSTRACT

The paracaspase MALT1 is a key regulator of the human immune response. It is implicated in a variety of human diseases. For example, deregulated protease activity drives the survival of malignant lymphomas and is involved in the pathophysiology of autoimmune/inflammatory diseases. Thus, MALT1 has attracted attention as promising drug target. Although many MALT1 inhibitors have been identified, molecular tools to study MALT1 activity, target engagement and inhibition in complex biological samples, such as living cells and patient material, are still scarce. Such tools are valuable to validate MALT1 as a drug target in vivo and to assess yet unknown biological roles of MALT1. In this review, we discuss the recent literature on the development and biological application of molecular tools to study MALT1 activity and inhibition.


Subject(s)
Autoimmune Diseases , Caspases , Humans , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , Caspases/metabolism , Proteolysis , NF-kappa B
11.
Int J Mol Sci ; 24(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37445660

ABSTRACT

Mycobacterium tuberculosis (Mtb) is the etiological agent of tuberculosis (TB), a disease that, although preventable and curable, remains a global epidemic due to the emergence of resistance and a latent form responsible for a long period of treatment. Drug discovery in TB is a challenging task due to the heterogeneity of the disease, the emergence of resistance, and uncomplete knowledge of the pathophysiology of the disease. The limited permeability of the cell wall and the presence of multiple efflux pumps remain a major barrier to achieve effective intracellular drug accumulation. While the complete genome sequence of Mtb has been determined and several potential protein targets have been validated, the lack of adequate models for in vitro and in vivo studies is a limiting factor in TB drug discovery programs. In current therapeutic regimens, less than 0.5% of bacterial proteins are targeted during the biosynthesis of the cell wall and the energetic metabolism of two of the most important processes exploited for TB chemotherapeutics. This review provides an overview on the current challenges in TB drug discovery and emerging Mtb druggable proteins, and explains how chemical probes for protein profiling enabled the identification of new targets and biomarkers, paving the way to disruptive therapeutic regimens and diagnostic tools.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Tuberculosis/drug therapy , Tuberculosis/microbiology , Bacterial Proteins/metabolism , Drug Discovery
12.
Trends Biochem Sci ; 43(10): 829-844, 2018 10.
Article in English | MEDLINE | ID: mdl-30097385

ABSTRACT

Proteases are considered of major importance in biomedical research because of their crucial roles in health and disease. Their ability to hydrolyze their protein and peptide substrates at single or multiple sites, depending on their specificity, makes them unique among the enzymes. Understanding protease specificity is therefore crucial to understand their biology as well as to develop tools and drugs. Recent advancements in the fields of proteomics and chemical biology have improved our understanding of protease biology through extensive specificity profiling and identification of physiological protease substrates. There are growing efforts to transfer this knowledge into clinical modalities, but their success is often limited because of overlapping protease features, protease redundancy, and chemical tools lacking specificity. Herein, we discuss the current trends and challenges in protease research and how to exploit the growing information on protease specificities for understanding protease biology, as well as for development of selective substrates, cleavable linkers, and activity-based probes and for biomarker discovery.


Subject(s)
Peptide Hydrolases/metabolism , Biomarkers/metabolism , Datasets as Topic , Humans , Proteomics , Substrate Specificity
13.
Chembiochem ; 23(4): e202100628, 2022 02 16.
Article in English | MEDLINE | ID: mdl-34918441

ABSTRACT

Fatty acids play fundamental structural, metabolic, functional, and signaling roles in all biological systems. Altered fatty acid levels and metabolism have been associated with many pathological conditions. Chemical probes have greatly facilitated biological studies on fatty acids. Herein, we report the development and characterization of an alkynyl-functionalized long-chain fatty acid-based sulfonyl fluoride probe for covalent labelling, enrichment, and identification of fatty acid-associated proteins in living cells. Our quantitative chemical proteomics show that this sulfonyl fluoride probe targets diverse classes of fatty acid-associated proteins including many metabolic serine hydrolases that are known to be involved in fatty acid metabolism and modification. We further validate that the probe covalently modifies the catalytically or functionally essential serine or tyrosine residues of its target proteins and enables evaluation of their inhibitors. The sulfonyl fluoride-based chemical probe thus represents a new tool for profiling the expression and activity of fatty acid-associated proteins in living cells.


Subject(s)
Fatty Acids/metabolism , Molecular Probes/metabolism , Sulfinic Acids/metabolism , Fatty Acids/chemistry , HEK293 Cells , Humans , Molecular Probes/chemistry , Molecular Structure , Sulfinic Acids/chemistry
14.
Biol Chem ; 403(4): 433-443, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35218689

ABSTRACT

Penicillin-binding proteins (PBPs) are integral to bacterial cell division as they mediate the final steps of cell wall maturation. Selective fluorescent probes are useful for understanding the role of individual PBPs, including their localization and activity during growth and division of bacteria. For the development of new selective probes for PBP imaging, several ß-lactam antibiotics were screened, as they are known to covalently bind PBP in vivo. The PBP inhibition profiles of 16 commercially available ß-lactam antibiotics were evaluated in an unencapsulated derivative of the D39 strain of Streptococcus pneumoniae, IU1945. These ß-lactams have not previously been characterized for their PBP inhibition profiles in S. pneumoniae and these data augment those obtained from a library of 20 compounds that we previously reported. We investigated seven penicillins, three carbapenems, and six cephalosporins. Most of these ß-lactams were found to be co-selective for PBP2x and PBP3, as was noted in our previous studies. Six out of 16 antibiotics were selective for PBP3 and one molecule was co-selective for PBP1a and PBP3. Overall, this work expands the chemical space available for development of future ß-lactam-based probes for specific pneumococcal PBP labeling and these methods can be used for the development of probes for PBP labelling in other bacterial species.


Subject(s)
Streptococcus pneumoniae , beta-Lactams , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Lactams/metabolism , Microbial Sensitivity Tests , Penicillin-Binding Proteins/metabolism , Streptococcus pneumoniae/metabolism , beta-Lactams/metabolism , beta-Lactams/pharmacology
15.
Chemistry ; 28(62): e202201636, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-35852812

ABSTRACT

Rhodesain is the major cysteine protease of the protozoan parasite Trypanosoma brucei and a therapeutic target for sleeping sickness, a fatal neglected tropical disease. We designed, synthesized and characterized a bimodal activity-based probe that binds to and inactivates rhodesain. This probe exhibited an irreversible mode of action and extraordinary potency for the target protease with a kinac /Ki value of 37,000 M-1 s-1 . Two reporter tags, a fluorescent coumarin moiety and a biotin affinity label, were incorporated into the probe and enabled highly sensitive detection of rhodesain in a complex proteome by in-gel fluorescence and on-blot chemiluminescence. Furthermore, the probe was employed for microseparation and quantification of rhodesain and for inhibitor screening using a competition assay. The developed bimodal rhodesain probe represents a new proteomic tool for studying Trypanosoma pathobiochemistry and antitrypanosomal drug discovery.


Subject(s)
Cysteine Proteases , Trypanosoma brucei brucei , Trypanosoma , Biotin , Fluorescence , Proteomics , Structure-Activity Relationship
16.
Proc Natl Acad Sci U S A ; 116(15): 7288-7297, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30914461

ABSTRACT

USP9X is a conserved deubiquitinase (DUB) that regulates multiple cellular processes. Dysregulation of USP9X has been linked to cancers and X-linked intellectual disability. Here, we report the crystal structure of the USP9X catalytic domain at 2.5-Å resolution. The structure reveals a canonical USP-fold comprised of fingers, palm, and thumb subdomains, as well as an unusual ß-hairpin insertion. The catalytic triad of USP9X is aligned in an active configuration. USP9X is exclusively active against ubiquitin (Ub) but not Ub-like modifiers. Cleavage assays with di-, tri-, and tetraUb chains show that the USP9X catalytic domain has a clear preference for K11-, followed by K63-, K48-, and K6-linked polyUb chains. Using a set of activity-based diUb and triUb probes (ABPs), we demonstrate that the USP9X catalytic domain has an exo-cleavage preference for K48- and endo-cleavage preference for K11-linked polyUb chains. The structure model and biochemical data suggest that the USP9X catalytic domain harbors three Ub binding sites, and a zinc finger in the fingers subdomain and the ß-hairpin insertion both play important roles in polyUb chain processing and linkage specificity. Furthermore, unexpected labeling of a secondary, noncatalytic cysteine located on a blocking loop adjacent to the catalytic site by K11-diUb ABP implicates a previously unreported mechanism of polyUb chain recognition. The structural features of USP9X revealed in our study are critical for understanding its DUB activity. The new Ub-based ABPs form a set of valuable tools to understand polyUb chain processing by the cysteine protease class of DUBs.


Subject(s)
Models, Molecular , Polyubiquitin/chemistry , Ubiquitin Thiolesterase/chemistry , Crystallography, X-Ray , Humans , Polyubiquitin/metabolism , Structure-Activity Relationship , Substrate Specificity , Ubiquitin Thiolesterase/metabolism
17.
Int J Mol Sci ; 23(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35328816

ABSTRACT

Compounds bearing the phosphorus-carbon (P-C) bond have important pharmacological, biochemical, and toxicological properties. Historically, the most notable reaction for the formation of the P-C bond is the Michaelis-Arbuzov reaction, first described in 1898. The classical Michaelis-Arbuzov reaction entails a reaction between an alkyl halide and a trialkyl phosphite to yield a dialkylalkylphosphonate. Nonetheless, deviations from the classical mechanisms and new modifications have appeared that allowed the expansion of the library of reactants and consequently the chemical space of the yielded products. These involve the use of Lewis acid catalysts, green methods, ultrasound, microwave, photochemically-assisted reactions, aryne-based reactions, etc. Here, a detailed presentation of the Michaelis-Arbuzov reaction and its developments and applications in the synthesis of biomedically important agents is provided. Certain examples of such applications include the development of alkylphosphonofluoridates as serine hydrolase inhibitors and activity-based probes, and the P-C containing antiviral and anticancer agents.


Subject(s)
Lewis Acids , Phosphorus , Antiviral Agents , Catalysis , Microwaves
18.
Int J Mol Sci ; 23(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35328685

ABSTRACT

Activity-based protein profiling (ABPP) uses a combination of activity-based chemical probes with mass spectrometry (MS) to selectively characterise a particular enzyme or enzyme class. ABPP has proven invaluable for profiling enzymatic inhibitors in drug discovery. When applied to cell extracts and cells, challenging the ABP-enzyme complex formation with a small molecule can simultaneously inform on potency, selectivity, reversibility/binding affinity, permeability, and stability. ABPP can also be applied to pharmacodynamic studies to inform on cellular target engagement within specific organs when applied to in vivo models. Recently, we established separate high depth and high throughput ABPP (ABPP-HT) protocols for the profiling of deubiquitylating enzymes (DUBs). However, the combination of the two, deep and fast, in one method has been elusive. To further increase the sensitivity of the current ABPP-HT workflow, we implemented state-of-the-art data-independent acquisition (DIA) and data-dependent acquisition (DDA) MS analysis tools. Hereby, we describe an improved methodology, ABPP-HT* (enhanced high-throughput-compatible activity-based protein profiling) that in combination with DIA MS methods, allowed for the consistent profiling of 35-40 DUBs and provided a reduced number of missing values, whilst maintaining a throughput of 100 samples per day.


Subject(s)
Proteomics , Mass Spectrometry/methods , Proteomics/methods , Workflow
19.
Molecules ; 27(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35164107

ABSTRACT

Cysteine cathepsin proteases are found under normal conditions in the lysosomal compartments of cells, where they play pivotal roles in a variety of cellular processes such as protein and lipid metabolism, autophagy, antigen presentation, and cell growth and proliferation. As a consequence, aberrant localization and activity contribute to several pathologic conditions such as a variety of malignancies, cardiovascular diseases, osteoporosis, and other diseases. Hence, there is a resurgence of interest to expand the toolkit to monitor intracellular cathepsin activity and better ascertain their functions under these circumstances. Previous fluorescent activity-based probes (ABPs) that target cathepsins B, L, and S enabled detection of their activity in intact cells as well as non-invasive detection in animal disease models. However, their binding potency is suboptimal compared to the cathepsin inhibitor on which they were based, as the P1 positive charge was capped by a reporter tag. Here, we show the development of an improved cathepsin ABP that has a P1 positive charge by linking the tag on an additional amino acid at the end of the probe. While enhancing potency towards recombinant cathepsins, the new probe had reduced cell permeability due to additional peptide bonds. At a second phase, the probe was trimmed; the fluorophore was linked to an extended carbobenzoxy moiety, leading to enhanced cell permeability and superb detection of cathepsin activity in intact cells. In conclusion, this work introduces a prototype design for the next generation of highly sensitive ABPs that have excellent detection of cellular cathepsin activity.


Subject(s)
Cathepsins/metabolism , Fluorescent Dyes , Molecular Imaging , Animals , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Mice , NIH 3T3 Cells
20.
Angew Chem Int Ed Engl ; 61(28): e202203792, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35460148

ABSTRACT

Photocaged, activity-based ubiquitin (Ub) probes (Ub-ABPs) have been developed for the time-resolved probing of deubiquitinating enzyme (DUB) activities, but many Ub-ABPs are still challenging to photocage because their warheads (e.g. propargylamide (PA) or dehydroalanine (Dha)) are difficult to temporally block and activate. Here, we describe a new C-terminal backbone modification strategy for the construction of photocaged Ub-ABPs in which a light-sensitive group is placed at the backbone amide bond of the Ub Gly75. This strategy enabled the facile generation of cell-permeable photocaged Ub-PA and Dha probes that could be activated to capture DUBs after photo-irradiation, and were used to profile DUBs in cells under specially designed conditions (e.g. in cells experiencing oxidative stress) or DUBs with isopeptide linkage selectivity. This backbone modification strategy is anticipated to provide a general solution for the development of photocaged Ub ABPs bearing any warheads for DUB profiling.


Subject(s)
Ubiquitin , Ubiquitin/chemistry , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL