Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters

Journal subject
Publication year range
1.
Angew Chem Int Ed Engl ; 61(5): e202111462, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34694734

ABSTRACT

In 2007 two of us defined the σ-Complex Assisted Metathesis mechanism (Perutz and Sabo-Etienne, Angew. Chem. Int. Ed. 2007, 46, 2578-2592), that is, the σ-CAM concept. This new approach to reaction mechanisms brought together metathesis reactions involving the formation of a variety of metal-element bonds through partner-interchange of σ-bond complexes. The key concept that defines a σ-CAM process is a single transition state for metathesis that is connected by two intermediates that are σ-bond complexes while the oxidation state of the metal remains constant in precursor, intermediates and product. This mechanism is appropriate in situations where σ-bond complexes have been isolated or computed as well-defined minima. Unlike several other mechanisms, it does not define the nature of the transition state. In this review, we highlight advances in the characterization and dynamic rearrangements of σ-bond complexes, most notably alkane and zincane complexes, but also different geometries of silane and borane complexes. We set out a selection of catalytic and stoichiometric examples of the σ-CAM mechanism that are supported by strong experimental and/or computational evidence. We then draw on these examples to demonstrate that the scope of the σ-CAM mechanism has expanded to classes of reaction not envisaged in 2007 (additional σ-bond ligands, agostic complexes, sp2 -carbon, surfaces). Finally, we provide a critical comparison to alternative mechanisms for metathesis of metal-element bonds.

2.
Chemistry ; 26(17): 3758-3766, 2020 Mar 23.
Article in English | MEDLINE | ID: mdl-31943388

ABSTRACT

Heterobimetallic complexes with inequivalent bridging alkyl chains are very often invoked as key intermediates in many catalytic processes, yet their interception and structural characterization are lacking. Such complexes have been prepared from reactions of the cationic cyclometalated hafnocene [CpPr Cp CH 2 CH 2 CH 2 Hf][B(C6 F5 )4 ] (1) with main group metal alkyls to afford the corresponding hetero-bridged cationic products, [CpPr Cp CH 2 CH 2 ( µ - CH 2 ) Hf(µ-R)E(R)n ][B(C6 F5 )4 ] (E=Al or Zn; R=Me, Et, or iBu). NMR and DFT studies demonstrate that both bridging alkyls establish agostic interactions with Hf, which are appreciably stronger for ethyl rather than methyl groups. Hf-Al and Hf-Zn distances are surprisingly short and only slightly longer than computed Hf-Al or Hf-Zn single bond lengths (2.80 Å). Finally, a reaction of [CpPr Cp CH 2 CH 2 ( µ - CH 2 ) Hf(µ-Me)Zn(Me)][B(C6 F5 )4 ] with excess ZnMe2 yields an unprecedented heterotrimetallic species, [(CpPr )2 Hf(µ-Me)(ZnMe)(µ3 -CH2 )ZnMe][B(C6 F5 )4 ], the detailed structure of which is elucidated by a combination of NMR spectroscopic methods and molecular calculations.

3.
Chemistry ; 26(62): 14130-14136, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-32634253

ABSTRACT

The rare-earth metal complexes Ln(L1 )[N(SiHMe2 )2 ](thf) (Ln=La, Ce, Y; L1 =N,N''-bis(pentafluorophenyl)diethylenetriamine dianion) were synthesized by treating Ln[N(SiHMe2 )2 ]3 (thf)2 with L1 H2 . The lanthanum and cerium derivatives are active catalysts for the hydrosilylation of benzophenone derivatives with HN(SiHMe2 )2 . An amine-exchange reaction was revealed as a key step of the catalytic cycle, in which Ln-Si-H ß-agostic interactions are proposed to promote insertion of the carbonyl moiety into the Si-H bond.

4.
Chemistry ; 25(26): 6591-6599, 2019 May 07.
Article in English | MEDLINE | ID: mdl-30883975

ABSTRACT

The agostic interaction is a ubiquitous phenomenon in catalytic processes and transition-metal complexes, and hyperconjugation has been well recognized as its origin. Yet, recent studies showed that either short-range London dispersion or structural constraints could be the driving force, although proper evaluation of the role of hyperconjugation therein is needed. Herein, a simple variant of valence bond theory was employed to study a few exemplary Ti complexes with α- or ß-agostic interactions and interpret the agostic effect in terms of the steric effect, hyperconjugation, and dispersion. For the complexes [MeTiCl3 (dmpe)] and [MeTiCl3 (dhpe)] with α-agostic interactions, hyperconjugation plays the dominant role with comparable magnitudes in both systems, but dispersion is solely responsible for the stronger agostic interaction in the former compared with the latter. For the complexes [EtTiCl3 (dmpe)] and [EtTiCl3 (dhpe)] with ß-agostic interactions, however, hyperconjugation and dispersion play comparable roles, and the weaker steric repulsion leads to a stronger agostic effect in the former than in the latter. Thus, the present study clarifies the variable and sensitive roles of steric, hyperconjugative, and dispersion interactions in the agostic interaction.

5.
Angew Chem Int Ed Engl ; 58(10): 3203-3207, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30451339

ABSTRACT

Ylide-functionalized phosphine ligands (YPhos) were rationally designed to fit the requirements of Buchwald-Hartwig aminations at room temperature. This ligand class combines a strong electron-donating ability comparable to NHC ligands with high steric demand similar to biaryl phosphines. The active Pd species are stabilized by agostic C-H⋅⋅⋅Pd rather than by Pd-arene interactions. The practical advantage of YPhos ligands arises from their easy and scalable synthesis from widely available, inexpensive starting materials. Benchmark studies showed that YPhos-Pd complexes are superior to the best-known phosphine ligands in room-temperature aminations of aryl chlorides. The utility of the catalysts was demonstrated by the synthesis of various arylamines in high yields within short reaction times.

6.
Chemistry ; 24(19): 4927-4938, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29377308

ABSTRACT

A homologous family of low-coordinate complexes of the formulation trans-[M(2,2'-biphenyl)(PR3 )2 ][BArF4 ] (M=Rh, Ir; R=Ph, Cy, iPr, iBu) has been prepared and extensively structurally characterised. Enabled through a comprehensive set of solution phase (VT 1 H and 31 P NMR spectroscopy) and solid-state (single crystal X-ray diffraction) data, and analysis in silico (DFT-based NBO and QTAIM analysis), the structural features of the constituent agostic interactions have been systematically interrogated. The combined data substantiates the adoption of stronger agostic interactions for the IrIII compared to RhIII complexes and, with respect to the phosphine ligands, in the order PiBu3 >PCy3 >PiPr3 >PPh3 . In addition to these structure-property relationships, the effect of crystal packing on the agostic interactions was investigated in the tricyclohexylphosphine complexes. Compression of the associated cations, through inclusion of a more bulky solvent molecule (1,2-difluorobenzene vs. CH2 Cl2 ) in the lattice or collection of data at very low temperature (25 vs. 150 K), lead to small but statistically significant shortening of the M-H-C distances.

7.
Angew Chem Int Ed Engl ; 57(7): 1786-1791, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29205730

ABSTRACT

Understanding and controlling the aggregation state is germane to alkyllithium chemistry. Lewis base-free alkyllithium compounds normally form tetrahedral tetramers or octahedral hexamers in the solid state with the lithium cations being three-coordinate. We report that the unsupported cyclopropyl derivative 1-(trimethylsilyl)cyclopropyllithium [{µ-c-C(SiMe3 )C2 H4 }Li]4 (1), synthesized by the reduction of 1-(phenylthio)-1-(trimethylsilyl)cyclopropane, crystallizes as a tetramer in the space group I-4 with the two-coordinate lithium atoms forming a square. CC agostic interactions complete the coordination sphere around each lithium. The aggregate is preserved in hydrocarbon solution. Furthermore, CC agostic interactions compete intra- and intermolecularly with Lewis base donation as in the unsaturated dimer of 1-(phenylthio)cyclopropyllithium [Li(thf)2 {µ-c-C(SPh)C2 H4 }2 Li (thf)] (3) which is also fully characterized.

8.
Angew Chem Int Ed Engl ; 57(30): 9520-9523, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-29874400

ABSTRACT

Multinuclear solid-state NMR studies of Cp*2 Sc-R (Cp*=pentamethylcyclopentadienyl; R=Me, Ph, Et) and DFT calculations show that the Sc-Et complex contains a ß-CH agostic interaction. The static central transition 45 Sc NMR spectra show that the quadrupolar coupling constants (Cq ) follow the trend of Ph≈Me>Et, indicating that the Sc-R bond is different in Cp*2 Sc-Et compared to the methyl and phenyl complexes. Analysis of the chemical shift tensor (CST) shows that the deshielding experienced by Cß in Sc-CH2 CH3 is related to coupling between the filled σC-C orbital and the vacant πSc⋯HC* orbital.

9.
Angew Chem Int Ed Engl ; 57(17): 4760-4764, 2018 04 16.
Article in English | MEDLINE | ID: mdl-29512254

ABSTRACT

Agostic interactions between a C-H bond and a transition metal are commonly crucial in catalytic polymerization processes. Herein, a quantitative study of the nature of ß-agostic interactions in a series of systems of importance in C-H bond activation reactions is reported. The analysis, characterized by the use of a coupled-cluster-based energy decomposition scheme, demonstrates that short-range London dispersion between the agostic C-H bond and the metal center plays a fundamental role in affecting the structural stability of these systems, contrary to a widely held view. These results are used to rationalize a series of previously published experimental findings.

10.
Chemistry ; 23(41): 9812-9820, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28444699

ABSTRACT

A series of new bis(σ)borate and agostic complexes of group 7 metals have been synthesized and structurally characterized from various borate ligands, such as trihydrobis(benzothiazol-2-yl)amideborate (Na[(H3 B)bbza]), trihydro(2-aminobenzothiazolyl)borate (Na[(H3 B)abz]), and dihydrobis(2-mercaptopyridyl)borate (Na[(H2 B)mp2 ]) (bbza=bis(benzothiazol-2-yl)amine, abz=2-aminobenzothiazolyl, and mp=2-mercaptopyridyl). Photolysis of [Mn2 (CO)10 ] with Na[(H3 B)bbza] formed bis(σ)borate complex [Mn(CO)3 (µ-H)2 BHNCSC6 H4 (NR)] (1; R=NCSC6 H4 ). Octahedral complex [Re(CO)2 (N3 C2 S2 C12 H8 )2 ] (2) was generated under similar reaction conditions with [Re2 (CO)10 ]. Similarly, when [Mn2 (CO)10 ] was treated with Na[(H3 B)abz], bis(σ)borate complex [Mn(CO)3 (µ-H)2 BH(HN2 CSC6 H4 )] (3) and the agostic complex [Mn(CO)3 (µ-H)BH(HN2 CSC6 H4 )2 ] (4) were formed. To probe the potential formation of agostic complexes of the heavier group 7 metals, we carried out the photolysis of [M2 (CO)10 ] with Na[(H2 B)mp2 ] and found that [M(CO)3 (µ-H)BH(C5 H4 NS)2 ] (5: M=Re; 6: M=Mn) was formed in moderate yield. Complexes 1 and 3 feature a (κ3 -H,H,N) coordination mode, whereas 4, 5, and 6 display both (κ3 -H,N,N) and (κ3 -H,S,S) modes of the corresponding ligands. To investigate the lability of the CO ligands of 1 and 3, we treated the complexes with phosphine ligands that generated novel bis(σ)borate complexes [Mn(µ-H)2 (BHNCSC6 H4 )(NR)(CO)2 PL2 L'] (R=NCSC6 H4 ; 7 a: L=L'=Ph; 7 b: L=Ph, L'=Me) and [Mn(µ-H)2 BHN(NCSC6 H4 )R(CO)2 PL2 L'] (R=NCSC6 H4 ; 8 a: L=L'=Ph; 8 b: L=Ph, L'=Me). Complexes 7 and 8 are structural isomers with different coordination modes of the bbza ligand. In addition, DFT calculations were performed to shed some light on the bonding and electronic structures of these complexes.

11.
Chemistry ; 23(72): 18264-18275, 2017 Dec 22.
Article in English | MEDLINE | ID: mdl-28949073

ABSTRACT

In a quest for efficient precursors for the synthesis of boratrane complexes of late transition metals, we have developed a useful synthetic method using [L'M(µ-Cl)Clx ]2 as precursors (L'=η6 -p-cymene, M=Ru, x=1; L'=COD, M=Rh, x=0 and L'=Cp*, M=Ir or Rh, x=1; COD=1,5-cyclooctadiene, Cp*=η5 -C5 Me5 ). For example, treatment of Na[(H3 B)bbza] or Na[(H2 B)mp2 ] (bbza=bis(benzothiazol-2-yl)amine; mp=2-mercaptopyridyl) with [L'M(µ-Cl)Clx ]2 yielded [(η6 -p-cymene)RuBH{(NCSC6 H4 )(NR)}2 ] (2; R=NCSC6 H4 ), [{N(NCSC6 H4 )2 }RhBH{(NCSC6 H4 )(NR)}2 ] (3; R=NCS-C6 H4 ), [(η6 -p-cymene)RuBH(L)2 ] (5; L=C5 H4 NS), and [Cp*MBH(L)2 ] (6 and 7; L=C5 H4 NS, M=Ir or Rh). In order to delineate the significance of the ligands, we studied the reactivity of [(COD)Rh(µ-Cl)]2 with Na[(H3 B)bbza], which led to the formation of the isomeric agostic complexes [(η4 -COD)Rh(µ-H)BHRh(C14 H8 N3 S2 )3 ], 4 a and 4 b, in parallel to the formation of 16-electron square-pyramidal rhodaboratrane complex 3. Compounds 4 a and 4 b show two different geometries, in which the Rh-B bonds are shorter than in the reported Rh agostic complexes. The new compounds have been characterized in solution by various spectroscopic analyses, and their structural arrangements have been unequivocally established by crystallographic analyses. DFT calculations provide useful insights regarding the stability of these metallaboratrane complexes as well as their M→B bonding interactions.

12.
Chemistry ; 23(7): 1526-1530, 2017 Jan 31.
Article in English | MEDLINE | ID: mdl-27991701

ABSTRACT

Small modifications on the co-ligands of complexes containing two coordinated hydrogen atoms can determine the elongated dihydrogen versus compressed dihydride nature of these species and therefore their chemical behavior. 2,6-diphenylpyridine favors the formation of the osmium(IV) cation [OsH2 (C6 H4 pyPh)(PiPr3 )2 ]+ , whereas 2-phenoxy-6-phenylpyridine, which contains an oxygen atom between the heterocycle and one of the phenyl groups, stabilizes the osmium(II) elongated dihydrogen species [Os(C6 H4 pyOPh)(η2 -H2 )(PiPr3 )2 ]+ . In contrast to the latter, the former shows a marked tendency to undergo reductive elimination of the heterocycle.

13.
Chemistry ; 23(1): 194-205, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27813171

ABSTRACT

We describe the synthesis and the molecular and electronic structures of the complex [Mo2 Me2 {µ-HC(NDipp)2 }2 ] (2; Dipp=2,6-iPr2 C6 H3 ), which contains a dimetallic core with an Mo-Mo quadruple bond and features uncommon four-coordinate geometry and has a fourteen-electron count for each molybdenum atom. The coordination polyhedron approaches a square pyramid, with one of the molybdenum atoms nearly co-planar with the basal square plane, in which the trans coordination position with respect to the Mo-Me bond is vacant. The other three sites are occupied by two trans nitrogen atoms of different amidinate ligands and the methyl group. The second Mo atom occupies the apex of the pyramid and forms an Mo-Mo bond of length 2.080(1) Å, consistent with a quadruple bond. Compound 2 reacts with tetrahydrofuran (THF) and trimethylphosphine to yield the mono-adducts [Mo2 Me(µ-Me){µ-HC(NDipp)2 }2 (L)] (3⋅THF and 3⋅PMe3 , respectively) with one terminal and one bridging methyl group. In contrast, 4-dimethylaminopyridine (dmap) forms the bis-adduct [Mo2 Me2 {µ-HC(NDipp)2 }2 (dmap)2 ] (4), with terminally coordinated methyl groups. Hydrogenolysis of complex 2 leads to the bis(hydride) [Mo2 H2 {µ-HC(NDipp)2 }2 (thf)2 ] (5⋅THF) with elimination of CH4 . Computational, kinetic, and mechanistic studies, which included the use of D2 and of complex 2 labelled with 13 C (99 %) at the Mo-CH3 sites, supported the intermediacy of a methyl-hydride reactive species. A computational DFT analysis of the terminal and bridging coordination of the methyl groups to the Mo≣Mo core is also reported.

14.
Angew Chem Int Ed Engl ; 56(26): 7470-7474, 2017 06 19.
Article in English | MEDLINE | ID: mdl-28481013

ABSTRACT

The first 16 valence electron [bis(NHC)](silylene)Ni0 complex 1, [(TMS L)ClSi:→Ni(NHC)2 ], bearing the acyclic amido-chlorosilylene (TMS L)ClSi: (TMS L=N(SiMe3 )Dipp; Dipp=2,6-Pri2 C6 H4 ) and two NHC ligands (N-heterocyclic carbene=:C[(Pri )NC(Me)]2 ) was synthesized in high yield and structurally characterized. Compound 1 is capable of facile dihydrogen activation under ambient conditions to give the corresponding HSi-NiH complex 2. Most notably, 1 reacts with catechol borane to afford the unprecedented hydroborylene-coordinated (chloro)(silyl)nickel(II) complex 3, {[cat(TMS L)Si](Cl)Ni←:BH(NHC)2 }, via the cleavage of two B-O bonds and simultaneous formation of two Si-O bonds. The mechanism for the formation of 3 was rationalized by means of DFT calculations, which highlight the powerful synergistic effects of the Si:→Ni moiety in the breaking of incredibly strong B-O bonds.

15.
Angew Chem Int Ed Engl ; 56(6): 1614-1618, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28042692

ABSTRACT

A unique Ir complex (tBu NCC P)Ir with the pyridine-phosphine pincer as the sole ligand, featuring a dual agostic interaction between the Ir and two σ C-H bonds from a tBu substituent, has been prepared. This complex exhibits exceptionally high activity and excellent regio- and stereoselectivity for monoisomerization of 1-alkenes to trans-2-alkenes with wide functional-group tolerance. Reactions can be performed in neat reactant on a more than 100 gram scale using 0.005 mol % catalyst loadings with turnover numbers up to 19000.

16.
Angew Chem Int Ed Engl ; 56(6): 1535-1538, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28000376

ABSTRACT

Single-crystal X-ray characterization of cationic (α-diimine)Ni-ethyl and isopropyl ß-agostic complexes, which are key intermediates in olefin polymerization and oligomerization, are presented. The sharp Ni-Cα -Cß angles (75.0(3)° and 74.57(18)°) and short Cα -Cß distances (1.468(7) and 1.487(5) Å) provide unambiguous evidence for a ß-agostic interaction. An inverse equilibrium isotope effect (EIE) for ligand coordination upon cleavage of the agostic bond highlights the weaker bond strength of Ni-H relative to the C-H bond. An Eyring plot for ß-hydride elimination-olefin rotation-reinsertion is constructed from variable-temperature NMR spectra with 13 C-labeled agostic complexes. The enthalpy of activation (ΔH≠ ) for ß-H elimination is 13.2 kcal mol-1 . These results offer important mechanistic insight into two critical steps in polymerization: ligand association upon cleavage of the ß-agostic bonds and chain-migration via ß-H elimination.

17.
Chemistry ; 22(23): 7871-8, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27097988

ABSTRACT

Thermolysis of [Cp*Ru(PPh2 (CH2 )PPh2 )BH2 (L2 )] 1 (Cp*=η(5) -C5 Me5 ; L=C7 H4 NS2 ), with terminal alkynes led to the formation of η(4) -σ,π-borataallyl complexes [Cp*Ru(µ-H)B{R-C=CH2 }(L)2 ] (2 a-c) and η(2) -vinylborane complexes [Cp*Ru(R-C=CH2 )BH(L)2 ] (3 a-c) (2 a, 3 a: R=Ph; 2 b, 3 b: R=COOCH3 ; 2 c, 3 c: R=p-CH3 -C6 H4 ; L=C7 H4 NS2 ) through hydroboration reaction. Ruthenium and the HBCC unit of the vinylborane moiety in 2 a-c are linked by a unique η(4) -interaction. Conversions of 1 into 3 a-c proceed through the formation of intermediates 2 a-c. Furthermore, in an attempt to expand the library of these novel complexes, chemistry of σ-borane complex [Cp*RuCO(µ-H)BH2 L] 4 (L=C7 H4 NS2 ) was investigated with both internal and terminal alkynes. Interestingly, under photolytic conditions, 4 reacts with methyl propiolate to generate the η(4) -σ,π-borataallyl complexes [Cp*Ru(µ-H)BH{R-C=CH2 }(L)] 5 and [Cp*Ru(µ-H)BH{HC=CH-R}(L)] 6 (R=COOCH3 ; L=C7 H4 NS2 ) by Markovnikov and anti-Markovnikov hydroboration. In an extension, photolysis of 4 in the presence of dimethyl acetylenedicarboxylate yielded η(4) -σ,π-borataallyl complex [Cp*Ru(µ-H)BH{R-C=CH-R}(L)] 7 (R=COOCH3 ; L=C7 H4 NS2 ). An agostic interaction was also found to be present in 2 a-c and 5-7, which is rare among the borataallyl complexes. All the new compounds have been characterized in solution by IR, (1) H, (11) B, (13) C NMR spectroscopy, mass spectrometry and the structural types were unequivocally established by crystallographic analysis of 2 b, 3 a-c and 5-7. DFT calculations were performed to evaluate possible bonding and electronic structures of the new compounds.

18.
Chemistry ; 22(27): 9106-10, 2016 Jun 27.
Article in English | MEDLINE | ID: mdl-27123555

ABSTRACT

A MHC6 complex of a platinum group metal with a capped octahedral arrangement of donor atoms around the metal center has been characterized. This osmium compound OsH{κ(2) -C,C-(PhBIm-C6 H4 )}3 , which reacts with HBF4 to afford the 14 e(-) species [Os{κ(2) -C,C-(PhBIm-C6 H4 )}(Ph2 BIm)2 ]BF4 stabilized by two agostic interactions, has been obtained by reaction of OsH6 (PiPr3 )2 with N,N'-diphenylbenzimidazolium chloride ([Ph2 BImH]Cl) in the presence of NEt3 . Its formation takes place through the C,C,C-pincer compound OsH2 {κ(3) -C,C,C-(C6 H4 -BIm-C6 H4 )}(PiPr3 )2 , the dihydrogen derivative OsCl{κ(2) -C,C-(PhBIm-C6 H4 )}(η(2) -H2 )(PiPr3 )2 , and the five-coordinate osmium(II) species OsCl{κ(2) -C,C-(PhBIm-C6 H4 )}(PiPr3 )2 .

19.
Angew Chem Int Ed Engl ; 55(10): 3414-8, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26833571

ABSTRACT

The first agostic interaction in a gold complex is described. The presence of a bonding C-H⋅⋅⋅Au interaction in a cationic "tricoordinate" gold(III) complex was suggested by DFT calculations and was subsequently confirmed by NMR spectroscopy at low temperature. The agostic interaction was analyzed computationally using NBO and QTAIM analyses (NBO=natural bond orbital; QTAIM=quantum theory of atoms in molecules).

20.
Angew Chem Int Ed Engl ; 55(9): 3045-8, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26823229

ABSTRACT

The synthesis and reactivity of a Co(I) pincer complex [Co(ϰ(3) P,CH,P-P(CH)P(NMe) -iPr)(CO)2](+) featuring an η(2)-C(aryl)-H agostic bond is described. This complex was obtained by protonation of the Co(I) complex [Co(PCP(NMe) -iPr)(CO)2]. The Co(III) hydride complex [Co(PCP(NMe) -iPr)(CNtBu)2(H)](+) was obtained upon protonation of [Co(PCP(NMe) -iPr)(CNtBu)2]. Three ways to cleave the agostic C-H bond are presented. First, owing to the acidity of the agostic proton, treatment with pyridine results in facile deprotonation (C-H bond cleavage) and reformation of [Co(PCP(NMe) -iPr)(CO)2]. Second, C-H bond cleavage is achieved upon exposure of [Co(ϰ(3)P,CH,P-P(CH)P(NMe) -iPr)(CO)2](+) to oxygen or TEMPO to yield the paramagnetic Co(II) PCP complex [Co(PCP(NMe) -iPr)(CO)2](+). Finally, replacement of one CO ligand in [Co(ϰ(3) P,CH,P-P(CH)P(NMe) -iPr)(CO)2](+) by CNtBu promotes the rapid oxidative addition of the agostic η(2) -C(aryl)-H bond to give two isomeric hydride complexes of the type [Co(PCP(NMe) -iPr)(CNtBu)(CO)(H)](+).

SELECTION OF CITATIONS
SEARCH DETAIL