Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.226
Filter
Add more filters

Publication year range
1.
Cell ; 184(19): 4953-4968.e16, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34492226

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) is characterized by overproduction of immune mediators, but the role of interferons (IFNs) of the type I (IFN-I) or type III (IFN-III) families remains debated. We scrutinized the production of IFNs along the respiratory tract of COVID-19 patients and found that high levels of IFN-III, and to a lesser extent IFN-I, characterize the upper airways of patients with high viral burden but reduced disease risk or severity. Production of specific IFN-III, but not IFN-I, members denotes patients with a mild pathology and efficiently drives the transcription of genes that protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In contrast, compared to subjects with other infectious or noninfectious lung pathologies, IFNs are overrepresented in the lower airways of patients with severe COVID-19 that exhibit gene pathways associated with increased apoptosis and decreased proliferation. Our data demonstrate a dynamic production of IFNs in SARS-CoV-2-infected patients and show IFNs play opposing roles at distinct anatomical sites.


Subject(s)
COVID-19/pathology , Interferons/metabolism , Respiratory System/virology , Severity of Illness Index , Age Factors , Aging/pathology , COVID-19/genetics , COVID-19/immunology , Epithelial Cells/pathology , Epithelial Cells/virology , Gene Expression Regulation , Humans , Interferons/genetics , Leukocytes/pathology , Leukocytes/virology , Lung/pathology , Lung/virology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , Viral Load
2.
Immunity ; 55(3): 542-556.e5, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35151371

ABSTRACT

Some patients hospitalized with acute COVID-19 suffer respiratory symptoms that persist for many months. We delineated the immune-proteomic landscape in the airways and peripheral blood of healthy controls and post-COVID-19 patients 3 to 6 months after hospital discharge. Post-COVID-19 patients showed abnormal airway (but not plasma) proteomes, with an elevated concentration of proteins associated with apoptosis, tissue repair, and epithelial injury versus healthy individuals. Increased numbers of cytotoxic lymphocytes were observed in individuals with greater airway dysfunction, while increased B cell numbers and altered monocyte subsets were associated with more widespread lung abnormalities. A one-year follow-up of some post-COVID-19 patients indicated that these abnormalities resolved over time. In summary, COVID-19 causes a prolonged change to the airway immune landscape in those with persistent lung disease, with evidence of cell death and tissue repair linked to the ongoing activation of cytotoxic T cells.


Subject(s)
B-Lymphocytes/immunology , COVID-19/immunology , Monocytes/immunology , Respiration Disorders/immunology , Respiratory System/immunology , SARS-CoV-2/physiology , T-Lymphocytes, Cytotoxic/immunology , Adult , Aged , COVID-19/complications , Female , Follow-Up Studies , Humans , Immunity, Cellular , Immunoproteins , Male , Middle Aged , Proteome , Respiration Disorders/etiology , Respiratory System/pathology
3.
Am J Respir Crit Care Med ; 209(6): 683-692, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38055196

ABSTRACT

Rationale: Small airway disease is an important pathophysiological feature of chronic obstructive pulmonary disease (COPD). Recently, "pre-COPD" has been put forward as a potential precursor stage of COPD that is defined by abnormal spirometry findings or significant emphysema on computed tomography (CT) in the absence of airflow obstruction. Objective: To determine the degree and nature of (small) airway disease in pre-COPD using microCT in a cohort of explant lobes/lungs. Methods: We collected whole lungs/lung lobes from patients with emphysematous pre-COPD (n = 10); Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage I (n = 6), II (n = 6), and III/IV (n = 7) COPD; and controls (n = 10), which were analyzed using CT and microCT. The degree of emphysema and the number and morphology of small airways were compared between groups, and further correlations were investigated with physiologic measures. Airway and parenchymal pathology was also validated with histopathology. Measurements and Main Results: The numbers of transitional bronchioles and terminal bronchioles per milliliter of lung were significantly lower in pre-COPD and GOLD stages I, II, and III/IV COPD compared with controls. In addition, the number of alveolar attachments of the transitional bronchioles and terminal bronchioles was also lower in pre-COPD and all COPD groups compared with controls. We did not find any differences between the pre-COPD and COPD groups in CT or microCT measures. The percentage of emphysema on CT showed the strongest correlation with the number of small airways in the COPD groups. Histopathology showed an increase in the mean chord length and a decrease in alveolar surface density in pre-COPD and all GOLD COPD stages compared with controls. Conclusions: Lungs of patients with emphysematous pre-COPD already show fewer small airways and airway remodeling even in the absence of physiologic airway obstruction.


Subject(s)
Asthma , Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Cross-Sectional Studies , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Emphysema/complications , Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/pathology , Lung , Asthma/pathology , X-Ray Microtomography
4.
Am J Respir Crit Care Med ; 210(4): 473-483, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38747674

ABSTRACT

Rationale: Idiopathic pulmonary fibrosis (IPF) affects the subpleural lung but is considered to spare small airways. Micro-computed tomography (micro-CT) studies demonstrated small airway reduction in end-stage IPF explanted lungs, raising questions about small airway involvement in early-stage disease. Endobronchial optical coherence tomography (EB-OCT) is a volumetric imaging modality that detects microscopic features from subpleural to proximal airways. Objectives: In this study, EB-OCT was used to evaluate small airways in early IPF and control subjects in vivo. Methods: EB-OCT was performed in 12 subjects with IPF and 5 control subjects (matched by age, sex, smoking history, height, and body mass index). Subjects with IPF had early disease with mild restriction (FVC: 83.5% predicted), which was diagnosed per current guidelines and confirmed by surgical biopsy. EB-OCT volumetric imaging was acquired bronchoscopically in multiple, distinct, bilateral lung locations (total: 97 sites). IPF imaging sites were classified by severity into affected (all criteria for usual interstitial pneumonia present) and less affected (some but not all criteria for usual interstitial pneumonia present). Bronchiole count and small airway stereology metrics were measured for each EB-OCT imaging site. Measurements and Main Results: Compared with the number of bronchioles in control subjects (mean = 11.2/cm3; SD = 6.2), there was significant bronchiole reduction in subjects with IPF (42% loss; mean = 6.5/cm3; SD = 3.4; P = 0.0039), including in IPF affected (48% loss; mean: 5.8/cm3; SD: 2.8; P < 0.00001) and IPF less affected (33% loss; mean: 7.5/cm3; SD: 4.1; P = 0.024) sites. Stereology metrics showed that IPF-affected small airways were significantly larger, more distorted, and more irregular than in IPF-less affected sites and control subjects. IPF less affected and control airways were statistically indistinguishable for all stereology parameters (P = 0.36-1.0). Conclusions: EB-OCT demonstrated marked bronchiolar loss in early IPF (between 30% and 50%), even in areas minimally affected by disease, compared with matched control subjects. These findings support small airway disease as a feature of early IPF, providing novel insight into pathogenesis and potential therapeutic targets.


Subject(s)
Bronchoscopy , Idiopathic Pulmonary Fibrosis , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Male , Female , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/pathology , Middle Aged , Aged , Bronchoscopy/methods , Lung/diagnostic imaging , Lung/pathology , Case-Control Studies
5.
J Infect Dis ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716762

ABSTRACT

Toll-like receptor 5 (TLR5) signaling plays a key role in antibacterial defenses. We previously showed that respiratory administration of flagellin, a potent TLR5 agonist, in combination with amoxicillin improves the treatment of primary pneumonia or superinfection caused by amoxicillin-sensitive or -resistant Streptococcus pneumoniae. Here, the impact of adjunct flagellin therapy on antibiotic dose/regimen and the selection of antibiotic-resistant S. pneumoniae was investigated using superinfection with isogenic antibiotic-sensitive and -resistant bacteria and population dynamics analysis. Our findings demonstrate that flagellin allows for a 200-fold reduction in the antibiotic dose, achieving the same therapeutic effect observed with antibiotic alone. Adjunct treatment also reduced the selection of antibiotic-resistant bacteria in contrast to the antibiotic monotherapy. Finally, we developed a mathematical model that captured the population dynamics and estimated a 20-fold enhancement immune-modulatory factor on bacterial clearance. This work paves the way for the development of host-directed therapy and refinement of treatment by modeling.

6.
Am J Respir Cell Mol Biol ; 71(3): 282-293, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38691660

ABSTRACT

Single nucelotide polymorphisms (SNPs) at the FAM13A locus are among the most commonly reported risk alleles associated with chronic obstructive pulmonary disease (COPD) and other respiratory diseases; however, the physiological role of FAM13A is unclear. In humans, two major protein isoforms are expressed at the FAM13A locus: "long" and "short," but their functions remain unknown, partly because of a lack of isoform conservation in mice. We performed in-depth characterization of organotypic primary human airway epithelial cell subsets and show that multiciliated cells predominantly express the FAM13A long isoform containing a putative N-terminal Rho GTPase-activating protein (RhoGAP) domain. Using purified proteins, we directly demonstrate the RhoGAP activity of this domain. In Xenopus laevis, which conserve the long-isoform, Fam13a deficiency impaired cilia-dependent embryo motility. In human primary epithelial cells, long-isoform deficiency did not affect multiciliogenesis but reduced cilia coordination in mucociliary transport assays. This is the first demonstration that FAM13A isoforms are differentially expressed within the airway epithelium, with implications for the assessment and interpretation of SNP effects on FAM13A expression levels. We also show that the long FAM13A isoform coordinates cilia-driven movement, suggesting that FAM13A risk alleles may affect susceptibility to respiratory diseases through deficiencies in mucociliary clearance.


Subject(s)
Cilia , GTPase-Activating Proteins , Mucociliary Clearance , Protein Isoforms , Xenopus laevis , Cilia/metabolism , Humans , Animals , Protein Isoforms/metabolism , Protein Isoforms/genetics , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Epithelial Cells/metabolism , Respiratory Mucosa/metabolism , Cells, Cultured
7.
Article in English | MEDLINE | ID: mdl-38860846

ABSTRACT

Stereology, the gold standard of lung morphometry, critically depends on sampling of tissue for analysis. Random sampling approaches guarantee each part of the organ an equal chance of being included in the analysis, hence they guarantee a representative sample of the whole. However, when biological or pathological structures of interest are rare and/or heterogeneously distributed over the whole lung, the random sampling approach can be inefficient or even result in meaningless data. In such cases, a targeted sampling approach can be useful which helps to relate the analytical items to an appropriate reference space. Targeted stereology greatly benefits from the increasing availability of multi-resolution imaging techniques at macroscopic and microscopic level as well as digital tools of segmentation. As such, the present article outlines two basic sampling scenarios: 1. In the first scenario, computed tomography and microscopy are subsequently used to segment the airway/arterial tree and perform stereological measurements on specific branches of the tree. 2. The second scenario deals with heterogeneous distribution of pathological lesions. This type of analysis can be divided into two stages: assessment of lesions of interest (LOI) within the lung and assessment of subcompartments within LOI. Taken together, targeted stereology has a thorough foundation in stereological theory and is not only able to significantly increase the efficiency of the analysis but also to yield new types of information that would be lost with the classical random sampling approach.

8.
Respir Res ; 25(1): 106, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419014

ABSTRACT

BACKGROUND: Small airways disease (SAD) is a major cause of airflow obstruction in COPD patients and has been identified as a precursor to emphysema. Although the amount of SAD in the lungs can be quantified using our Parametric Response Mapping (PRM) approach, the full breadth of this readout as a measure of emphysema and COPD progression has yet to be explored. We evaluated topological features of PRM-derived normal parenchyma and SAD as surrogates of emphysema and predictors of spirometric decline. METHODS: PRM metrics of normal lung (PRMNorm) and functional SAD (PRMfSAD) were generated from CT scans collected as part of the COPDGene study (n = 8956). Volume density (V) and Euler-Poincaré Characteristic (χ) image maps, measures of the extent and coalescence of pocket formations (i.e., topologies), respectively, were determined for both PRMNorm and PRMfSAD. Association with COPD severity, emphysema, and spirometric measures were assessed via multivariable regression models. Readouts were evaluated as inputs for predicting FEV1 decline using a machine learning model. RESULTS: Multivariable cross-sectional analysis of COPD subjects showed that V and χ measures for PRMfSAD and PRMNorm were independently associated with the amount of emphysema. Readouts χfSAD (ß of 0.106, p < 0.001) and VfSAD (ß of 0.065, p = 0.004) were also independently associated with FEV1% predicted. The machine learning model using PRM topologies as inputs predicted FEV1 decline over five years with an AUC of 0.69. CONCLUSIONS: We demonstrated that V and χ of fSAD and Norm have independent value when associated with lung function and emphysema. In addition, we demonstrated that these readouts are predictive of spirometric decline when used as inputs in a ML model. Our topological PRM approach using PRMfSAD and PRMNorm may show promise as an early indicator of emphysema onset and COPD progression.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Cross-Sectional Studies , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Lung/diagnostic imaging , Forced Expiratory Volume/physiology
9.
Nitric Oxide ; 145: 57-59, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38428515

ABSTRACT

Emerging data from clinical studies have shown pro-inflammatory effects associated with e-cigarette use. Fractional exhaled nitric oxide (FeNO) is a biomarker of pulmonary type 2 (T2) inflammation. The effect of chronic e-cigarette use on FeNO is unclear. The aim of this study was to compare FeNO levels in COPD ex-smokers who use e-cigarettes (COPDE + e-cig) to COPDE ex-smokers (COPDE) and COPD current smokers (COPDS). FeNO levels were significantly higher in COPDE + e-cig (median 16.2 ppb) and COPDE (median 18.0 ppb) compared to COPDS (median 7.6 ppb) (p = 0.0003 and p < 0.0001 respectively). There was no difference in FeNO levels between COPDE + e-cig compared to COPDE (p > 0.9). The importance of our results is that electronic cigarette use does not alter the interpretation of FeNO results, and so does not interfere with the use of FeNO as a practical biomarker of T2 inflammation, unlike current cigarette smoking in COPD. Whilst the effect of electronic cigarette use on FeNO levels is not the same as cigarette smoke, this cannot be taken as evidence that electronic cigarettes are harmless. These differential pulmonary effects can be attributed to differences in the chemical composition of the two products.


Subject(s)
Electronic Nicotine Delivery Systems , Pulmonary Disease, Chronic Obstructive , Humans , Nitric Oxide , Breath Tests , Inflammation , Exhalation , Biomarkers
10.
Eur Radiol ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150489

ABSTRACT

OBJECTIVES: Holistic segmentation of CT structural alterations with 3D deep learning has recently been described in cystic fibrosis (CF), allowing the measurement of normalized volumes of airway abnormalities (NOVAA-CT) as an automated quantitative outcome. Clinical validations are needed, including longitudinal and multicenter evaluations. MATERIALS AND METHODS: The validation study was retrospective between 2010 and 2023. CF patients undergoing Elexacaftor/Tezacaftor/Ivacaftor (ETI) or corticosteroids for allergic broncho-pulmonary aspergillosis (ABPA) composed the monocenter ETI and ABPA groups, respectively. Patients from six geographically distinct institutions composed a multicenter external group. All patients had completed CT and pulmonary function test (PFT), with a second assessment at 1 year in case of ETI or ABPA treatment. NOVAA-CT quantified bronchiectasis, peribronchial thickening, bronchial mucus, bronchiolar mucus, collapse/consolidation, and their overall total abnormal volume (TAV). Two observers evaluated the visual Bhalla score. RESULTS: A total of 139 CF patients (median age, 15 years [interquartile range: 13-25]) were evaluated. All correlations between NOVAA-CT to both PFT and Bhalla score were significant in the ETI (n = 60), ABPA (n = 20), and External groups (n = 59), such as the normalized TAV (ρ ≥ 0.76; p < 0.001). In both ETI and ABPA groups, there were significant longitudinal improvements in peribronchial thickening, bronchial mucus, bronchiolar mucus and collapse/consolidation (p ≤ 0.001). An additional reversibility in bronchiectasis volume was quantified with ETI (p < 0.001). Intraclass correlation coefficient of reproducibility was > 0.99. CONCLUSION: NOVAA-CT automated scoring demonstrates validity, reliability and responsiveness for monitoring CF severity over an entire lung and quantifies therapeutic effects on lung structure at CT, such as the volumetric reversibility of airway abnormalities with ETI. CLINICAL RELEVANCE STATEMENT: Normalized volume of airway abnormalities at CT automated 3D outcome enables objective, reproducible, and holistic monitoring of cystic fibrosis severity over an entire lung for management and endpoints during therapeutic trials. KEY POINTS: Visual scoring methods lack sensitivity and reproducibility to assess longitudinal bronchial changes in cystic fibrosis (CF). AI-driven volumetric CT scoring correlates longitudinally to disease severity and reliably improves with Elexacaftor/Tezacaftor/Ivacaftor or corticosteroid treatments. AI-driven volumetric CT scoring enables reproducible monitoring of lung disease severity in CF and quantifies longitudinal structural therapeutic effects.

11.
Inflamm Res ; 73(7): 1239-1252, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38844678

ABSTRACT

BACKGROUND: We have previously shown that asthma-like airways inflammation may be induced by topical exposure to respiratory tract pathogens such as S. pneumoniae (SP) in concert with epithelial alarmins such as IL-33. Details of the pathogenesis of this murine surrogate remain however unexplored. METHODS: Airways inflammation was induced by repeated, intranasal exposure of Il-4-/-, Rag1-/- and Rag2-/-Il2rg-/- mice (in which B lymphocyte IgE switching, adaptive and innate immunity are respectively ablated) as well as wild type mice to inactivated SP, IL-33 or both. Airways pathological changes were analysed, and the subsets and functions of locally accumulated ILC2s investigated by single cell RNA sequencing and flow cytometry. RESULTS: In the presence of IL-33, repeated exposure of the airways to inactivated SP caused marked eosinophil- and neutrophil-rich inflammation and local accumulation of ILC2s, which was retained in the Il-4-/- and Rag1-/- deficient mice but abolished in the Rag2-/-Il2rg-/- mice, an effect partly reversed by adoptive transfer of ILC2s. Single cell sequencing analysis of ILC2s recruited following SP and IL-33 exposure revealed a Klrg1+Ly6a+subset, expressing particularly elevated quantities of the pro-inflammatory cytokine IL-6, type 2 cytokines (IL-5 and IL-13) and MHC class II molecules, promoting type 2 inflammation as well as involved in neutrophil-mediated inflammatory responses. CONCLUSION: Local accumulation of KLRG1+Ly6a+ ILC2s in the lung tissue is a critical aspect of the pathogenesis of airways eosinophilic and neutrophil-rich inflammation induced by repeated exposure to SP in the presence of the epithelial alarmin IL-33.


Subject(s)
Interleukin-33 , Streptococcus pneumoniae , Animals , Interleukin-33/immunology , Interleukin-33/genetics , Streptococcus pneumoniae/immunology , Mice, Inbred C57BL , Mice, Knockout , Lung/immunology , Lung/pathology , Lung/microbiology , Lymphocytes/immunology , Inflammation/immunology , Mice , Female , Alarmins/immunology , Homeodomain Proteins
12.
Am J Respir Crit Care Med ; 208(4): 472-486, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37406359

ABSTRACT

Rationale: Emerging data demonstrate that the smallest conducting airways, terminal bronchioles, are the early site of tissue destruction in chronic obstructive pulmonary disease (COPD) and are reduced by as much as 41% by the time someone is diagnosed with mild (Global Initiative for Chronic Obstructive Lung Disease [GOLD] stage 1) COPD. Objectives: To develop a single-cell atlas that describes the structural, cellular, and extracellular matrix alterations underlying terminal bronchiole loss in COPD. Methods: This cross-sectional study of 262 lung samples derived from 34 ex-smokers with normal lung function (n = 10) or GOLD stage 1 (n = 10), stage 2 (n = 8), or stage 4 (n = 6) COPD was performed to assess the morphology, extracellular matrix, single-cell atlas, and genes associated with terminal bronchiole reduction using stereology, micro-computed tomography, nonlinear optical microscopy, imaging mass spectrometry, and transcriptomics. Measurements and Main Results: The lumen area of terminal bronchioles progressively narrows with COPD severity as a result of the loss of elastin fibers within alveolar attachments, which was observed before microscopic emphysematous tissue destruction in GOLD stage 1 and 2 COPD. The single-cell atlas of terminal bronchioles in COPD demonstrated M1-like macrophages and neutrophils located within alveolar attachments and associated with the pathobiology of elastin fiber loss, whereas adaptive immune cells (naive, CD4, and CD8 T cells, and B cells) are associated with terminal bronchiole wall remodeling. Terminal bronchiole pathology was associated with the upregulation of genes involved in innate and adaptive immune responses, the interferon response, and the degranulation of neutrophils. Conclusions: This comprehensive single-cell atlas highlights terminal bronchiole alveolar attachments as the initial site of tissue destruction in centrilobular emphysema and an attractive target for disease modification.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Humans , Cross-Sectional Studies , X-Ray Microtomography , Elastin , Lung , Asthma/complications
13.
BMC Pulm Med ; 24(1): 22, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195527

ABSTRACT

BACKGROUND: Lymphangioleiomyomatosis (LAM) is a rare neoplastic and cystic pulmonary disease characterized by abnormal proliferation of the so-called LAM cells. Despite the functional obstructive pattern observed in most patients, few studies investigated the morphological changes in the small airways, most of them in patients with severe and advanced LAM undergoing lung transplantation. Understanding the morphological changes in the airways that may occur early in the disease can help us understand the pathophysiology of disease progression and understand the rationale for possible therapeutic approaches, such as the use of bronchodilators. Our study aimed to characterize the morphological alterations of the small airways in patients with LAM with different severities compared to controls, and their association with variables at the pulmonary function test and with LAM Histological Score (LHS). METHODS: Thirty-nine women with LAM who had undergone open lung biopsy or lung transplantation, and nine controls were evaluated. The histological severity of the disease was assessed as LHS, based on the percentage of tissue involvement by cysts and infiltration by LAM cells. The following morphometric parameters were obtained: airway thickness, airway closure index, collagen and airway smooth muscle content, airway epithelial TGF-ß expression, and infiltration of LAM cells and inflammatory cells within the small airway walls. RESULTS: The age of patients with LAM was 39 ± 8 years, with FEV1 and DLCO of 62 ± 30% predicted and 62 ± 32% predicted, respectively. Patients with LAM had increased small airway closure index, collagen and smooth muscle content, and epithelial TGF-beta expression compared with controls. Patients with LAM with the more severe LHS and with greater functional severity (FEV1 ≤ 30%) presented higher thicknesses of the airways. Bronchiolar inflammation was mild; infiltration of the small airway walls by LAM cells was rare. LHS was associated with an obstructive pattern, air trapping, and reduced DLCO, whereas small airway wall thickness was associated with FEV1, FVC, and collagen content. CONCLUSION: LAM is associated with small airway remodelling and partial airway closure, with structural alterations observed at different airway compartments. Functional impairment in LAM is associated with airway remodelling and, most importantly, with histological severity (LHS).


Subject(s)
Lymphangioleiomyomatosis , Humans , Female , Adult , Middle Aged , Airway Remodeling , Biopsy , Collagen , Transforming Growth Factor beta
14.
BMC Pulm Med ; 24(1): 116, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443860

ABSTRACT

BACKGROUND: Little attention has been paid to the pathophysiological changes in the natural history of chronic obstructive pulmonary disease (COPD). The destructions of the small airways were visualized on thoracic micro-computed tomography scan. We investigated whether small airway inflammation (SAI) was the risk for the development of COPD. METHODS: A total of 1062 patients were enrolled and analyzed in the study. The partitioned airway inflammation was determined by exhaled nitric oxide (NO) of FnNO, FeNO50, FeNO200, and calculated CaNOdual. Both FeNO200 and CaNOdual were compared to detect the promising predictor for peripheral airway/alveolar inflammation in COPD. The correlation between exhaled NO and white cell classification was evaluated to determine the inflammation type during the development of COPD. RESULTS: Exhaled NO levels (FnNO, FeNO50, FeNO200, and CaNOdual) were the highest in the COPD group compared with all other groups. Furthermore, compared with controls, exhaled NO levels (FeNO50, FeNO200, and CaNOdual) were also significantly higher in the emphysema, chronic bronchitis, and smoking groups. FeNO200 was found to be a promising predictor for peripheral airway/alveolar inflammation (area under the curve [AUC] of the receiver operating characteristic [ROC] curve, area under the curve [AUC] = 0.841) compared with CaNOdual (AUC ROC = 0.707) in COPD. FeNO200 was the main risk factor (adjusted odds ratio, 2.191; 95% CI, 1.797-2.671; p = 0.002) for the development of COPD. The blood eosinophil and basophil levels were correlated with FeNO50 and FeNO200. CONCLUSION: The complete airway inflammations were shown in COPD, whereas SAI was the main risk factor for the development of COPD, which might relate to eosinophil and basophil levels.


Subject(s)
Bronchitis, Chronic , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , X-Ray Microtomography , Inflammation , Nitric Oxide
15.
BMC Anesthesiol ; 24(1): 44, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38297196

ABSTRACT

BACKGROUND: The aim of this study was to evaluate how anaesthesiologists manage a "cannot intubate, can ventilate" (CI) and "cannot intubate, cannot ventilate" (CICV) scenarios, and how following simulation training will affect their guideline adherence, skills and decision-making immediately after training and 6 months later. METHODS: A prospective controlled study was conducted from July to December 2022. Anaesthesiologists who applied for the continuous medical education course "Difficult Airway Management" were involved in the study. Each volunteer participated in two simulation scenarios (CI, CICV) with structural debriefing after each scenario. After the first simulation round, volunteers were trained in difficult airway management according to DAS guidelines, using the same equipment as during the simulation. The participants repeated the simulation scenarios the day after the training and six months later. The primary and secondary endpoints were compared between three rounds: initial simulation (Group 1), immediately after training (Group 2), and six months after training (Group 3). RESULTS: A total of 24 anaesthesiologists consented to participate in the study and completed the initial survey form. During the first session, 83.3% of participants had at least one major deviation from the DAS protocol. During the first CICV scenario, 79% of participants made at least one deviation from the DAS protocol. The second time after simulation training, significantly better results were achieved: the number of anaesthesiologists, who attempted more than 3 laryngoscopies decreased (OR = 7 [1.8-26.8], p = 0.006 right after training and OR = 3.9 [1.06-14.4], p = 0.035 6 month later); the number, who skipped the supralaryngeal device attempt, call for help and failure to initiate surgical airway also decreased. Simulation training also significantly decreases the time to call for help, cricothyroidotomy initiation time, and mean desaturation time and increases the odds ratio of successful cricothyroidotomy (OR 0.02 [0.003-0.14], p < 0.0001 right after training and OR = OR 0.02 [0.003-0.16] 6 months after training). CONCLUSIONS: Anaesthesiologists usually display major deviations from DAS guidelines while managing CI and CICV scenarios. Simulation training improves their guideline adherence, skills, and decision-making when repeating the simulation immediately after training and 6 months later. STUDY REGISTRATION: NCT05913492, clinicaltrials.gov, 22/06/2023.


Subject(s)
Anesthesiology , Simulation Training , Humans , Airway Management/methods , Anesthesiology/education , Clinical Competence , Intubation, Intratracheal/methods , Prospective Studies
16.
J Paediatr Child Health ; 60(6): 229-239, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38757897

ABSTRACT

AIM: A pilot randomised controlled trial assessed the early application of nasal high-flow (NHF) therapy compared with standard oxygen therapy (SOT), in children aged 0 to 16 years presenting to paediatric emergency departments with acute hypoxaemic respiratory failure (AHRF). The study estimated the need to escalate therapy and hospital length of stay in the NHF group compared with SOT. This sub-study then assessed the subsequent cost-effectiveness. METHODS: A decision tree-based model was developed, alongside the clinical study, to estimate cost-effectiveness, from the healthcare sector perspective. The primary health economics outcome is measured as incremental cost per length of hospital stay avoided. Incremental cost effectiveness ratios (ICER) measuring change in cost per change in length of stay, were obtained for four samples, depending on responder status and obstructive airways disease. These were (1) obstructive and responder, (2) non-obstructive and responder, (3) obstructive and non-responder and (4) non obstructive and non-responder. Bootstrapping of parameters accounted for uncertainty in estimates of cost and outcome. RESULTS: The ICER for patients randomised to NHF, indicated an additional A$367.20 for a lower hospital length of stay (in days) in the non-obstructive/non-responder sample. In the bootstrap sample, this was found to be cost effective above a willingness to pay threshold of A$10 000. The ICER was A$440.86 in the obstructive/responder sample and A$469.56 in the non-obstructive/responder sample - but both resulted in a longer length of stay. The ICER in the obstructive/non-responder sample was A$52 167.76, also with a longer length of stay, mainly impacted by a small sample of severe cases. CONCLUSION: As first-line treatment, NHF is unlikely to be cost-effective compared with SOT, but for non-obstructive patients who required escalation in care (non-obstructive non-responder), NHF is likely to be cost-effective if willingness-to-pay per reduced hospital length of stay is more than A$10 000 per patient.


Subject(s)
Cost-Benefit Analysis , Length of Stay , Oxygen Inhalation Therapy , Respiratory Insufficiency , Humans , Respiratory Insufficiency/therapy , Respiratory Insufficiency/economics , Child , Oxygen Inhalation Therapy/economics , Oxygen Inhalation Therapy/methods , Child, Preschool , Length of Stay/economics , Infant , Male , Adolescent , Female , Pilot Projects , Decision Trees , Infant, Newborn , Acute Disease , Hypoxia/therapy , Hypoxia/economics
17.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34548396

ABSTRACT

Elevated levels of MUC5AC, one of the major gel-forming mucins in the lungs, are closely associated with chronic obstructive lung diseases such as chronic bronchitis and asthma. It is not known, however, how the structure and/or gel-making properties of MUC5AC contribute to innate lung defense in health and drive the formation of stagnant mucus in disease. To understand this, here we studied the biophysical properties and macromolecular assembly of MUC5AC compared to MUC5B. To study each native mucin, we used Calu3 monomucin cultures that produced MUC5AC or MUC5B. To understand the macromolecular assembly of MUC5AC through N-terminal oligomerization, we expressed a recombinant whole N-terminal domain (5ACNT). Scanning electron microscopy and atomic force microscopy imaging indicated that the two mucins formed distinct networks on epithelial and experimental surfaces; MUC5B formed linear, infrequently branched multimers, whereas MUC5AC formed tightly organized networks with a high degree of branching. Quartz crystal microbalance-dissipation monitoring experiments indicated that MUC5AC bound significantly more to hydrophobic surfaces and was stiffer and more viscoelastic as compared to MUC5B. Light scattering analysis determined that 5ACNT primarily forms disulfide-linked covalent dimers and higher-order oligomers (i.e., trimers and tetramers). Selective proteolytic digestion of the central glycosylated region of the full-length molecule confirmed that MUC5AC forms dimers and higher-order oligomers through its N terminus. Collectively, the distinct N-terminal organization of MUC5AC may explain the more adhesive and unique viscoelastic properties of branched, highly networked MUC5AC gels. These properties may generate insight into why/how MUC5AC forms a static, "tethered" mucus layer in chronic muco-obstructive lung diseases.


Subject(s)
Epithelial Cells/metabolism , Mucin 5AC/chemistry , Mucin 5AC/metabolism , Mucin-5B/chemistry , Mucin-5B/metabolism , Respiratory Mucosa/metabolism , Cells, Cultured , Epithelial Cells/cytology , Humans , Respiratory Mucosa/cytology
18.
COPD ; 21(1): 2394129, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39221567

ABSTRACT

Chest CT provides a way to quantify pulmonary airway and vascular tree measurements. In patients with COPD, CT airway measurement differences in females are concomitant with worse quality-of-life and other outcomes. CT total airway count (TAC), airway lumen area (LA), and wall thickness (WT) also differ in females with long-COVID. Our objective was to evaluate CT airway and pulmonary vascular and quality-of-life measurements in females with COPD as compared to ex-smokers and patients with long-COVID. Chest CT was acquired 3-months post-COVID-19 infection in females with long-COVID for comparison with the same inspiratory CT in female ex-smokers and COPD patients. TAC, LA, WT, and pulmonary vascular measurements were quantified. Linear regression models were adjusted for confounders including age, height, body-mass-index, lung volume, pack-years and asthma diagnosis. Twenty-one females (53 ± 14 years) with long-COVID, 17 female ex-smokers (69 ± 9 years) and 13 female COPD (67 ± 6 years) patients were evaluated. In the absence of differences in quality-of-life scores, females with long-COVID reported significantly different LA (p = 0.006) compared to ex-smokers but not COPD (p = 0.7); WT% was also different compared to COPD (p = 0.009) but not ex-smokers (p = 0.5). In addition, there was significantly greater pulmonary small vessel volume (BV5) in long-COVID as compared to female ex-smokers (p = 0.045) and COPD (p = 0.003) patients and different large (BV10) vessel volume as compared to COPD (p = 0.03). In females with long-COVID and highly abnormal quality-of-life scores, there was CT evidence of airway remodelling, similar to ex-smokers and patients with COPD, but there was no evidence of pulmonary vascular remodelling.Clinical Trial Registration: www.clinicaltrials.gov NCT05014516 and NCT02279329.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Quality of Life , Tomography, X-Ray Computed , Humans , Female , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/physiopathology , COVID-19/diagnostic imaging , COVID-19/complications , Middle Aged , Aged , Lung/diagnostic imaging , Lung/blood supply , Adult , Ex-Smokers , SARS-CoV-2
19.
J Allergy Clin Immunol ; 152(4): 835-840, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37531979

ABSTRACT

The article discusses the historical evolution of asthma treatment and highlights recent advancements in personalized medicine, specifically the use of biologics in severe asthma therapy and its potential combination with allergen immunotherapy (AIT). One of the major breakthroughs of biologics is their potential effect on airway remodeling, a crucial aspect of asthma chronicity. The article introduces the concept of disease-modifying antiasthmatic drugs, which aim to modify the course of asthma and possibly modulate or prevent airway remodeling. Furthermore, the critical importance of patient-centered outcome measures to evaluate the efficacy and effectiveness of asthma treatments is emphasized, with the innovative concept of asthma remission introduced as a potential outcome. Recent studies suggest that AIT can be used as an additional therapy to biologic agents for the treatment of allergic asthma. The combination of these treatments has been shown to induce improved clinical outcomes. However, AIT is actually not recommended for use in patients with severe asthma, but encouraging results from studies investigating the combined use of AIT and biologics indicate a novel approach to exploring these treatment modalities. In conclusion, the introduction of biologics and AIT has changed the scenario of respiratory allergy treatment, from a "one size fits all" approach to embracing "individual treatments."

20.
Genes Dev ; 30(11): 1253-4, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27298333

ABSTRACT

Multiciliogenesis is essential for the function of different epithelia, and its failure results in brain defects, respiratory diseases, and infertility. In this issue of Genes & Development, Nemajerova and colleagues (pp. 1300-1312) reveal the p53 family member and p73 isoform TAp73 as a transcription factor dictating the differentiation of multiciliated cells. Their findings provide the long-awaited unifying explanation for the diverse phenotypes of the p73 knockout mice.


Subject(s)
Nuclear Proteins/genetics , Tumor Protein p73 , Animals , Cell Differentiation , DNA-Binding Proteins/genetics , Phenotype , Transcription Factors/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL