Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 295
Filter
Add more filters

Publication year range
1.
J Hepatol ; 80(2): 268-281, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37939855

ABSTRACT

BACKGROUND & AIMS: Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies. METHODS: Cholestasis was induced by bile duct ligation (BDL) in mice. Bile flux in kidneys and livers was visualized by intravital imaging, supported by MALDI mass spectrometry imaging and liquid chromatography-tandem mass spectrometry. The effect of AS0369, a systemically bioavailable apical sodium-dependent bile acid transporter (ASBT) inhibitor, was evaluated by intravital imaging, RNA-sequencing, histological, blood, and urine analyses. Translational relevance was assessed in kidney biopsies from patients with CN, mice with a humanized bile acid (BA) spectrum, and via analysis of serum BAs and KIM-1 (kidney injury molecule 1) in patients with liver disease and hyperbilirubinemia. RESULTS: Proximal tubular epithelial cells (TECs) reabsorbed and enriched BAs, leading to oxidative stress and death of proximal TECs, casts in distal tubules and collecting ducts, peritubular capillary leakiness, and glomerular cysts. Renal ASBT inhibition by AS0369 blocked BA uptake into TECs and prevented kidney injury up to 6 weeks after BDL. Similar results were obtained in mice with humanized BA composition. In patients with advanced liver disease, serum BAs were the main determinant of KIM-1 levels. ASBT expression in TECs was preserved in biopsies from patients with CN, further highlighting the translational potential of targeting ASBT to treat CN. CONCLUSIONS: BA enrichment in proximal TECs followed by oxidative stress and cell death is a key early event in CN. Inhibiting renal ASBT and consequently BA enrichment in TECs prevents CN and systemically decreases BA concentrations. IMPACT AND IMPLICATIONS: Cholemic nephropathy (CN) is a severe complication of cholestasis and an unmet clinical need. We demonstrate that CN is triggered by the renal accumulation of bile acids (BAs) that are considerably increased in the systemic blood. Specifically, the proximal tubular epithelial cells of the kidney take up BAs via the apical sodium-dependent bile acid transporter (ASBT). We developed a therapeutic compound that blocks ASBT in the kidneys, prevents BA overload in tubular epithelial cells, and almost completely abolished all disease hallmarks in a CN mouse model. Renal ASBT inhibition represents a potential therapeutic strategy for patients with CN.


Subject(s)
Carrier Proteins , Cholestasis , Kidney Diseases , Liver Diseases , Membrane Glycoproteins , Organic Anion Transporters, Sodium-Dependent , Symporters , Humans , Mice , Animals , Cholestasis/complications , Cholestasis/metabolism , Kidney/metabolism , Symporters/metabolism , Bile Acids and Salts/metabolism , Liver/metabolism , Bile Ducts/metabolism , Liver Diseases/metabolism , Sodium
2.
Toxicol Appl Pharmacol ; 489: 116991, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871090

ABSTRACT

Liver fibrosis is considered an epidemic health problem due to different insults that lead to death. Dapagliflozin (DAPA), a sodium-glucose cotransporter-2 (SGLT2) inhibitor, is one of the newer anti-diabetic drugs used to manage type 2 diabetes mellitus (T2DM). DAPA exerted beneficial effects in many human and rat models due to its antioxidant, anti-inflammatory and antifibrotic activities. AIM: Due to previously reported capabilities related to DAPA, we designed this study to clarify the beneficial role of DAPA in liver fibrosis triggered by common bile duct ligation (CBL) in male rats. METHODS: For 14 or 28 days after CBL procedures, DAPA was administered to the rats orally at a dose of 10 mg/kg once daily. The effects of DAPA were evaluated by assaying liver enzymes, hepatic oxidant/antioxidant parameters, serum levels of tumor necrotic factor alpha (TNF-α), and AMP-activated protein kinase (AMPK). In addition, we measured the hepatic expression of fibrosis regulator-related genes along with evaluating liver histological changes. KEY FINDINGS: DAPA successfully decreased hepatic enzymes and malondialdehyde levels, increased superoxide dismutase activity, elevated catalase levels, decreased serum levels of TNF-α, elevated serum levels of AMPK, decreased liver hydroxyproline content, upregulated Sirt1/PGC1α/FoxO1 liver gene expressions, down-regulated fibronectin-1 (Fn-1), collagen-1 genes in liver tissues, and improved the damaged liver tissues. Deteriorated biochemical parameters and histological liver insults associated with CBL were more pronounced after 28 days, but DAPA administration for 14 and 28 days showed significant improvement in most parameters and reflected positively in the histological structures of the liver. SIGNIFICANCE: The significance of this study lies in the observation that DAPA mitigated CBL-induced liver fibrosis in rats, most likely due to its antioxidant, anti-inflammatory, and antifibrotic effects. These results suggest that DAPA's beneficial impact on liver fibrosis might be attributed to its interaction with the Sirt1/AMPK/PGC1α/FoxO1 pathway, indicating a potential mechanistic action for future exploration.


Subject(s)
AMP-Activated Protein Kinases , Benzhydryl Compounds , Common Bile Duct , Glucosides , Liver Cirrhosis , Liver , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Male , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Glucosides/pharmacology , Glucosides/therapeutic use , AMP-Activated Protein Kinases/metabolism , Ligation , Benzhydryl Compounds/pharmacology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Rats , Liver/drug effects , Liver/pathology , Liver/metabolism , Common Bile Duct/surgery , Signal Transduction/drug effects , Rats, Wistar , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Antifibrotic Agents/pharmacology , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Forkhead Box Protein O1
3.
Eur J Clin Invest ; 54(8): e14212, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38591651

ABSTRACT

BACKGROUND: Bone morphogenetic protein 9 (BMP9) is a hepatokine that plays a pivotal role in the progression of liver diseases. Moreover, an increasing number of studies have shown that BMP9 is associated with hepatopulmonary syndrome (HPS), but its role in HPS is unclear. Here, we evaluated the influence of CBDL on BMP9 expression and investigated potential mechanisms of BMP9 signalling in HPS. METHODS: We profiled the circulating BMP9 levels in common bile duct ligation-induced HPS rat model, and then investigated the effects and mechanisms of HPS rat serum on pulmonary vascular endothelial dysfunction in rat model, as well as in primarily cultured rat pulmonary microvascular endothelial cells. RESULTS: Our data revealed that circulating BMP9 levels were significantly increased in the HPS rats compared to control group. Besides, the elevated BMP9 in HPS rat serum was not only crucial for promoting endothelial cell proliferation and tube formation through the activin receptor-like kinase1 (ALK1)-Endoglin-Smad1/5/9 pathway, but also important for accumulation of monocytes. Treatments with ALK1-Fc or silencing ALK1 expression to inhibit the BMP9 signalling pathway effectively eliminated these effects. In agreement with these observations, increased circulating BMP9 was associated with an increase in lung vessel density and accumulation of pro-angiogenic monocytes in the microvasculature in HPS rats. CONCLUSIONS: This study provided evidence that elevated circulating BMP9, secreted from the liver, promote pulmonary angiogenesis in HPS rats via ALK1-Endoglin-Smad1/5/9 pathway. In addition, BMP9-regulated pathways are also involved in accumulation of pro-angiogenic monocytes in the pulmonary microvasculature in HPS rats.


Subject(s)
Activin Receptors, Type II , Endoglin , Growth Differentiation Factor 2 , Hepatopulmonary Syndrome , Lung , Neovascularization, Pathologic , Signal Transduction , Smad1 Protein , Animals , Hepatopulmonary Syndrome/metabolism , Growth Differentiation Factor 2/metabolism , Rats , Activin Receptors, Type II/metabolism , Lung/metabolism , Male , Smad1 Protein/metabolism , Endoglin/metabolism , Neovascularization, Pathologic/metabolism , Endothelial Cells/metabolism , Disease Models, Animal , Smad5 Protein/metabolism , Rats, Sprague-Dawley , Cell Proliferation , Common Bile Duct , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Monocytes/metabolism , Angiogenesis , Activin Receptors
4.
J Biochem Mol Toxicol ; 38(8): e23788, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39087918

ABSTRACT

In this study, we evaluated the hepatoprotective effects of astaxanthin, a natural carotenoid, against the cholestatic liver fibrosis induced by bile duct ligation (BDL). Toward this end, male rats were subjected to BDL and treated with astaxanthin for 35 days. Afterwards, their serum and liver biochemical factors were assessed. Also, histopathological and immunohistochemical analyses were performed to determine the fibrosis and the expression levels of alpha-smooth muscle actin (α-SMA) and transforming growth factor beta (TGF-ß1) in the liver tissue. Based on the results, BDL caused a significant increase in liver enzyme levels, blood lipids, and bilirubin, while decreasing the activity of superoxide dismutase(SOD), catalase (CAT), and glutathione (GSH) enzymes. Also, in the BDL rats, hepatocyte necrosis, infiltration of inflammatory lymphocytes, and hyperplasia of bile ducts were detected, along with a significant increase in α-SMA and TGF-ß1 expression. Astaxanthin, however, significantly prevented the BDL's detrimental effects. In all, 10 mg/kg of this drug maintained the bilirubin and cholesterol serum levels of BDL rats at normal levels. It also reduced the liver enzymes' activity and serum lipids, while increasing the SOD, CAT, and GSH activity in BDL rats. The expression of α-SMA and TGF-ß1 in the BDL rats treated with 10 mg/kg of astaxanthin was moderate (in 34%-66% of cells) and no considerable cholestatic fibrosis was observed in this group. However, administrating the 20 mg/kg of astaxanthin was not effective in this regard. These findings showed that astaxanthin could considerably protect the liver from cholestatic damage by improving the biochemical features and regulating the expression of related proteins.


Subject(s)
Bile Ducts , Cholestasis , Liver Cirrhosis , Rats, Wistar , Xanthophylls , Animals , Xanthophylls/pharmacology , Xanthophylls/therapeutic use , Male , Rats , Cholestasis/pathology , Cholestasis/metabolism , Cholestasis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/prevention & control , Ligation , Bile Ducts/surgery , Liver/drug effects , Liver/pathology , Liver/metabolism , Transforming Growth Factor beta1/metabolism
5.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338821

ABSTRACT

Acute-on-chronic liver failure (ACLF) is associated with increased mortality. Specific therapy options are limited. Hypoxia-inducible factor 1 alpha (HIF-1α) has been linked to the pathogenesis of chronic liver disease (CLD), but the role of HIF-1α in ACLF is poorly understood. In the current study, different etiologies of CLD and precipitating events triggering ACLF were used in four rodent models. HIF-1α expression and the intracellular pathway of HIF-1α induction were investigated using real-time quantitative PCR. The results were verified by Western blotting and immunohistochemistry for extrahepatic HIF-1α expression using transcriptome analysis. Exploratory immunohistochemical staining was performed to assess HIF-1α in human liver tissue. Intrahepatic HIF-1α expression was significantly increased in all animals with ACLF, regardless of the underlying etiology of CLD or the precipitating event. The induction of HIF-1α was accompanied by the increased mRNA expression of NFkB1 and STAT3 and resulted in a marked elevation of mRNA levels of its downstream genes. Extrahepatic HIF-1α expression was not elevated. In human liver tissue samples, HIF-1α expression was elevated in CLD and ACLF. Increased intrahepatic HIF-1α expression seems to play an important role in the pathogenesis of ACLF, and future studies are pending to investigate the role of therapeutic HIF inhibitors in ACLF.


Subject(s)
Acute-On-Chronic Liver Failure , Hypoxia-Inducible Factor 1, alpha Subunit , Animals , Humans , Acute-On-Chronic Liver Failure/etiology , Acute-On-Chronic Liver Failure/metabolism , Forecasting , Hypoxia-Inducible Factor 1 , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , RNA, Messenger/metabolism
6.
Toxicol Mech Methods ; : 1-8, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38685856

ABSTRACT

Liver fibrosis is a common pathological process in the progression of several chronic liver diseases to cirrhosis and hepatocellular carcinoma. Therefore, the development of medications that can repress the progress of liver fibrosis is essential. We discovered that initially, 12ß-(m-methyl-benzoyl)-11,12-dihydro oleanolic acid (12d-OA), a farnesoid X receptor (FXR) modulator, possessed potential anti-fibrotic properties. Through an in-depth study, we revealed that 12d-OA not only inhibited the expression of fibrogenic markers in the LX-2 cells and HSC-T6 cells but also exhibited significant protective effects against liver injury and liver fibrosis in bile duct ligation (BDL) rats. Further exploration of its molecular mechanism indicated that 12d-OA exerted antifibrotic activity by inhibiting the extracellular signal-regulated kinase (ERK)/stress-activated protein kinase (p38) signaling pathways. Consequently, the great effects of 12d-OA in vitro and in vivo suggest that it may be a good candidate for liver fibrosis.

7.
J Neuroinflammation ; 20(1): 121, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37217942

ABSTRACT

BACKGROUND: Hepatic encephalopathy-induced hyperammonemia alters astrocytic glutamate metabolism in the brain, which is involved in cognitive decline. To identify specific therapeutic strategies for the treatment of hepatic encephalopathy, various molecular signaling studies, such as non-coding RNA functional study, have been conducted. However, despite several reports of circular RNAs (circRNAs) in the brain, few studies of circRNAs in hepatic encephalopathy-induced neuropathophysiological diseases have been conducted. METHODS: In this study, we performed RNA sequencing to identify whether the candidate circRNA cirTmcc1 is specifically expressed in the brain cortex in a bile duct ligation (BDL) mouse model of hepatic encephalopathy. RESULTS: Based on transcriptional and cellular analysis, we investigated the circTmcc1-dysregulation-induced changes in the expression of several genes that are associated with intracellular metabolism and astrocyte function. We found that the circTmcc1 binds with the NF-κB p65-CREB transcriptional complex and regulates the expression of the astrocyte transporter EAAT2. Furthermore, circTmcc1 contributed to the secretion of proinflammatory mediators and glutamate metabolism in astrocytes and subsequently modulated an improvement in spatial memory by mediating neuronal synaptic plasticity. CONCLUSIONS: Thus, circTmcc1 may be a promising circRNA candidate for targeted interventions to prevent and treat the neuropathophysiological complications that occur due to hepatic encephalopathy.


Subject(s)
Hepatic Encephalopathy , NF-kappa B , RNA, Circular , Animals , Mice , Astrocytes/metabolism , Bile Ducts/metabolism , Disease Models, Animal , Glutamates/metabolism , Hepatic Encephalopathy/etiology , Ligation/adverse effects , NF-kappa B/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Spatial Memory
8.
Scand J Gastroenterol ; 58(12): 1474-1483, 2023.
Article in English | MEDLINE | ID: mdl-37452479

ABSTRACT

Disturbance in the production and excretion of bile acid causes cholestatic liver disease. Liver cirrhosis is a disease that occurs if cholestasis continues. This study evaluated the protective effect of gallic acid (GA) on liver damage caused by biliary cirrhosis. Rats were randomly divided into 4 groups, each with 8 subjects: 1) control, 2) BDL, 3) BDL + GA 20, and 4) BDL + GA 30. The rats were anesthetized 28 days after the BDL, followed by collecting their blood and excising their liver. Their serum was used to measure liver enzymes, and the liver was used for biochemical analysis, gene expression, and histopathological analysis. Serum levels of liver enzymes, total bilirubin, liver Malondialdehyde level (MDA), expression of inflammatory cytokines and caspase-3, necrosis of hepatocytes, bile duct proliferation, lymphocytic infiltration, and liver fibrosis showed an increase in the BDL group compared to the control group (p < 0.05). In addition, BDL decreased the activity of liver antioxidant enzymes and glutathione (GSH) levels compared to the control group (p < 0.05). The groups receiving GA indicated a decrease in liver enzymes, total bilirubin, MDA, the expression of inflammatory cytokines and caspase-3, and a reduction in liver tissue damage compared to the BDL group (p < 0.05). The level of GSH in the BDL + GA 20 group showed a significant increase compared to the BDL group (p < 0.05). Moreover, it was found that GA, with its anti-fibrotic and anti-inflammatory properties, reduces liver damage caused by biliary cirrhosis.


Subject(s)
Cholestasis , Liver Cirrhosis, Biliary , Liver Diseases , Humans , Rats , Animals , Caspase 3/metabolism , Caspase 3/pharmacology , Gallic Acid/pharmacology , Gallic Acid/therapeutic use , Gallic Acid/metabolism , Liver Cirrhosis, Biliary/etiology , Liver/pathology , Liver Cirrhosis/etiology , Liver Cirrhosis/pathology , Cholestasis/pathology , Bile Ducts/surgery , Bile Ducts/pathology , Oxidative Stress , Liver Diseases/pathology , Glutathione/metabolism , Glutathione/pharmacology , Bilirubin , Cytokines/metabolism , Ligation
9.
J Biochem Mol Toxicol ; 37(7): e23338, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37211724

ABSTRACT

Liver fibrosis is a grievous global challenge, where hepatic stellate cells (HSCs) activation is a paramount step. This study analyzed the mechanism of Tß4 in ameliorating liver fibrosis via the MAPK/NF-κB pathway. The liver fibrosis mouse models were established via bile duct ligation (BDL) and verified by HE and Masson staining. TGF-ß1-induced activated LX-2 cells were employed in vitro experiments. Tß4 expression was determined using RT-qPCR, HSC activation markers were examined using Western blot analysis, and ROS levels were tested via DCFH-DA kits. Cell proliferation, cycle, and migration were examined by CCK-8, flow cytometry, and Transwell assays, respectively. Effects of Tß4 on liver fibrosis, HSC activation, ROS production, and HSC growth were analyzed after transfection of constructed Tß4-overexpressing lentiviral vectors. MAPK/NF-κB-related protein levels were tested using Western blotting and p65 expression in the nucleus was detected through immunofluorescence. Regulation of MAPK/NF-κB pathway in TGF-ß1-induced LX-2 cells was explored by adding MAPK activator U-46619 or inhibitor SB203580. Furthermore, its regulating in liver fibrosis was verified by treating BDL mice overexpressing Tß4 with MAPK inhibitor or activator. Tß4 was downregulated in BDL mice. Tß4 overexpression inhibited liver fibrosis. In TGF-ß1-induced fibrotic LX-2 cells, Tß4 was reduced and cell migration and proliferation were enhanced with elevated ROS levels, while Tß4 overexpression suppressed cell migration and proliferation. Tß4 overexpression blocked the MAPK/NF-κB pathway activation by reducing ROS production, thus inhibiting liver fibrosis in TGF-ß1 induced LX-2 cells and BDL mice. Tß4 ameliorates liver fibrosis by impeding the MAPK/NF-κB pathway activation.


Subject(s)
NF-kappa B , Transforming Growth Factor beta1 , Animals , Mice , Hepatic Stellate Cells , Liver/metabolism , Liver Cirrhosis/chemically induced , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta1/metabolism
10.
Metab Brain Dis ; 38(4): 1167-1176, 2023 04.
Article in English | MEDLINE | ID: mdl-36807082

ABSTRACT

Large evidence has shown that cholestasis has a wide-range of deleterious effects on brain function, and also, on neurocognitive functions including learning and memory. On the other hand, crocin (derived from Crocus sativus) is a medicinal natural compound that induces neuroprotective and precognitive effects. In this study, we aimed to evaluate the effect of crocin on spatial learning and memory in cholestatic rats with respect to the level of mitochondrial transcriptional factor A (TFAM), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), catalase (CAT), and superoxide dismutase (SOD) in the hippocampus of male Wistar rats. Bile duct ligation (BDL) was used to induce cholestasis. Y-maze apparatus was used to assess spatial memory performance and real-time PCR was used to assess TFAM and PGC-1α gene expression. Also, crocin was injected intraperitoneal at the doses of 15, 20, and 30 mg/kg for thirty days. The results showed that BDL impaired spatial memory in rats. BDL also decreased SOD, TFAM, and PGC-1α level. In addition, crocin partially reversed the impairment effect of BDL on spatial memory. Crocin (30 mg/kg) also reversed the effect of BDL on SOD, TFAM, and PGC-1α. Of note, the effect of BDL on CAT activity was controversial. It seems that BDL can increase CAT activity. In addition, crocin (30 mg/kg) reversed the enhancement of CAT following BDL to its control level. In conclusion, crocin may induce a significant neuroprotective effect on cholestasis-induced memory impairment.


Subject(s)
Cholestasis , Spatial Memory , Animals , Male , Rats , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Catalase/metabolism , Cholestasis/complications , Cholestasis/drug therapy , Hippocampus/metabolism , Memory Disorders/drug therapy , Memory Disorders/etiology , Memory Disorders/metabolism , Rats, Wistar , Superoxide Dismutase/metabolism , Transcription Factors/metabolism
11.
Metab Brain Dis ; 38(6): 1999-2012, 2023 08.
Article in English | MEDLINE | ID: mdl-37148431

ABSTRACT

Chronic liver disease (CLD) is a serious condition where various toxins present in the blood affect the brain leading to type C hepatic encephalopathy (HE). Both adults and children are impacted, while children may display unique vulnerabilities depending on the affected window of brain development.We aimed to use the advantages of high field proton Magnetic Resonance Spectroscopy (1H MRS) to study longitudinally the neurometabolic and behavioural effects of Bile Duct Ligation (animal model of CLD-induced type C HE) on rats at post-natal day 15 (p15) to get closer to neonatal onset liver disease. Furthermore, we compared two sets of animals (p15 and p21-previously published) to evaluate whether the brain responds differently to CLD according to age onset.We showed for the first time that when CLD was acquired at p15, the rats presented the typical signs of CLD, i.e. rise in plasma bilirubin and ammonium, and developed the characteristic brain metabolic changes associated with type C HE (e.g. glutamine increase and osmolytes decrease). When compared to rats that acquired CLD at p21, p15 rats did not show any significant difference in plasma biochemistry, but displayed a delayed increase in brain glutamine and decrease in total-choline. The changes in neurotransmitters were milder than in p21 rats. Moreover, p15 rats showed an earlier increase in brain lactate and a different antioxidant response. These findings offer tentative pointers as to which neurodevelopmental processes may be impacted and raise the question of whether similar changes might exist in humans but are missed owing to 1H MRS methodological limitations in field strength of clinical magnet.


Subject(s)
Hepatic Encephalopathy , Liver Diseases , Humans , Adult , Child , Rats , Animals , Hepatic Encephalopathy/metabolism , Glutamine/metabolism , Magnetic Resonance Spectroscopy , Liver Diseases/metabolism , Brain/metabolism , Lactic Acid/metabolism
12.
Int J Mol Sci ; 24(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37511114

ABSTRACT

The effect of liver cirrhosis on vascular remodeling in vivo remains unknown. Therefore, this study investigates the influence of cholestatic liver cirrhosis on carotid arterial remodeling. A total of 79 male Sprague Dawley rats underwent bile duct ligation (cirrhotic group) or sham surgery (control group) and 28 days later left carotid artery balloon dilatation; 3, 7, 14 and 28 days after balloon dilatation, the rats were euthanized and carotid arteries were harvested. Histological sections were planimetrized, cell counts determined, and systemic inflammatory parameters measured. Up to day 14 after balloon dilatation, both groups showed a comparable increase in neointima area and degree of stenosis. By day 28, however, both values were significantly lower in the cirrhotic group (% stenosis: 20 ± 8 vs. 42 ± 10, p = 0.010; neointimal area [mm2]: 0.064 ± 0.025 vs. 0.138 ± 0.025, p = 0.024). Simultaneously, cell density in the neointima (p = 0.034) and inflammatory parameters were significantly higher in cirrhotic rats. This study demonstrates that cholestatic liver cirrhosis in rats substantially increases neointimal cell consolidation between days 14 and 28. Thereby, consolidation proved important for the degree of stenosis. This may suggest that patients with cholestatic cirrhosis are at lower risk for restenosis after coronary intervention.


Subject(s)
Angioplasty, Balloon , Carotid Artery Injuries , Liver Cirrhosis, Experimental , Rats , Male , Animals , Rats, Sprague-Dawley , Neointima/pathology , Liver Cirrhosis, Experimental/pathology , Constriction, Pathologic/pathology , Angioplasty, Balloon/adverse effects , Carotid Arteries/pathology , Carotid Artery Injuries/pathology , Hyperplasia/pathology
13.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446122

ABSTRACT

INTRODUCTION: Previously, we found that intracellular calcium (Ca2+) homeostasis is altered in platelets from an experimental model of liver cirrhosis, namely the bile-duct-ligated (BDL) rat. These alterations are compatible with the existence of a hypercoagulable state. OBJECTIVE: In the present study, we analyzed the role of nitric oxide in the abnormal calcium signaling responses of an experimental cirrhosis model, the bile duct-ligated rat. METHODS: Chronic treatment with L-NAME was used to inhibit NO production in a group of control and BDL animals, and the responses compared to those obtained in a control and BDL untreated group (n = 6 each). The experiments were conducted on isolated platelets loaded with fura-2, using fluorescence spectrometry. RESULTS: Chronic treatment with L-NAME increased thrombin-induced Ca2+ release from internal stores in both control and BDL rats. However, the effect was significantly greater in the BDL rats (p < 0.05). Thrombin-induced calcium entry from the extracellular space was also elevated but at lower doses and, similarly in both control and BDL platelets, treated with the NO synthesis inhibitor. Capacitative calcium entry was also enhanced in the control platelets but not in platelets from BDL rats treated with L-NAME. Total calcium in intracellular stores was elevated in untreated platelets from BDL rats, and L-NAME pretreatment significantly (p < 0.05) elevated these values both in controls and in BDL but significantly more in the BDL rats (p < 0.05). CONCLUSIONS: Our results suggest that nitric oxide plays a role in the abnormal calcium signaling responses observed in platelets from BDL rats by interfering with the mechanism that releases calcium from the internal stores.


Subject(s)
Liver Cirrhosis, Biliary , Rats , Animals , Nitric Oxide/therapeutic use , Blood Platelets , Calcium , Rats, Sprague-Dawley , NG-Nitroarginine Methyl Ester/pharmacology , Thrombin/pharmacology , Thrombin/therapeutic use , Liver Cirrhosis/drug therapy , Ligation
14.
Int J Mol Sci ; 24(9)2023 May 02.
Article in English | MEDLINE | ID: mdl-37175858

ABSTRACT

Cirrhotic patients often suffer from cirrhotic cardiomyopathy (CCM). Previous animal models of CCM were inconsistent concerning the time and mechanism of injury; thus, the temporal dynamics and cardiac vulnerability were studied in more detail. Rats underwent bile duct ligation (BDL) and a second surgery 28 days later. Cardiac function was assessed by conductance catheter and echocardiography. Histology, gene expression, and serum parameters were analyzed. A chronotropic incompetence (Pd31 < 0.001) and impaired contractility at rest and a reduced contractile reserve (Pd31 = 0.03, Pdob-d31 < 0.001) were seen 31 days after BDL with increased creatine (Pd35, Pd42, and Pd56 < 0.05) and transaminases (Pd31 < 0.001). A total of 56 days after BDL, myocardial fibrosis was seen (Pd56 < 0.001) accompanied by macrophage infiltration (CD68: Pgroup < 0.001) and systemic inflammation (TNFα: Pgroup < 0.001, white blood cell count: Pgroup < 0.001). Myocardial expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) was increased after 31 (Pd31 < 0.001) and decreased after 42 (Pd42 < 0.001) and 56 days (Pd56 < 0.001). Caspase-3 expression was increased 31 and 56 days after BDL (Pd31 = 0.005; Pd56 = 0.005). Structural changes in the myocardium were seen after 8 weeks. After the second surgery (second hit), transient myocardial insufficiency with secondary organ dysfunction was seen, characterized by reduced contractility and contractile reserve.


Subject(s)
Cardiomyopathies , Liver Cirrhosis , Rats , Animals , Liver Cirrhosis/metabolism , Bile Ducts/metabolism , Cardiomyopathies/metabolism , Fibrosis , Myocardium/metabolism , Ligation/adverse effects , Liver/metabolism , Disease Models, Animal
15.
Molecules ; 28(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37513376

ABSTRACT

Liver fibrosis is one of the leading causes of hepatic sclerosis and hepatocellular carcinoma worldwide. However, the complex pathophysiological mechanisms of liver fibrosis are unknown, and no specific drugs are available to treat liver fibrosis. Atractylenolide III (ATL III) is a natural compound isolated from the plant Atractylodes lancea (Thunb.) DC. that possesses antioxidant properties and the ability to inhibit inflammatory responses. In this study, cholestatic hepatic fibrosis was induced in mice using a bile duct ligation (BDL) model and treated with 10 mg/kg and 50 mg/kg of ATL III via gavage for 14 days. ATL III significantly reduced the liver index, lowered serum ALT and AST levels, and reduced liver injury in bile-duct-ligated mice. In addition, ATL III significantly attenuated histopathological changes and reduced collagen deposition. ATL III reduced the expression of fibrosis-related genes α-smooth muscle actin (α-SMA), Collagen I (col1a1), Collagen IV (col4a2), and fibrosis-related proteins α-SMA and col1a1 in liver tissue. Using RNA sequencing (RNA-seq) to screen molecular targets and pathways, ATL III was found to affect the PI3K/AKT singling pathway by inhibiting the phosphorylation of PI3K and AKT, thereby ameliorating BDL-induced liver fibrosis. Gas chromatography-mass spectrometry (GC-MS) was used to evaluate the effect of ATL III on liver metabolites in BDL mice. ATL III further affected glutamine metabolism by down-regulating the activity of glutamine (GLS1) and glutamine metabolism. ATL III further affected glutamine metabolism by down-regulating the activity of glutaminase (GLS1), as well as glutamine metabolism. Therefore, we conclude that ATL III attenuates liver fibrosis by inhibiting the PI3K/AKT pathway and glutamine metabolism, suggesting that ATL III is a potential drug candidate for treating liver fibrosis.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Glutamine/pharmacology , Glutamine/metabolism , Liver , Bile Ducts/surgery , Liver Cirrhosis/drug therapy , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Fibrosis
16.
Am J Physiol Gastrointest Liver Physiol ; 323(5): G461-G476, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36165507

ABSTRACT

Hepatorenal syndrome (HRS) is a complication of cirrhosis with high morbidity and mortality. Nevertheless, the underlying mechanism involving how kidney injury aggravates the progression of cirrhosis remains unclear. This study aims to explore the role of the Toll-like receptor 4 (TLR4) signaling pathway in mediating liver and kidney injuries in HRS mice induced by unilateral ureteral obstruction (UUO) and/or bile duct ligation (BDL). Two weeks after UUO, there were no obvious pathological changes in mouse liver and the unligated side of kidney. Nevertheless, impaired liver and kidney functions, inflammatory response, and fibrosis were examined in mice after 2 wk of BDL. Compared with those of other groups, mice in the BDL + UUO group presented severer liver and kidney injuries, higher levels of inflammatory factors, and faster deposition of collagens, suggesting that kidney injuries accelerated the aggravation of HRS. Correlation analysis identified a positive correlation between expression levels of inflammatory factors and fibrotic levels. Meanwhile, TLR4 and its ligand MyD88 were upregulated during the process of liver and kidney injuries in HRS mice. Further animal experiments in transgenic TLR4-/- mice or in those treated with TAK242, a small molecule inhibitor of TLR4, showed that blocking the TLR4 signaling pathway significantly improved survival quality and survival rate in HRS mice by alleviating liver fibrosis and kidney injury. It is concluded that kidney dysfunction plays an important role in the aggravation of cirrhosis, which may be attributed to the TLR4 signaling pathway. Targeting TLR4 could be a promising therapeutic strategy for protecting both liver and kidneys in patients with HRS.NEW & NOTEWORTHY Our study established BDL, UUO, and BDL + UUO models, providing a novel idea for analyzing liver and kidney diseases. It is highlighted that the kidney injury accelerated the aggravation of HRS via inflammatory response, which could be protected by inhibiting the TLR4 signaling pathway. We believed that targeting TLR4 was a promising therapeutic strategy for protecting both liver and kidney functions in patients with HRS.


Subject(s)
Cholestasis , Hepatorenal Syndrome , Ureteral Obstruction , Mice , Animals , Toll-Like Receptor 4/metabolism , Hepatorenal Syndrome/etiology , Hepatorenal Syndrome/metabolism , Mice, Hairless , Kidney/metabolism , Signal Transduction , Fibrosis , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology , Cholestasis/metabolism , Liver Cirrhosis/metabolism
17.
Anal Biochem ; 647: 114606, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35240109

ABSTRACT

Type C hepatic encephalopathy (HE) is a complex neuropsychiatric disorder occurring as a consequence of chronic liver disease. Alterations in energy metabolism have been suggested in type C HE, but in vivo studies on this matter remain sparse and have reported conflicting results. Here, we propose a novel preclinical 18F-FDG PET methodology to compute quantitative 3D maps of the regional cerebral metabolic rate of glucose (CMRglc) from a labelling steady-state PET image of the brain and an image-derived input function. This quantitative approach shows its strength when comparing groups of animals with divergent physiology, such as HE animals. PET CMRglc maps were registered to an atlas and the mean CMRglc from the hippocampus and the cerebellum were associated to the corresponding localized 1H MR spectroscopy acquisitions. This study provides for the first time local and quantitative information on both brain glucose uptake and neurometabolic profile alterations in a rat model of type C HE. A 2-fold lower brain glucose uptake, concomitant with an increase in brain glutamine and a decrease in the main osmolytes, was observed in the hippocampus and in the cerebellum. These novel findings are an important step towards new insights into energy metabolism in the pathophysiology of HE.


Subject(s)
Hepatic Encephalopathy , Animals , Brain/diagnostic imaging , Brain/metabolism , Glucose/metabolism , Glutamine/metabolism , Hepatic Encephalopathy/metabolism , Proton Magnetic Resonance Spectroscopy , Rats
18.
J Magn Reson Imaging ; 55(5): 1393-1404, 2022 05.
Article in English | MEDLINE | ID: mdl-34499757

ABSTRACT

BACKGROUND: Arterial spin labeling (ASL) has been proven to be effective in ischemia-induced acute kidney injury (AKI); however, validation of ASL magnetic resonance imaging (MRI) is limited in AKI in the presence of cirrhosis. PURPOSE: To investigate the feasibility of ASL in revealing renal blood flow (RBF) changes in kidney injury in the presence of cirrhosis and to assess its value in the early diagnosis of disease. STUDY TYPE: Longitudinal. ANIMAL MODEL: Rats were randomized into baseline group (N = 3), sham surgery group (N = 18), and common bile duct ligation (BDL) group (N = 48). All groups were divided into six subgroups based on different sacrificed time points. FIELD STRENGTH/SEQUENCE: 3 T scanner, prototypic pulsed ASL sequence using flow-sensitive alternating inversion recovery preparation, half-Fourier acquisition single-shot turbo spin echo sequence. ASSESSMENT: RBF measurement was performed by ASL. Hematoxylin-eosin (HE) score, Hypoxia-inducible factor-1alpha (HIF-1α) score, peritubular capillar (PTC) density, alanine aminotransferase, aspartate aminotransferase, serum total bilirubin, total bile acids, serum creatinine (Scr), and blood urea nitrogen (BUN) were harvested. STATISTICAL TESTS: Analysis of variance, Pearson's correlation coefficient, and receiver operating characteristic curves were performed. P < 0.05 was considered statistically significant. RESULTS: RBF, HE score, HIF-1α score, and PTC density after BDL were significantly different from baseline. RBF was highly correlated with HE score, HIF-1α score, and PTC density (r = -0.7598, r = -0.7434, r = 0.6406, respectively). RBF and Scr began to differ significantly from baseline at day 3 and 7 after intervention, respectively. The areas under the curves of RBF, Scr, and BUN for distinguishing non-AKI from AKI in cirrhosis were 1.00, 0.888, and 0.911, while those for distinguishing mild from severe kidney injury were 0.961, 0.830, and 0.857, respectively. DATA CONCLUSION: ASL allows the longitudinal assessment of the degree of AKI induced by cholestatic cirrhosis in rats and can serve as a noninvasive marker for the early and accurate diagnosis of AKI. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Subject(s)
Acute Kidney Injury , Kidney , Acute Kidney Injury/diagnostic imaging , Acute Kidney Injury/etiology , Animals , Common Bile Duct , Female , Kidney/blood supply , Kidney/diagnostic imaging , Liver Cirrhosis/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Perfusion , Rats , Spin Labels
19.
Bioorg Chem ; 127: 105971, 2022 10.
Article in English | MEDLINE | ID: mdl-35749855

ABSTRACT

Liver fibrosis is an important process in chronic liver disease and is strongly related to poor prognosis. Dehydromevalonolactone (C8) is a natural product isolated from a fungus of Fusarium sp. CPCC 401218, and its pharmacological activity has never been reported before. In this study, the potential of C8 as an anti-hepatic fibrosis agent was investigated. In human hepatic stellate cell (HSC) line LX-2, C8 suppressed the increased expression of COL1A1 and α-SMA induced by TGFß1, which indicated that C8 could repress the activation of HSCs. In bile duct ligated rats, C8 administration (100 mg/kg, i.p.) markedly attenuated liver injury, fibrosis, and inflammation, and suppressed the expression of the macrophage surface marker F4/80. In terms of mechanism, C8 treatment blocked the activation of the NLRP3 inflammasome, which was stimulated by LPS and nigericin in bone marrow-derived macrophages (BMDMs) and companied by the release of active IL-1ß. In addition, the activation of LX-2 cells induced by IL-1ß released from BMDMs was also inhibited after C8 administration, which indicated that C8 repressed HSCs activation by inhibiting the activation of NLRP3 inflammasome in macrophages. Furthermore, C8 exhibited the effects of anti-fibrosis and inhibiting the expression of NLRP3 inflammasome in non-alcoholic steatohepatitis (NASH) mice. Finally, C8 can be commendably absorbed in vivo and was safe for mice at the concentration of 1000 mg/kg (p.o.). In summary, our study reveals that C8 ameliorates HSCs activation and liver fibrosis in cholestasis rats and NASH mice by inhibiting NLRP3 inflammasome in macrophages, and C8 might be a safe and effective candidate for the treatment of liver fibrosis.


Subject(s)
Inflammasomes , Mevalonic Acid/analogs & derivatives , Non-alcoholic Fatty Liver Disease , Animals , Fibrosis , Humans , Inflammasomes/metabolism , Inflammation/metabolism , Liver/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Mevalonic Acid/analysis , Mevalonic Acid/pharmacology , Mevalonic Acid/therapeutic use , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Rats
20.
Metab Brain Dis ; 37(8): 2687-2697, 2022 12.
Article in English | MEDLINE | ID: mdl-35943675

ABSTRACT

Regarding the low quality of life due to the cognitive complications in the patients with hepatic cirrhosis (HC), the goal of this study was to examine the possible neuroprotective effect of pioglitazone (PIO) on the electrophysiological alterations of hippocampus, a major area of cognition, in the experimental model of bile duct ligation (BDL). We used adult male Wistar rats in the present study to perform BDL or sham surgery. Pioglitazone was administered in BDL rats two weeks after the surgery for the next continuous four weeks. The effects of pioglitazone on BDL-induced electrophysiological alterations of the CA1 pyramidal neurons in the hippocampus were evaluated by whole-cell patch clamp recordings. Our findings demonstrated that chronic administration of PIO could not reverse the electrophysiological changes in the CA1 pyramidal neurons of the hippocampus in BDL rats but could improve the hepatic dysfunction.Together, the results of this study suggest that PIO administration cannot counteract altered intrinsic properties of the hippocampal neurons which has been shown recently as an involved mechanism of the cognitive impairments in hepatic encephalopathy (HE).


Subject(s)
PPAR gamma , Quality of Life , Rats , Animals , Male , Pioglitazone/pharmacology , Rats, Wistar , Pyramidal Cells , Liver Cirrhosis/drug therapy , Bile Ducts/surgery , Ligation , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL