Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
J Gastroenterol Hepatol ; 38(2): 162-176, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36350048

ABSTRACT

BACKGROUND AND AIM: Multiple computer-aided techniques utilizing artificial intelligence (AI) have been created to improve the detection of polyps during colonoscopy and thereby reduce the incidence of colorectal cancer. While adenoma detection rates (ADR) and polyp detection rates (PDR) are important colonoscopy quality indicators, adenoma miss rates (AMR) may better quantify missed lesions, which can ultimately lead to interval colorectal cancer. The purpose of this systematic review and meta-analysis was to determine the efficacy of computer-aided colonoscopy (CAC) with respect to AMR, ADR, and PDR in randomized controlled trials. METHODS: A comprehensive, systematic literature search was performed across multiple databases in September of 2022 to identify randomized, controlled trials that compared CAC with traditional colonoscopy. Primary outcomes were AMR, ADR, and PDR. RESULTS: Fourteen studies totaling 10 928 patients were included in the final analysis. There was a 65% reduction in the adenoma miss rate with CAC (OR, 0.35; 95% CI, 0.25-0.49, P < 0.001, I2  = 50%). There was a 78% reduction in the sessile serrated lesion miss rate with CAC (OR, 0.22; 95% CI, 0.08-0.65, P < 0.01, I2  = 0%). There was a 52% increase in ADR in the CAC group compared with the control group (OR, 1.52; 95% CI, 1.39-1.67, P = 0.04, I2  = 47%). There was 93% increase in the number of adenomas > 10 mm detected per colonoscopy with CAC (OR 1.93; 95% CI, 1.18-3.16, P < 0.01, I2  = 0%). CONCLUSIONS: The results of the present study demonstrate the promise of CAC in improving AMR, ADR, PDR across a spectrum of size and morphological lesion characteristics.


Subject(s)
Adenoma , Colonic Polyps , Colorectal Neoplasms , Humans , Colonic Polyps/pathology , Artificial Intelligence , Colonoscopy/methods , Adenoma/diagnosis , Computers , Colorectal Neoplasms/pathology
2.
Tzu Chi Med J ; 33(2): 108-114, 2021.
Article in English | MEDLINE | ID: mdl-33912406

ABSTRACT

Water exchange (WE) and artificial intelligence (AI) have made critical advances during the past decade. WE significantly increases adenoma detection and AI holds the potential to help endoscopists detect more polyps and adenomas. We performed an electronic literature search on PubMed using the following keywords: water-assisted and water exchange colonoscopy, adenoma and polyp detection, artificial intelligence, deep learning, neural networks, and computer-aided colonoscopy. We reviewed relevant articles published in English from 2010 to May 2020. Additional articles were searched manually from the reference lists of the publications reviewed. We discussed recent advances in both WE and AI, including their advantages and limitations. AI may mitigate operator-dependent factors that limit the potential of WE. By increasing bowel cleanliness and improving visualization, WE may provide the platform to optimize the performance of AI for colonoscopies. The strengths of WE and AI may complement each other in spite of their weaknesses to maximize adenoma detection.

SELECTION OF CITATIONS
SEARCH DETAIL