Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Exp Dermatol ; 33(5): e15099, 2024 05.
Article in English | MEDLINE | ID: mdl-38794814

ABSTRACT

Suitable human models for the development and characterization of topical compounds for inflammatory skin diseases such as atopic dermatitis are not readily available to date. We describe here the development of a translational model involving healthy human skin mimicking major aspects of AD and its application for the characterization of topical Janus kinase inhibitors. Full thickness human abdominal skin obtained from plastic surgery stimulated in vitro with IL4 and IL13 shows molecular features of AD. This is evidenced by STAT6 phosphorylation assessed by immunohistochemistry and analysis of skin lysates. Broad transcriptome changes assessed by AmpliSeq followed by gene set variation analysis showed a consistent upregulation of gene signatures characterizing AD in this model. Topical application of experimental formulations of compounds targeting the JAK pathway to full thickness skin normalizes the molecular features of AD induced by IL4 and IL13 stimulation. The inhibitory effects of topical JAK inhibitors on molecular features of AD are supported by pharmacokinetic analysis. The model described here is suited for the characterization of topical compounds for AD and has the potential to be extended to other inflammatory skin diseases and pathophysiological pathways.


Subject(s)
Dermatitis, Atopic , Janus Kinase Inhibitors , Skin , Humans , Dermatitis, Atopic/drug therapy , Skin/metabolism , Skin/drug effects , Janus Kinase Inhibitors/pharmacology , STAT6 Transcription Factor/metabolism , Interleukin-4/metabolism , Interleukin-13/metabolism , Phosphorylation , Transcriptome , Models, Biological , Pyrimidines/pharmacology , Administration, Topical , Piperidines
2.
Int J Mol Sci ; 25(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39000465

ABSTRACT

The complexification of in vitro models requires the compatibility of cells with the same medium. Since immune cells are the most sensitive to growth conditions, growing intestinal epithelial cells in their usual medium seems to be necessary. This work was aimed at comparing the sensitivity of these epithelial cells to pro-inflammatory stimuli but also to dietary polyphenols in both DMEM and RPMI-1640 media. Co-cultures of Caco-2 and HT29-MTX cells were grown for 21 days in the two media before their stimulation with a cocktail of TNF-α (20 ng/mL), IL-1ß (1 ng/mL), and IFN-γ (10 ng/mL) or with LPS (10 ng/mL) from E. coli (O111:B4). The role of catechins (15 µM), a dietary polyphenol, was evaluated after its incubation with the cells before their stimulation for 6 h. The RPMI-1640 medium did not alter the intensity of the inflammatory response observed with the cytokines. By contrast, LPS failed to stimulate the co-culture in inserts regardless of the medium used. Lastly, catechins were unable to prevent the pro-inflammatory response observed with the cytokines in the two media. The preservation of the response of this model of intestinal epithelium in RPMI-1640 medium is promising when considering its complexification to evaluate the complex cellular crosstalk leading to intestinal homeostasis.


Subject(s)
Coculture Techniques , Intestinal Mucosa , Lipopolysaccharides , Polyphenols , Humans , Coculture Techniques/methods , Polyphenols/pharmacology , Caco-2 Cells , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Lipopolysaccharides/pharmacology , HT29 Cells , Culture Media/chemistry , Culture Media/pharmacology , Cytokines/metabolism , Catechin/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Inflammation/metabolism , Inflammation/pathology
3.
Eur J Immunol ; 51(4): 879-892, 2021 04.
Article in English | MEDLINE | ID: mdl-33368232

ABSTRACT

Mucosal associated invariant T (MAIT) cells are anti-microbial innate-like T cells that are abundant in blood and liver. MAIT cells express a semi-invariant T-cell receptor (TCR) that recognizes a pyrimidine ligand, derived from microbial riboflavin synthesis, bound to MR1. Both blood and liver derived (ld)-MAIT cells can be robustly stimulated via TCR or by cytokines produced during bacterial or viral infection. In this study, we compared the functional and transcriptomic response of human blood and ld-MAIT cells to TCR signals (Escherichia coli or the pyrimidine ligand) and cytokines (IL-12 + IL-18). While the response of blood and ld-MAIT cells to TCR signals were comparable, following cytokine stimulation ld-MAIT cells were more polyfunctional than blood MAIT cells. Transcriptomic analysis demonstrated different effector programmes of ld-MAIT cells with the two modes of activation, including the enrichment of a tissue repair signature in TCR-stimulated MAIT cells. Interestingly, we observed enhancement of IL-12 signaling and fatty acid metabolism in untreated ld-MAIT cells compared with blood MAIT cells. Additionally, MAIT cells from blood and liver were modulated similarly by TCR and cytokine signals. Therefore, we report that blood and ld-MAIT cells are fundamentally different but undergo conserved changes following activation via TCR or by cytokines.


Subject(s)
Liver/immunology , Lymphocyte Activation/immunology , Mucosal-Associated Invariant T Cells/immunology , Receptors, Antigen, T-Cell/immunology , Analysis of Variance , Blood Specimen Collection/methods , Cells, Cultured , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Gene Expression Profiling/methods , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Liver/cytology , Lymphocyte Activation/genetics , Mucosal-Associated Invariant T Cells/cytology , Mucosal-Associated Invariant T Cells/metabolism , RNA-Seq/methods , Receptors, Antigen, T-Cell/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcriptome/genetics , Transcriptome/immunology
4.
Exp Eye Res ; 125: 183-92, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24971496

ABSTRACT

Corneal healing process under inflammatory conditions is not fully understood. We aimed at determining the effect of an inflammatory (presence of IL-6) or anti-inflammatory (presence of IL-10) environment and a mixture of both in the expression of IL-6 signaling pathway mediators, and on corneal wound healing in an in vitro scratch assay. For that purpose, human corneal epithelial cells were cultured until confluence. The effect of IL-6 (10 ng/ml), IL-10 (20 ng/ml) or IL-6 + IL-10 exposure on the expression of IL-6R, gp130, and STAT3 was determined by Western blotting and quantitative PCR, at different time points. The monolayer was mechanically wounded using a sterile 10 µl pipette tip. Wound healing rate in the presence or absence of these cytokines was measured immediately after cytokine exposure and after 4, 8, and 24 h. The effect of mitomycin C on wound healing rate, in control and IL-6-stimulated cells, was also evaluated. Detection of proliferative cells was performed with an EdU imaging kit. For the visualization of migrating cells, cold methanol-fixed cells were incubated with an α-actinin antibody. For the statistical analysis a two-factor design of experiment method was applied. Levene test was used to contrast equality of variances. If variances were equal, ANOVA was performed to test the equality of means. If variances were not equal, a Mood's median test was performed. We observed that IL-6 and IL-10 stimulation, and their combination, increased gp130 production at different time points. STAT3 production was increased in IL-6-stimulated cells, at 72 h. An increase in pSTAT3 production was found in IL-6- and IL-10-stimulated cells, that was sustained in time in IL-6 + IL-10 co-stimulated cultures. Scraped areas had an initial width of 570.57 ± 75.82 µm. In IL-6-exposed cells wound healing closure was faster than in control cells or IL-10-exposed cells. After 8 h, wound width in IL-10-exposed cells, was also significantly smaller than that of control cells. Cells exposed to IL-6 + IL-10 had the slowest wound healing rate, similar to control cells. Wounds were closed after 24 h regardless the experimental condition. Mitomycin C exposure increased the wound closure rate in every experimental condition. No significant differences in the percentage of proliferative cells at the edge of the scratch and in distant areas of the monolayer were found. At the edge of the scratch, some actin filaments of non-proliferative cells were directed through the cell-free area, independently of the stimulating condition. In conclusion, the presence of IL-10 and, most importantly, of IL-6, increased the wound healing rate in an in vitro corneal wound healing model. The combination of both cytokines did not have a synergistic action in wound healing. In our model, wound closure was the result of the combination of cell proliferation and cell migration.


Subject(s)
Cornea , Cytokine Receptor gp130/metabolism , Interleukin-6/pharmacology , Receptors, Interleukin-6/metabolism , STAT3 Transcription Factor/metabolism , Wound Healing/drug effects , Analysis of Variance , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cornea/drug effects , Corneal Injuries , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Humans , Interleukin-10/pharmacology , RNA, Messenger/metabolism
5.
Pathol Res Pract ; 254: 155120, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38280274

ABSTRACT

In the immunological surveillance against cancer, natural killer (NK) cells are essential effectors that help eradicate altered cells. The complex interactions that occur between NK cells and the tumor microenvironment (TME) are thoroughly examined in this review. The review examines how cytokine stimulation affects NK cell activation, focusing on the dynamic modulation of NK cell function within the TME. It looks at NK cell-related biomarkers such as PD-1/PD-L1, methylation HOXA9 (Homeobox A9), Stroma AReactive Invasion Front Areas (SARIFA), and NKG2A/HLA-E, providing critical information about prognosis and treatment outcomes. The changing landscape of immunotherapies-including checkpoint inhibitors, CAR-NK cells, and cytokine-based interventions-is examined in the context of enhancing NK cell activity. The review highlights the potential pathways for precision medicine going forward, focusing on customized immunotherapies based on unique biomarker profiles and investigating combination medicines to produce more robust anti-tumor responses.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Immunologic Surveillance , Killer Cells, Natural , Neoplasms/pathology , Cytokines/metabolism
6.
Mol Aspects Med ; 99: 101305, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39167987

ABSTRACT

Hepatitis C virus (HCV) infection is a major health problem worldwide. It can cause liver cirrhosis and hepatocellular carcinoma (HCC), making it a cause of morbidity from liver disease. Thus, there is an urgent need for a prophylactic HCV vaccine. Fortunately, modern medicine has transformed the therapy for HCV infection through development of direct-acting antiviral agents (DAAs), achieving high rates of sustained virologic response and giving significant relief from HCC and associated mortality, but unfortunately it fails to eradicate the risk of HCC, especially in HCV-cleared patients with already advanced liver disease. Additionally, DAA-cured patients do not develop sufficient antiviral immunity and are susceptible to reinfection. A comprehensive strategy to control HCV infection must include a vaccine development approach in which the host can develop humoral and cellular immunity to eradicate HCV successfully; however, this remains a challenge as HCV has developed systems to evade immune attacks from its host. This review highlights the current understanding of HCV's effect on liver disease and cancer progression, the nature of immune responses from cell populations interacting with HCV, and the current strategies for vaccine development. The information in this review will advance prophylactic intervention strategies for HCV infection, with the end goal being to prevent chronicity and subsequent liver disease leading to HCC.


Subject(s)
Hepacivirus , Hepatitis C, Chronic , Vaccine Development , Humans , Hepacivirus/immunology , Hepatitis C, Chronic/immunology , Hepatitis C, Chronic/virology , Hepatitis C, Chronic/prevention & control , Liver Neoplasms/immunology , Liver Neoplasms/prevention & control , Liver Neoplasms/virology , Liver Neoplasms/etiology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/prevention & control , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/etiology , Viral Hepatitis Vaccines/immunology , Viral Hepatitis Vaccines/therapeutic use , Animals , Antiviral Agents/therapeutic use
7.
Res Sq ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38854072

ABSTRACT

B-lymphocytes play major adaptive immune roles, producing antibody and driving T-cell responses. However, how immunometabolism networks support B-cell activation and differentiation in response to distinct receptor stimuli remains incompletely understood. To gain insights, we systematically investigated acute primary human B-cell transcriptional, translational and metabolomic responses to B-cell receptor (BCR), Toll-like receptor 9 (TLR9), CD40-ligand (CD40L), interleukin-4 (IL4) or combinations thereof. T-independent BCR/TLR9 co-stimulation, which drives malignant and autoimmune B-cell states, jointly induced PD-L1 plasma membrane expression, supported by NAD metabolism and oxidative phosphorylation. BCR/TLR9 also highly induced the transaminase BCAT1, which localized to lysosomal membranes to support branched chain amino acid synthesis and mTORC1 hyperactivation. BCAT1 inhibition blunted BCR/TLR9, but not CD40L/IL4-triggered B-cell proliferation, IL10 expression and BCR/TLR pathway-driven lymphoma xenograft outgrowth. These results provide a valuable resource, reveal receptor-mediated immunometabolism remodeling to support key B-cell phenotypes including PD-L1 checkpoint signaling, and identify BCAT1 as a novel B-cell therapeutic target.

8.
Int Immunopharmacol ; 121: 110496, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37329806

ABSTRACT

Visceral leishmaniasis (VL), a potentially fatal vector-borne disease caused by the intracellular protozoan parasite Leishmania donovani, remains a major health problem due to restricted repertoire of drugs, deleterious side effects, high cost and increasing drug resistance. Therefore, identifying newer drug targets and developing efficacious affordable treatments with minimal or no side effects are pressing needs. Being regulators of diverse cellular processes, Mitogen-Activated Protein Kinases (MAPKs) are potential drug targets. Herein, we report L.donovani MAPK12 (LdMAPK12) as a probable virulence factor implying it as a plausible target. LdMAPK12 sequence is distinct from human MAPKs and is highly conserved in different Leishmania species. LdMAPK12 is expressed in both promastigotes and amastigotes. In comparison with the avirulent and procyclic promastigotes, the virulent and metacyclic promastigotes have higher expression of LdMAPK12. Pro-inflammatory cytokines reduced, whereas anti-inflammatory cytokines increased LdMAPK12 expression in macrophages. These data suggest a probable novel role of LdMAPK12 in parasite virulence and identifies it as a plausible drug target.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Humans , Virulence Factors/metabolism , Leishmaniasis, Visceral/parasitology , Virulence , Cytokines/pharmacology
9.
Biomed Pharmacother ; 168: 115782, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37924786

ABSTRACT

Dry eye disease (DED) is a common chronic ocular surface disease. Available therapies are effective but often associated with side effects. This study investigates the potential of a Malva sylvestris L. flower extract and two defined preparations, a mucilage and a polyphenol rich fraction, on cells that are essential for the DED pathology. Furthermore, single compounds were isolated and characterised out of the polyphenol fraction. The M. sylvestris extract and its two fractions reduced reactive oxygen species (ROS) in an ultraviolet-induced model and promoted wound healing capacity of HCE-T cells, but only the polyphenol fraction and the flower extract exhibited significant radical scavenging activity. The flower extract and the polyphenol fraction inhibited cytokine secretion (IL-6, TNF-α, IL-8) from HCE-T cells and THP-1 cells. In contrast, the mucilage fraction led to an increase in mediator secretion. The NF-κB activity and calcium influx in THP-1 and Jurkat cells, respectively was decreased by treatment with the flower extract and the polyphenol fraction, whereas the mucilage fraction had no influence on these parameters. Moreover, the flower extract and the mucilage fraction at low concentration could stimulate meibomian gland cells' lipid accumulation. The isolated single compounds showed no effect on analysed parameters, except a coumarin derivative and malvin which showed ROS inhibition effects.


Subject(s)
Dry Eye Syndromes , Malva , Humans , Antioxidants/pharmacology , Plant Extracts/pharmacology , Reactive Oxygen Species/pharmacology , Anti-Inflammatory Agents/pharmacology , Wound Healing , Polyphenols/pharmacology
10.
Front Immunol ; 13: 946794, 2022.
Article in English | MEDLINE | ID: mdl-36003373

ABSTRACT

Endothelial cells (ECs) are central to vascular health but also interact with and regulate the immune system. Changes in endothelial state enable immune cells to migrate into the tissue to facilitate repair and fight infection. ECs modulate the function of immune cells through the expression of adhesion molecules, chemokines, major histocompatibility complex (MHC), and an array of co-stimulatory and inhibitor molecules. These interactions allow ECs to act as antigen presenting cells (APCs) and influence the outcome of immune recognition. This study elucidates how EC microenvironment, vascular cell biology, and immune response are not only connected but interdependent. More specifically, we explored how cell-substratum interactions influence EC antigen presentation and co-stimulation, and how these differences affect allorecognition in animal models of cell transplantation. Investigation of EC state was carried out using RNA sequencing while assessment of the allogeneic response includes measurements of immune cell cytotoxic ability, T cell proliferation, cytokine release, serum antibodies, and histological staining. Differences in substratum led to divergent EC phenotypes which in turn influenced immune response to transplanted cells, both due to the physical barrier of matrix-adhesion and differences in expression of surface markers. ECs grown in 2D on tissue culture plastic or in 3D on collagen scaffolds had significantly different basal levels of MHC expression, co-stimulatory and adhesion molecules. When treated with cytokines to mimic an inflammatory state, ECs did not converge to a single phenotype but rather responded differently based on their substratum. Generally, 3D ECs were more responsive to inflammatory stimuli than 2D ECs. These unique expression patterns measured in vitro also influence immune recognition in vivo. ECs grown in 2D were more likely to provoke a cytotoxic response while 3D ECs induced T cell proliferation. ECs are uniquely configured to sense not only local flow and mechanical forces but a range of markers related to systemic state, including immune function. ECs interact with immune cells with differing results depending on the environment in which the EC-lymphocyte interaction occurs. Therefore, understanding this relationship is essential to predicting and modifying the outcome of EC-immune interacts. We specifically examined the relationship between EC substratum and allorecognition.


Subject(s)
Endothelial Cells , Lymphocyte Activation , Animals , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Communication , Cytokines/metabolism , Endothelial Cells/metabolism , Transplantation, Homologous
11.
Future Sci OA ; 7(4): FSO671, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33815818

ABSTRACT

Lactobacillus species have been studied for over 30 years in their role as commensal organisms in the human gut. Recently there has been a surge of interest in their abilities to natively and recombinantly stimulate immune activities, and studies have identified strains and novel molecules that convey particular advantages for applications as both immune adjuvants and immunomodulators. In this review, we discuss the recent advances in Lactobacillus-related activity at the gut/microbiota interface, the efforts to probe the boundaries of the direct and indirect therapeutic potential of these bacteria, and highlight the continued interest in harnessing the native capacity for the production of biogenic compounds shown to influence nervous system activity. Taken together, these aspects underscore Lactobacillus species as versatile therapeutic delivery vehicles capable of effector production at the lumenal-mucosal interface, and further establish a foundation of efficacy upon which future engineered strains can expand.

12.
Front Immunol ; 12: 645770, 2021.
Article in English | MEDLINE | ID: mdl-33968037

ABSTRACT

Peptide vaccination remains a viable approach to induce T-cell mediated killing of tumors. To identify potential T-cell targets for Triple-Negative Breast Cancer (TNBC) vaccination, we examined the effect of the pro-inflammatory cytokine interferon-γ (IFNγ) on the transcriptome, proteome, and immunopeptidome of the TNBC cell line MDA-MB-231. Using high resolution mass spectrometry, we identified a total of 84,131 peptides from 9,647 source proteins presented by human leukocyte antigen (HLA)-I and HLA-II alleles. Treatment with IFNγ resulted in a remarkable remolding of the immunopeptidome, with only a 34% overlap between untreated and treated cells across the HLA-I immunopeptidome, and expression of HLA-II only detected on treated cells. IFNγ increased the overall number, diversity, and abundance of peptides contained within the immunopeptidome, as well increasing the coverage of individual source antigens. The suite of peptides displayed under conditions of IFNγ treatment included many known tumor associated antigens, with the HLA-II repertoire sampling 17 breast cancer associated antigens absent from those sampled by HLA-I molecules. Quantitative analysis of the transcriptome (10,248 transcripts) and proteome (6,783 proteins) of these cells revealed 229 common proteins and transcripts that were differentially expressed. Most of these represented downstream targets of IFNγ signaling including components of the antigen processing machinery such as tapasin and HLA molecules. However, these changes in protein expression did not explain the dramatic modulation of the immunopeptidome following IFNγ treatment. These results demonstrate the high degree of plasticity in the immunopeptidome of TNBC cells following cytokine stimulation and provide evidence that under pro-inflammatory conditions a greater variety of potential HLA-I and HLA-II vaccine targets are unveiled to the immune system. This has important implications for the development of personalized cancer vaccination strategies.


Subject(s)
Antigen Presentation/drug effects , HLA Antigens/immunology , Interferon-gamma/pharmacology , Triple Negative Breast Neoplasms/immunology , Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Cell Line, Tumor , Female , Humans , Peptides/immunology , Proteomics , Transcriptome
13.
Front Immunol ; 11: 963, 2020.
Article in English | MEDLINE | ID: mdl-32508837

ABSTRACT

The majority of data on human Natural Killer (NK) cell phenotype and function has been generated using cryopreserved peripheral blood mononuclear cells (PBMCs). However, cryopreservation can have adverse effects on PBMCs. In contrast, investigating immune cells in whole blood can reduce the time, volume of blood required, and potential artefacts associated with manipulation of the cells. Whole blood collected from healthy donors and cancer patients was processed by three separate protocols that can be used independently or in parallel to assess extracellular receptors, intracellular signaling protein phosphorylation, and intracellular and extracellular cytokine production in human NK cells. To assess extracellular receptor expression, 200 µL of whole blood was incubated with an extracellular staining (ECS) mix and cells were subsequently fixed and RBCs lysed prior to analysis. The phosphorylation status of signaling proteins was assessed in 500 µL of whole blood following co-incubation with interleukin (IL)-2/12 and an ECS mix for 20 min prior to cell fixation, RBC lysis, and subsequent permeabilization for staining with an intracellular staining (ICS) mix. Cytokine production (IFNγ) was similarly assessed by incubating 1 mL of whole blood with PMA-ionomycin or IL-2/12 prior to incubation with ECS and subsequent ICS antibodies. In addition, plasma was collected from stimulated samples prior to ECS for quantification of secreted IFNγ by ELISA. Results were consistent, despite inherent inter-patient variability. Although we did not investigate an exhaustive list of targets, this approach enabled quantification of representative ECS surface markers including activating (NKG2D and DNAM-1) and inhibitory (NKG2A, PD-1, TIGIT, and TIM-3) receptors, cytokine receptors (CD25, CD122, CD132, and CD212) and ICS markers associated with NK cell activation following stimulation, including signaling protein phosphorylation (p-STAT4, p-STAT5, p-p38 MAPK, p-S6) and IFNγ in both healthy donors and cancer patients. In addition, we compared extracellular receptor expression using whole blood vs. cryopreserved PBMCs and observed a significant difference in the expression of almost all receptors. The methods presented permit a relatively rapid parallel assessment of immune cell receptor expression, signaling protein activity, and cytokine production in a minimal volume of whole blood from both healthy donors and cancer patients.


Subject(s)
Flow Cytometry , Immunophenotyping , Interferon-gamma/blood , Intracellular Signaling Peptides and Proteins/blood , Killer Cells, Natural/metabolism , Neoplasms/blood , Receptors, Immunologic/blood , Aged , Biomarkers/blood , Case-Control Studies , Cryopreservation , Feasibility Studies , Female , Humans , Killer Cells, Natural/immunology , Male , Middle Aged , Neoplasms/immunology , Phenotype , Phosphorylation , Proof of Concept Study , Workflow
14.
Bio Protoc ; 9(16): e3335, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-33654840

ABSTRACT

Thymic Treg cell differentiation occurs via a two-step process. Step one generates Treg cell progenitors (TregP) and is driven by strong TCR interactions with antigens presented in the thymus. Step two is initiated by activation of STAT5 via IL-2, or IL-15, leading to mature Treg cells capable of emigrating from the thymus and mediating immune tolerance and homeostasis in peripheral tissues. Herein we describe an in vitro TregP cell differentiation assay that models the second, cytokine dependent, step of thymic Treg cell development. It can be utilized with relative ease to determine if a population of thymocytes represents a potential progenitor population for Treg cells as well as test how different cytokines or chemical inhibitors modulate the differentiation of known TregP cell populations into mature Treg cells.

15.
J Immunol Methods ; 458: 21-25, 2018 07.
Article in English | MEDLINE | ID: mdl-29654815

ABSTRACT

Natural Killer (NK) cells are essential in the biological fight against cancer and intracellular pathogens, and their level of activity has in many settings been used as a biomarker for a functional immune response. Currently, NK cell activity is measured using either 51Cr-release assays or flow cytometry based assays revealing the cells´ cytotoxic capacity or by stimulating them to produce cytokines. Although very effective, these are cumbersome techniques not suitable for high volume clinical laboratories. Recently, an assay has been introduced to measure NK cell activity in a simple and standardized manner. Following stimulation of NK cells in whole blood with a recombinant protein, it utilizes the concentration of IFNγ released to the plasma as a surrogate marker for NK cell activity. However, whole blood holds several sources of IFNγ which may blur the results and hamper the interpretation of the test. Therefore, the present study aimed at analyzing how specifically the test is measuring the activity of NK cells. Intracellular flow cytometry showed that NK cells, T cells, and Natural Killer T (NKT) cells were producing IFNγ in the assay, however when analyzing the distribution of lymphocytes in the IFNγ-expressing subset, the proportion of NK cells far exceeded the percentage of T-, and NKT cells (p < .0001). Hence, our data indicate that the readout of the test was indicative of the NK cells´ ability to mount a response and thus the results may pave the way for the assay to become applicable in the clinical setting as an estimate of NK cell activity for both diagnostic and prognostic purposes.


Subject(s)
Biological Assay/methods , Flow Cytometry/methods , Interferon-gamma/blood , Killer Cells, Natural/immunology , Adult , Biological Assay/standards , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/standards , Female , Flow Cytometry/standards , Healthy Volunteers , Humans , Immunity, Cellular/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Killer Cells, Natural/metabolism , Male , Middle Aged , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Specimen Handling/methods
16.
Mol Immunol ; 88: 138-147, 2017 08.
Article in English | MEDLINE | ID: mdl-28644973

ABSTRACT

The synergistic effect of IL-18/IL-15/IL-12 stimulation potently activates NK cells, inducing high levels of IFN-γ production. As a result of this potent stimulatory effect, NK cell pre-activation with IL-18/IL-15/IL-12 is being developed as a cancer immunotherapy. Ex vivo expansion of NK cells enables the efficient generation of large numbers of NK cells for wide-scale and repeated therapeutic use, and is thus an important source of NK cells for clinical application. However, the effects of IL-18/IL-15/IL-12 stimulation on ex vivo expanded NK cells have not yet been assessed. Thus, the present study assessed the effects of IL-18/IL-15/IL-12 stimulation on NK cells expanded ex vivo using K562-based artificial antigen presenting cells expressing membrane-bound IL-21. We report that ex vivo expanded NK cells stimulated with IL-18/IL-15/IL-12 produce high levels of IFN-γ and TNFα, have potent cytotoxicity, and maintain prolonged IFN-γ production following removal of stimulation. IL-18/IL-15/IL-12 stimulation induces a phenotypically unique IFN-γ-producing population with reduced CD16 expression and greater CD25 expression as compared to stimulated IFN-γ- NK cells and unstimulated NK cells. We elucidate that the mechanism of synergy for induction and maintenance of IFN-γ production is not due to a further enhancement of STAT4 activation compared to stimulation with IL-12 alone. Furthermore, we demonstrate that the synergistic increase in IFN-γ is not solely under translational regulation, as elevated levels of IFN-γ mRNA contribute to the synergistic increase in IFN-γ. Overall, this study characterizes the response of ex vivo expanded NK cells to IL-18/IL-15/IL-12 stimulation and supports the use of ex vivo expanded NK cells as a feasible and efficient source of IL-18/IL-15/IL-12 pre-activated NK cells for adoptive transfer in cancer immunotherapies.


Subject(s)
Interferon-gamma/biosynthesis , Interleukin-12/pharmacology , Interleukin-15/pharmacology , Interleukin-18/pharmacology , Killer Cells, Natural/immunology , Lymphocyte Activation/immunology , STAT4 Transcription Factor/metabolism , Adoptive Transfer/methods , Cells, Cultured , Humans , Immunotherapy/methods , Interleukin-2 Receptor alpha Subunit/biosynthesis , Interleukins/metabolism , Neoplasms/therapy , Receptors, IgG/biosynthesis , Tumor Necrosis Factor-alpha
17.
Fitoterapia ; 122: 26-33, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28827003

ABSTRACT

A new cycloartane sapogenol and a new cycloartane xyloside were isolated from Astragalus karjaginii BORISS along with thirteen known compounds. The structures of the new compounds were established as 3-oxo-6α,16ß,24(S),25-tetrahydroxycycloartane (1) and 6-O-ß-d-xylopyranosyl-3ß,6α,16ß,24(S),25-pentahydroxycycloartane (2) by 1D- and 2D-NMR experiments as well as ESIMS and HRMS analyses. The presence of the keto function at position 3 was reported for the first time for cyclocanthogenol sapogenin of Astragalus genus. In vitro immunomodulatory effects of the new compounds (1 and 2) along with the n-BuOH and MeOH extracts of A. karjaginii at two different doses (3 and 6µg) were tested on human whole blood for in vitro cytokine release (IL-2, IL-17A and IFN-γ) and hemolytic activities. The results confirmed that compound 2, a monodesmosidic saponin, had the strongest effect on the induction of both IL-2 (6µg, 6345.41±0.12pg/mL (×5), P<0.001) and a slight effect upon IL-17A (3µg, 5217.85±0.72pg/mL, P<0.05) cytokines compared to the other test compounds and positive controls (AST VII: Astragaloside VII; and QS-21: Quillaja saponin 21). All tested extracts and molecules also induced release of IFN-γ remarkably ranging between 5031.95±0.05pg/mL, P<0.001 for MeOH extract (6µg) and 5877.08±0.06pg/mL, P<0.001 for compound 1 (6µg) compared to QS-21 (6µg, 5924.87±0.1pg/mL, P<0.001). Administration of AST VII and other test compounds did not cause any hemolytic activity, whereas QS-21 resulted a noteworthy hemolysis.


Subject(s)
Astragalus Plant/chemistry , Hemolysis/drug effects , Interferon-gamma/metabolism , Interleukin-17/metabolism , Interleukin-2/metabolism , Triterpenes/pharmacology , Erythrocytes/drug effects , Humans , Molecular Structure , Plant Extracts/chemistry , Plant Roots/chemistry , Saponins/pharmacology
18.
Mol Immunol ; 62(1): 186-98, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25014904

ABSTRACT

Suppressor of cytokine signalling (SOCS) family members are crucial in the control and attenuation of cytokine induced responses via activation of the JAK/STAT, TLR and NF-kB signalling pathways. SOCS proteins orchestrate the termination of many types of immune responses and are often the targets of microbial pathogens exploiting SOCS mechanisms to evade the host's immune response. Through whole and lineage specific genome duplication events, the teleost cytokine/SOCS network is complex. Not only are the orthologues of all mammalian SOCS members present, namely cytokine inducible Src homology 2 (SH2)-containing protein (CISH) and SOCS-1 to -7, but multiple gene copies exist that may potentially become functionally divergent. In this paper we focus on the CISH genes in rainbow trout (Oncorhynchus mykiss), and have cloned two further paralogues, CISHa2 and CISHb2, additional to the known CISHa1 and CISHb1 genes. We present for the first time a comparative expression analysis of these four paralogues, to establish whether subfunctionalisation is apparent. In vivo examination of gene expression revealed a higher constitutive expression level of CISHa paralogues compared to CISHb expression in adult trout tissues. All CISHs were relatively highly abundant in immune tissues but CISHa2 and CISHb2 had highest expression in the heart and muscle. An inverse picture of CISH abundance during trout ontogeny was seen, and further hints at differential roles of the four genes in immune regulation and development. Stimulation of head kidney (HK) leukocytes with trout recombinant interleukin (rIL)-15 and rIL-21 had a major effect on CISHa2 and to a lesser extent CISHa1 expression. In HK macrophages rIL-1ß, phytohemagglutinin, and phorbol 12-myristate 13-acetate also had a strong impact on CISHa2 expression. Yersinia ruckeri infection caused a temporally and spatially differential onset of CISH expression that may be viewed in the context of pathogen evasion strategies. These data, against the backdrop of fish specific whole genome duplication events and functional divergence, provide the first evidence for differential roles of the four trout CISH genes in immune control and development.


Subject(s)
Immunity, Innate/genetics , Oncorhynchus mykiss/growth & development , Oncorhynchus mykiss/immunology , Suppressor of Cytokine Signaling Proteins/genetics , Amino Acid Sequence , Animals , Cells, Cultured , Cloning, Molecular , Fish Diseases/genetics , Fish Diseases/immunology , Gene Expression Regulation, Developmental , Male , Molecular Sequence Data , Oncorhynchus mykiss/genetics , Phylogeny , Sequence Analysis, DNA , Sequence Homology , Yersinia Infections/genetics , Yersinia Infections/immunology , Yersinia ruckeri/immunology
SELECTION OF CITATIONS
SEARCH DETAIL