Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.584
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 181(2): 410-423.e17, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32187527

ABSTRACT

Memories are believed to be encoded by sparse ensembles of neurons in the brain. However, it remains unclear whether there is functional heterogeneity within individual memory engrams, i.e., if separate neuronal subpopulations encode distinct aspects of the memory and drive memory expression differently. Here, we show that contextual fear memory engrams in the mouse dentate gyrus contain functionally distinct neuronal ensembles, genetically defined by the Fos- or Npas4-dependent transcriptional pathways. The Fos-dependent ensemble promotes memory generalization and receives enhanced excitatory synaptic inputs from the medial entorhinal cortex, which we find itself also mediates generalization. The Npas4-dependent ensemble promotes memory discrimination and receives enhanced inhibitory drive from local cholecystokinin-expressing interneurons, the activity of which is required for discrimination. Our study provides causal evidence for functional heterogeneity within the memory engram and reveals synaptic and circuit mechanisms used by each ensemble to regulate the memory discrimination-generalization balance.


Subject(s)
Fear/physiology , Memory/physiology , Neurons/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Brain/physiology , Dentate Gyrus/physiology , Interneurons/physiology , Male , Mice , Mice, Inbred C57BL , Neurons/physiology , Proto-Oncogene Proteins c-fos/metabolism
2.
Cell ; 177(3): 654-668.e15, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30929900

ABSTRACT

New neurons arise from quiescent adult neural progenitors throughout life in specific regions of the mammalian brain. Little is known about the embryonic origin and establishment of adult neural progenitors. Here, we show that Hopx+ precursors in the mouse dentate neuroepithelium at embryonic day 11.5 give rise to proliferative Hopx+ neural progenitors in the primitive dentate region, and they, in turn, generate granule neurons, but not other neurons, throughout development and then transition into Hopx+ quiescent radial glial-like neural progenitors during an early postnatal period. RNA-seq and ATAC-seq analyses of Hopx+ embryonic, early postnatal, and adult dentate neural progenitors further reveal common molecular and epigenetic signatures and developmental dynamics. Together, our findings support a "continuous" model wherein a common neural progenitor population exclusively contributes to dentate neurogenesis throughout development and adulthood. Adult dentate neurogenesis may therefore represent a lifelong extension of development that maintains heightened plasticity in the mammalian hippocampus.


Subject(s)
Embryonic Stem Cells/metabolism , Neurogenesis , Animals , Cell Differentiation , Dentate Gyrus/metabolism , Embryo, Mammalian/metabolism , Embryonic Stem Cells/cytology , Female , Gene Expression Regulation, Developmental , Hippocampus/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neural Stem Cells/cytology , Neural Stem Cells/metabolism
3.
EMBO J ; 43(3): 317-338, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177500

ABSTRACT

Lifelong hippocampal neurogenesis is maintained by a pool of multipotent adult neural stem cells (aNSCs) residing in the subgranular zone of the dentate gyrus (DG). The mechanisms guiding transition of NSCs from the developmental to the adult state remain unclear. We show here, by using nestin-based reporter mice deficient for cyclin D2, that the aNSC pool is established through cyclin D2-dependent proliferation during the first two weeks of life. The absence of cyclin D2 does not affect normal development of the dentate gyrus until birth but prevents postnatal formation of radial glia-like aNSCs. Furthermore, retroviral fate mapping reveals that aNSCs are born on-site from precursors located in the dentate gyrus shortly after birth. Taken together, our data identify the critical time window and the spatial location of the precursor divisions that generate the persistent population of aNSCs and demonstrate the central role of cyclin D2 in this process.


Subject(s)
Neural Stem Cells , Neurons , Animals , Mice , Cyclin D2/genetics , Dentate Gyrus , Hippocampus , Neurogenesis
4.
EMBO J ; 42(22): e113524, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37743770

ABSTRACT

For decades, the mammalian hippocampus has been the focus of cellular, anatomical, behavioral, and computational studies aimed at understanding the fundamental mechanisms underlying cognition. Long recognized as the brain's seat for learning and memory, a wealth of knowledge has been accumulated on how the hippocampus processes sensory input, builds complex associations between objects, events, and space, and stores this information in the form of memories to be retrieved later in life. However, despite major efforts, our understanding of hippocampal cognitive function remains fragmentary, and models trying to explain it are continually revisited. Here, we review the literature across all above-mentioned domains and offer a new perspective by bringing attention to the most distinctive, and generally neglected, feature of the mammalian hippocampal formation, namely, the structural separability of the two blades of the dentate gyrus into "supra-pyramidal" and "infra-pyramidal". Next, we discuss recent reports supporting differential effects of adult neurogenesis in the regulation of mature granule cell activity in these two blades. We propose a model for how differences in connectivity and adult neurogenesis in the two blades can potentially provide a substrate for subtly different cognitive functions.


Subject(s)
Dentate Gyrus , Hippocampus , Animals , Dentate Gyrus/physiology , Hippocampus/physiology , Neurons/physiology , Learning , Memory/physiology , Neurogenesis/physiology , Mammals
5.
Development ; 151(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38265146

ABSTRACT

Lysosomes are intracellular organelles responsible for degrading diverse macromolecules delivered from several pathways, including the endo-lysosomal and autophagic pathways. Recent reports have suggested that lysosomes are essential for regulating neural stem cells in developing, adult and aged brains. However, the activity of these lysosomes has yet to be monitored in these brain tissues. Here, we report the development of a new probe to measure lysosomal protein degradation in brain tissue by immunostaining. Our results indicate that lysosomal protein degradation fluctuates in neural stem cells of the hippocampal dentate gyrus, depending on age and brain disorders. Neural stem cells increase their lysosomal activity during hippocampal development in the dentate gyrus, but aging and aging-related disease reduce lysosomal activity. In addition, physical exercise increases lysosomal activity in neural stem cells and astrocytes in the dentate gyrus. We therefore propose that three different stages of lysosomal activity exist: the state of increase during development, the stable state during adulthood and the state of reduction due to damage caused by either age or disease.


Subject(s)
Dentate Gyrus , Neural Stem Cells , Animals , Mice , Dentate Gyrus/metabolism , Proteolysis , Neural Stem Cells/metabolism , Astrocytes/metabolism , Lysosomes/metabolism
6.
Proc Natl Acad Sci U S A ; 121(40): e2405117121, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39312657

ABSTRACT

Cholinergic neurons in the basal forebrain play a crucial role in regulating adult hippocampal neurogenesis (AHN). However, the circuit and molecular mechanisms underlying cholinergic modulation of AHN, especially the initial stages of this process related to the generation of newborn progeny from quiescent radial neural stem cells (rNSCs), remain unclear. Here, we report that stimulation of the cholinergic circuits projected from the diagonal band of Broca (DB) to the dentate gyrus (DG) neurogenic niche promotes proliferation and morphological development of rNSCs, resulting in increased neural stem/progenitor pool and rNSCs with longer radial processes and larger busy heads. Interestingly, DG granule cells (GCs) are required for DB-DG cholinergic circuit-dependent modulation of proliferation and morphogenesis of rNSCs. Furthermore, single-nucleus RNA sequencing of DG reveals cell type-specific transcriptional changes in response to cholinergic circuit stimulation, with GCs (among all the DG niche cells) exhibiting the most extensive transcriptional changes. Our findings shed light on how the DB-DG cholinergic circuits orchestrate the key niche components to support neurogenic function and morphogenesis of rNSCs at the circuit and molecular levels.


Subject(s)
Cholinergic Neurons , Dentate Gyrus , Neural Stem Cells , Neurogenesis , Animals , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Dentate Gyrus/metabolism , Dentate Gyrus/cytology , Neurogenesis/physiology , Cholinergic Neurons/metabolism , Cholinergic Neurons/physiology , Mice , Cell Proliferation , Adult Stem Cells/metabolism , Adult Stem Cells/physiology , Adult Stem Cells/cytology , Morphogenesis , Stem Cell Niche/physiology , Male
7.
Mol Cell Proteomics ; 23(8): 100811, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38996918

ABSTRACT

Highly specialized cells are fundamental for the proper functioning of complex organs. Variations in cell-type-specific gene expression and protein composition have been linked to a variety of diseases. Investigation of the distinctive molecular makeup of these cells within tissues is therefore critical in biomedical research. Although several technologies have emerged as valuable tools to address this cellular heterogeneity, most workflows lack sufficient in situ resolution and are associated with high costs and extremely long analysis times. Here, we present a combination of experimental and computational approaches that allows a more comprehensive investigation of molecular heterogeneity within tissues than by either shotgun LC-MS/MS or MALDI imaging alone. We applied our pipeline to the mouse brain, which contains a wide variety of cell types that not only perform unique functions but also exhibit varying sensitivities to insults. We explored the distinct neuronal populations within the hippocampus, a brain region crucial for learning and memory that is involved in various neurological disorders. As an example, we identified the groups of proteins distinguishing the neuronal populations of the dentate gyrus (DG) and the cornu ammonis (CA) in the same brain section. Most of the annotated proteins matched the regional enrichment of their transcripts, thereby validating the method. As the method is highly reproducible, the identification of individual masses through the combination of MALDI-IMS and LC-MS/MS methods can be used for the much faster and more precise interpretation of MALDI-IMS measurements only. This greatly speeds up spatial proteomic analyses and allows the detection of local protein variations within the same population of cells. The method's general applicability has the potential to be used to investigate different biological conditions and tissues and a much higher throughput than other techniques making it a promising approach for clinical routine applications.


Subject(s)
Proteomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry , Animals , Proteomics/methods , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Mice , Mice, Inbred C57BL , Hippocampus/metabolism , Male , Neurons/metabolism , Brain/metabolism , Dentate Gyrus/metabolism , Liquid Chromatography-Mass Spectrometry
8.
Proc Natl Acad Sci U S A ; 120(50): e2307509120, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38064513

ABSTRACT

Hilar mossy cells (MCs) are principal excitatory neurons of the dentate gyrus (DG) that play critical roles in hippocampal function and have been implicated in brain disorders such as anxiety and epilepsy. However, the mechanisms by which MCs contribute to DG function and disease are poorly understood. A defining feature of MCs is the promoter activity of the dopamine D2 receptor (D2R) gene (Drd2), and previous work indicates a key role for dopaminergic signaling in the DG. Additionally, the involvement of D2R signaling in cognition and neuropsychiatric conditions is well known. Surprisingly, though, the function of MC D2Rs remains largely unexplored. In this study, we show that selective and conditional removal of Drd2 from MCs of adult mice impaired spatial memory, promoted anxiety-like behavior, and was proconvulsant. To determine the subcellular expression of D2Rs in MCs, we used a D2R knockin mouse which revealed that D2Rs are enriched in the inner molecular layer of the DG, where MCs establish synaptic contacts with granule cells (GCs). D2R activation by exogenous and endogenous dopamine reduced MC to dentate GC synaptic transmission, most likely by a presynaptic mechanism. In contrast, exogenous dopamine had no significant impact on MC excitatory inputs and passive and active properties. Our findings support that MC D2Rs are essential for proper DG function by reducing MC excitatory drive onto GCs. Lastly, impairment of MC D2R signaling could promote anxiety and epilepsy, therefore highlighting a potential therapeutic target.


Subject(s)
Epilepsy , Mossy Fibers, Hippocampal , Receptors, Dopamine D2 , Animals , Mice , Dentate Gyrus/metabolism , Dopamine/metabolism , Epilepsy/genetics , Epilepsy/metabolism , Hippocampus/metabolism , Mossy Fibers, Hippocampal/physiology , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Anxiety/genetics , Anxiety/metabolism
9.
Proc Natl Acad Sci U S A ; 120(51): e2312752120, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38091292

ABSTRACT

Somatostatin-expressing interneurons (SOMIs) in the mouse dentate gyrus (DG) receive feedforward excitation from granule cell (GC) mossy fiber (MF) synapses and provide feedback lateral inhibition onto GC dendrites to support environment representation in the DG network. Although this microcircuitry has been implicated in memory formation, little is known about activity-dependent plastic changes at MF-SOMI synapses and their influence on behavior. Here, we report that the metabotropic glutamate receptor 1α (mGluR1α) is required for the induction of associative long-term potentiation (LTP) at MF-SOMI synapses. Pharmacological block of mGluR1α, but not mGluR5, prevented synaptic weight changes. LTP at MF-SOMI synapses was postsynaptically induced, required increased intracellular Ca2+, involved G-protein-mediated and Ca2+-dependent (extracellular signal-regulated kinase) ERK1/2 pathways, and the activation of NMDA receptors. Specific knockdown of mGluR1α in DG-SOMIs by small hairpin RNA expression prevented MF-SOMI LTP, reduced SOMI recruitment, and impaired object location memory. Thus, postsynaptic mGluR1α-mediated MF-plasticity at SOMI input synapses critically supports DG-dependent mnemonic functions.


Subject(s)
Mossy Fibers, Hippocampal , Neuronal Plasticity , Mice , Animals , Mossy Fibers, Hippocampal/physiology , Neuronal Plasticity/physiology , Interneurons/physiology , Long-Term Potentiation/physiology , Synapses/metabolism , Somatostatin/metabolism , Dentate Gyrus/metabolism , Synaptic Transmission
10.
J Neurosci ; 44(15)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38413230

ABSTRACT

Adult-born granule cells (abGCs) exhibit a transient period of elevated synaptic plasticity that plays an important role in hippocampal function. Various mechanisms have been implicated in this critical period for enhanced plasticity, including minimal GABAergic inhibition and high intrinsic excitability conferred by T-type Ca2+ channels. Here we assess the contribution of synaptic inhibition and intrinsic excitability to long-term potentiation (LTP) in abGCs of adult male and female mice using perforated patch recordings. We show that the timing of critical period plasticity is unaffected by intact GABAergic inhibition such that 4-6-week-old abGCs exhibit LTP that is absent by 8 weeks. Blocking GABAA receptors, or partial blockade of GABA release from PV and nNos-expressing interneurons by a µ-opioid receptor agonist, strongly enhances LTP in 4-week-old GCs, suggesting that minimal inhibition does not underlie critical period plasticity. Instead, the closure of the critical period coincides with a reduction in the contribution of T-type Ca2+ channels to intrinsic excitability, and a selective T-type Ca2+ channel antagonist prevents LTP in 4-week-old but not mature GCs. Interestingly, whole-cell recordings that facilitate T-type Ca2+ channel activity in mature GCs unmasks LTP (with inhibition intact) that is also sensitive to a T-type Ca2+ channel antagonist, suggesting T-type channel activity in mature GCs is suppressed by native intracellular signaling. Together these results show that abGCs use T-type Ca2+ channels to overcome inhibition, providing new insight into how high intrinsic excitability provides young abGCs a competitive advantage for experience-dependent synaptic plasticity.


Subject(s)
Long-Term Potentiation , Neurons , Mice , Animals , Male , Female , Neurons/physiology , Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Hippocampus/physiology , gamma-Aminobutyric Acid/pharmacology
11.
J Neurosci ; 44(18)2024 May 01.
Article in English | MEDLINE | ID: mdl-38503495

ABSTRACT

Repetitive firing of granule cells (GCs) in the dentate gyrus (DG) facilitates synaptic transmission to the CA3 region. This facilitation can gate and amplify the flow of information through the hippocampus. High-frequency bursts in the DG are linked to behavior and plasticity, but GCs do not readily burst. Under normal conditions, a single shock to the perforant path in a hippocampal slice typically drives a GC to fire a single spike, and only occasionally more than one spike is seen. Repetitive spiking in GCs is not robust, and the mechanisms are poorly understood. Here, we used a hybrid genetically encoded voltage sensor to image voltage changes evoked by cortical inputs in many mature GCs simultaneously in hippocampal slices from male and female mice. This enabled us to study relatively infrequent double and triple spikes. We found GCs are relatively homogeneous and their double spiking behavior is cell autonomous. Blockade of GABA type A receptors increased multiple spikes and prolonged the interspike interval, indicating inhibitory interneurons limit repetitive spiking and set the time window for successive spikes. Inhibiting synaptic glutamate release showed that recurrent excitation mediated by hilar mossy cells contributes to, but is not necessary for, multiple spiking. Blockade of T-type Ca2+ channels did not reduce multiple spiking but prolonged interspike intervals. Imaging voltage changes in different GC compartments revealed that second spikes can be initiated in either dendrites or somata. Thus, pharmacological and biophysical experiments reveal roles for both synaptic circuitry and intrinsic excitability in GC repetitive spiking.


Subject(s)
Action Potentials , Dentate Gyrus , Animals , Dentate Gyrus/physiology , Dentate Gyrus/cytology , Male , Mice , Female , Action Potentials/physiology , Synapses/physiology , Neurons/physiology , Mice, Inbred C57BL , Synaptic Transmission/physiology , Mice, Transgenic
12.
J Neurosci ; 44(43)2024 Oct 23.
Article in English | MEDLINE | ID: mdl-39214704

ABSTRACT

Neuregulin1 (Nrg1) signaling is critical for neuronal development and function from fate specification to synaptic plasticity. Type III Nrg1 is a synaptic protein which engages in bidirectional signaling with its receptor ErbB4. Forward signaling engages ErbB4 phosphorylation, whereas back signaling engages two known mechanisms: (1) local axonal PI3K-AKT signaling and (2) cleavage by γ-secretase resulting in cytosolic release of the intracellular domain (ICD), which can traffic to the nucleus (Bao et al., 2003; Hancock et al., 2008). To dissect the contribution of these alternate signaling strategies to neuronal development, we generated a transgenic mouse with a missense mutation (V321L) in the Nrg1 transmembrane domain that disrupts nuclear back signaling with minimal effects on forward signaling or local back signaling and was previously found to be associated with psychosis (Walss-Bass et al., 2006). We combined RNA sequencing, retroviral fate mapping of neural stem cells, behavioral analyses, and various network analyses of transcriptomic data to investigate the effect of disrupting Nrg1 nuclear back signaling in the dentate gyrus (DG) of male and female mice. The V321L mutation impairs nuclear translocation of the Nrg1 ICD and alters gene expression in the DG. V321L mice show reduced stem cell proliferation, altered cell cycle dynamics, fate specification defects, and dendritic dysmorphogenesis. Orthologs of known schizophrenia (SCZ)-susceptibility genes were dysregulated in the V321L DG. These genes coordinated a larger network with other dysregulated genes. Weighted gene correlation network analysis and protein interaction network analyses revealed striking similarity between DG transcriptomes of V321L mouse and humans with SCZ.


Subject(s)
Dentate Gyrus , Gene Regulatory Networks , Neuregulin-1 , Neurogenesis , Schizophrenia , Signal Transduction , Animals , Female , Male , Mice , Cell Nucleus/metabolism , Dentate Gyrus/metabolism , Gene Regulatory Networks/genetics , Genetic Predisposition to Disease/genetics , Mice, Inbred C57BL , Mice, Transgenic , Mutation, Missense , Neural Stem Cells/metabolism , Neuregulin-1/genetics , Neuregulin-1/metabolism , Neurogenesis/physiology , Neurogenesis/genetics , Schizophrenia/genetics , Schizophrenia/metabolism , Signal Transduction/genetics , Signal Transduction/physiology
13.
J Neurosci ; 44(10)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38129134

ABSTRACT

Everyday life is composed of events organized by changes in contexts, with each event containing an unfolding sequence of occurrences. A major challenge facing our memory systems is how to integrate sequential occurrences within events while also maintaining their details and avoiding over-integration across different contexts. We asked if and how distinct hippocampal subfields come to hierarchically and, in parallel, represent both event context and subevent occurrences with learning. Female and male human participants viewed sequential events defined as sequences of objects superimposed on shared color frames while undergoing high-resolution fMRI. Importantly, these events were repeated to induce learning. Event segmentation, as indexed by increased reaction times at event boundaries, was observed in all repetitions. Temporal memory decisions were quicker for items from the same event compared to across different events, indicating that events shaped memory. With learning, hippocampal CA3 multivoxel activation patterns clustered to reflect the event context, with more clustering correlated with behavioral facilitation during event transitions. In contrast, in the dentate gyrus (DG), temporally proximal items that belonged to the same event became associated with more differentiated neural patterns. A computational model explained these results by dynamic inhibition in the DG. Additional similarity measures support the notion that CA3 clustered representations reflect shared voxel populations, while DG's distinct item representations reflect different voxel populations. These findings suggest an interplay between temporal differentiation in the DG and attractor dynamics in CA3. They advance our understanding of how knowledge is structured through integration and separation across time and context.


Subject(s)
Hippocampus , Learning , Humans , Male , Female , Hippocampus/physiology , Magnetic Resonance Imaging , Inhibition, Psychological , Dentate Gyrus/physiology
14.
J Neurosci ; 44(43)2024 Oct 23.
Article in English | MEDLINE | ID: mdl-39251354

ABSTRACT

We used virus-mediated anterograde and retrograde tracing, optogenetic modulation, immunostaining, in situ hybridization, and patch-clamp recordings in acute brain slices to study the release mechanism and µ-opioid modulation of the dual glutamatergic/GABAergic inputs from the ventral tegmental area and supramammillary nucleus to the granule cells of the dorsal hippocampus of male and female mice. In keeping with previous reports showing that the two transmitters are released by separate active zones within the same terminals, we found that the short-term plasticity and pharmacological modulation of the glutamatergic and GABAergic currents are indistinguishable. We further found that glutamate and GABA release at these synapses are both virtually completely mediated by N- and P/Q-type calcium channels. We then investigated µ-opioid modulation of these synapses and found that activation of µ-opioid receptors (MORs) strongly inhibits the glutamate and GABA release, mostly through inhibition of presynaptic N-type channels. However, the modulation by MORs of these dual synapses is complex, as it likely includes also a disinhibition due to downmodulation of local GABAergic interneurons which make direct axo-axonic contacts with the dual glutamatergic/GABAergic terminals. We discuss how this opioid modulation may enhance LTP at the perforant path inputs, potentially contributing to reinforce memories of drug-associated contexts.


Subject(s)
Glutamic Acid , Hippocampus , Receptors, Opioid, mu , Animals , Receptors, Opioid, mu/metabolism , Mice , Male , Glutamic Acid/metabolism , Female , Hippocampus/metabolism , Hippocampus/drug effects , Hippocampus/physiology , gamma-Aminobutyric Acid/metabolism , Mice, Inbred C57BL , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , GABAergic Neurons/drug effects , Neural Pathways/physiology , Neural Pathways/drug effects , Neural Pathways/metabolism , Synapses/metabolism , Synapses/drug effects , Synapses/physiology
15.
Development ; 149(21)2022 11 01.
Article in English | MEDLINE | ID: mdl-36196585

ABSTRACT

The dentate gyrus, a gateway for input to the hippocampal formation, arises from progenitors in the medial telencephalic neuroepithelium adjacent to the cortical hem. Dentate progenitors navigate a complex migratory path guided by two cell populations that arise from the hem, the fimbrial glia and Cajal-Retzius (CR) cells. As the hem expresses multiple Wnt genes, we examined whether ß-catenin, which mediates canonical Wnt signaling and also participates in cell adhesion, is necessary for the development of hem-derived lineages. We report that, in mice, the fimbrial glial scaffold is disorganized and CR cells are mispositioned upon hem-specific disruption of ß-catenin. Consequently, the dentate migratory stream is severely affected, and the dentate gyrus fails to form. Using selective Cre drivers, we further determined that ß-catenin function is required in the fimbrial glial scaffold, but not in the CR cells, for guiding the dentate migration. Our findings highlight a primary requirement for ß-catenin for the organization of the fimbrial scaffold and a secondary role for this factor in dentate gyrus morphogenesis.


Subject(s)
Dentate Gyrus , Morphogenesis , beta Catenin , Animals , Mice , beta Catenin/metabolism , Dentate Gyrus/metabolism , Hippocampus/metabolism , Morphogenesis/genetics , Neuroglia/metabolism , Neurons/metabolism
16.
Stem Cells ; 2024 Oct 21.
Article in English | MEDLINE | ID: mdl-39432578

ABSTRACT

In the dentate gyrus of the adult hippocampus, neurogenesis from neural stem cells (NSCs) is regulated by Wnt signals from the local microenvironment. The Wnt/ß-catenin pathway is active in NSCs, where it regulates proliferation and fate commitment, and subsequently its activity is strongly attenuated. The mechanisms controlling Wnt activity are poorly understood. In stem cells from adult peripheral tissues, secreted R-spondin proteins (RSPO1-4) interact with LGR4-6 receptors and control Wnt signaling strength. Here, we found that RSPO1-3 and LGR4-6 are expressed in the adult dentate gyrus and in cultured NSCs isolated from the adult mouse hippocampus. LGR4-5 expression decreased in cultured NSCs upon differentiation, concomitantly with the reported decrease in Wnt activity. Treatment with RSPO1-3 increased NSC proliferation and the expression of Cyclin D1, but did not induce the expression of Axin2 or RNF43, two well-described Wnt target genes. However, RSPOs enhanced the effect of Wnt3a on Axin2 and RNF43 expression, as well as on Wnt/ß-catenin reporter activity, indicating that they can potentiate Wnt activity in NSCs. Moreover, RSPO1-3 were found to be expressed by cultured dentate gyrus astrocytes, a crucial component of the neurogenic niche. In co-culture experiments, the astrocyte-induced proliferation of NSCs was prevented by RSPO2 knockdown in astrocytes and LGR5 knockdown in hippocampal NSCs. Additionally, RSPO2 knockdown in the adult mouse dentate gyrus reduced proliferation of neural stem and progenitor cells in vivo. Altogether, our results indicate that RSPO/LGR signaling is present in the dentate gyrus and plays a crucial role in regulating neural precursor cell proliferation.

17.
Cereb Cortex ; 34(10)2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39367727

ABSTRACT

Behavioral despair is one of the clinical manifestations of major depressive disorder and an important cause of disability and death. However, the neural circuit mechanisms underlying behavioral despair are poorly understood. In a well-established chronic behavioral despair (CBD) mouse model, using a combination of viral tracing, in vivo fiber photometry, chemogenetic and optogenetic manipulations, in vitro electrophysiology, pharmacological profiling techniques, and behavioral tests, we investigated the neural circuit mechanisms in regulating behavioral despair. Here, we found that CBD enhanced CaMKIIα neuronal excitability in the dorsal dentate gyrus (dDG) and dDGCaMKIIα neurons involved in regulating behavioral despair in CBD mice. Besides, dDGCaMKIIα neurons received 5-HT inputs from median raphe nucleus (MRN) and were mediated by 5-HT1A receptors, whereas MRN5-HT neurons received CaMKIIα inputs from lateral hypothalamic (LH) and were mediated by AMPA receptors to regulate behavioral despair. Furthermore, fluvoxamine exerted its role in resisting behavioral despair through the LH-MRN-dDG circuit. These findings suggest that a previously unidentified circuit of LHCaMKIIα-MRN5-HT-dDGCaMKIIα mediates behavioral despair induced by CBD. Furthermore, these support the important role of AMPA receptors in MRN and 5-HT1A receptors in dDG that might be the potential targets for treatment of behavioral despair, and explain the neural circuit mechanism of fluvoxamine-resistant behavioral despair.


Subject(s)
Dentate Gyrus , Hypothalamic Area, Lateral , Animals , Dentate Gyrus/physiology , Dentate Gyrus/drug effects , Mice , Male , Hypothalamic Area, Lateral/physiology , Receptor, Serotonin, 5-HT1A/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Neural Pathways/physiology , Neurons/physiology , Neurons/metabolism , Mice, Inbred C57BL , Fluvoxamine/pharmacology , Disease Models, Animal , Depression , Optogenetics , Receptors, AMPA/metabolism
18.
Cell Mol Life Sci ; 81(1): 37, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38214769

ABSTRACT

The mechanism underlying the transition from the pre-symptomatic to the symptomatic state is a crucial aspect of epileptogenesis. SYN2 is a member of a multigene family of synaptic vesicle phosphoproteins playing a fundamental role in controlling neurotransmitter release. Human SYN2 gene mutations are associated with epilepsy and autism spectrum disorder. Mice knocked out for synapsin II (SynII KO) are prone to epileptic seizures that appear after 2 months of age. However, the involvement of the endocannabinoid system, known to regulate seizure development and propagation, in the modulation of the excitatory/inhibitory balance in the epileptic hippocampal network of SynII KO mice has not been explored. In this study, we investigated the impact of endocannabinoids on glutamatergic and GABAergic synapses at hippocampal dentate gyrus granule cells in young pre-symptomatic (1-2 months old) and adult symptomatic (5-8 months old) SynII KO mice. We observed an increase in endocannabinoid-mediated depolarization-induced suppression of excitation in young SynII KO mice, compared to age-matched wild-type controls. In contrast, the endocannabinoid-mediated depolarization-induced suppression of inhibition remained unchanged in SynII KO mice at both ages. This selective alteration of excitatory synaptic transmission was accompanied by changes in hippocampal endocannabinoid levels and cannabinoid receptor type 1 distribution among glutamatergic and GABAergic synaptic terminals contacting the granule cells of the dentate gyrus. Finally, inhibition of type-1 cannabinoid receptors in young pre-symptomatic SynII KO mice induced seizures during a tail suspension test. Our results suggest that endocannabinoids contribute to maintaining network stability in a genetic mouse model of human epilepsy.


Subject(s)
Autism Spectrum Disorder , Epilepsy , Synapsins , Animals , Mice , Endocannabinoids , Mice, Knockout , Phenotype , Seizures , Synapses , Synapsins/genetics
19.
Proc Natl Acad Sci U S A ; 119(32): e2106830119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35930667

ABSTRACT

The dentate gyrus (DG) plays critical roles in cognitive functions, such as learning, memory, and spatial coding, and its dysfunction is implicated in various neuropsychiatric disorders. However, it remains largely unknown how information is represented in this region. Here, we recorded neuronal activity in the DG using Ca2+ imaging in freely moving mice and analyzed this activity using machine learning. The activity patterns of populations of DG neurons enabled us to successfully decode position, speed, and motion direction in an open field, as well as current and future location in a T-maze, and each individual neuron was diversely and independently tuned to these multiple information types. Our data also showed that each type of information is unevenly distributed in groups of DG neurons, and different types of information are independently encoded in overlapping, but different, populations of neurons. In alpha-calcium/calmodulin-dependent kinase II (αCaMKII) heterozygous knockout mice, which present deficits in spatial remote and working memory, the decoding accuracy of position in the open field and future location in the T-maze were selectively reduced. These results suggest that multiple types of information are independently distributed in DG neurons.


Subject(s)
Cognition , Dentate Gyrus , Neurons , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cognition/physiology , Dentate Gyrus/cytology , Dentate Gyrus/physiology , Memory, Short-Term/physiology , Mice , Mice, Knockout , Neurons/physiology
20.
Proc Natl Acad Sci U S A ; 119(33): e2117903119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939697

ABSTRACT

Dopamine D1 receptors (D1Rs) in the hippocampal dentate gyrus (DG) are essential for antidepressant effects. However, the midbrain dopaminergic neurons, the major source of dopamine in the brain, only sparsely project to DG, suggesting possible activation of DG D1Rs by endogenous substances other than dopamine. We have examined this possibility using electrophysiological and biochemical techniques and found robust activation of D1Rs in mouse DG neurons by noradrenaline. Noradrenaline at the micromolar range potentiated synaptic transmission at the DG output and increased the phosphorylation of protein kinase A substrates in DG via activation of D1Rs and ß adrenergic receptors. Neuronal excitation preferentially enhanced noradrenaline-induced synaptic potentiation mediated by D1Rs with minor effects on ß-receptor-dependent potentiation. Increased voluntary exercise by wheel running also enhanced noradrenaline-induced, D1R-mediated synaptic potentiation, suggesting a distinct functional role of the noradrenaline-D1R signaling. We then examined the role of this signaling in antidepressant effects using mice exposed to chronic restraint stress. In the stressed mice, an antidepressant acting on the noradrenergic system induced a mature-to-immature change in the DG neuron phenotype, a previously proposed cellular substrate for antidepressant action. This effect was evident only in mice subjected to wheel running and blocked by a D1R antagonist. These results suggest a critical role of noradrenaline-induced activation of D1Rs in antidepressant effects in DG. Experience-dependent regulation of noradrenaline-D1R signaling may determine responsiveness to antidepressant drugs in depressive disorders.


Subject(s)
Dentate Gyrus , Depressive Disorder , Dopamine , Dopaminergic Neurons , Norepinephrine , Receptors, Dopamine D1 , Animals , Antidepressive Agents/pharmacology , Dentate Gyrus/metabolism , Depressive Disorder/metabolism , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Mice , Norepinephrine/metabolism , Norepinephrine/pharmacology , Receptors, Dopamine D1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL