Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Proc Natl Acad Sci U S A ; 121(12): e2322453121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38470919

ABSTRACT

The phlebotomine sandfly, Lutzomyia longipalpis, a major vector of the Leishmania parasite, uses terpene pheromones to attract conspecifics for mating. Examination of the L. longipalpis genome revealed a putative terpene synthase (TPS), which-upon heterologous expression in, and purification from, Escherichia coli-yielded a functional enzyme. The TPS, termed LlTPS, converted geranyl diphosphate (GPP) into a mixture of monoterpenes with low efficiency, of which ß-ocimene was the major product. (E,E)-farnesyl diphosphate (FPP) principally produced small amounts of (E)-ß-farnesene, while (Z,E)- and (Z,Z)-FPP yielded a mixture of bisabolene isomers. None of these mono- and sesquiterpenes are known volatiles of L. longipalpis. Notably, however, when provided with (E,E,E)-geranylgeranyl diphosphate (GGPP), LlTPS gave sobralene as its major product. This diterpene pheromone is released by certain chemotypes of L. longipalpis, in particular those found in the Ceará state of Brazil. Minor diterpene components were also seen as products of the enzyme that matched those seen in a sandfly pheromone extract.


Subject(s)
Diterpenes , Psychodidae , Animals , Pheromones/metabolism , Psychodidae/metabolism , Diterpenes/metabolism , Terpenes , Monoterpenes
2.
Biochem J ; 481(12): 779-791, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38829839

ABSTRACT

ent-Kaurene is a biosynthetic intermediate diterpene of phytohormone gibberellins, and is biosynthesized from geranylgeranyl diphosphate via ent-copalyl diphosphate (ent-CDP). The successive cyclization is catalyzed by two distinct diterpene synthases, ent-CDP synthase (ent-CPS) and ent-kaurene synthase (KS). Homologs of these diterpene synthase genes have been reported to be involved in the biosynthesis of specialized-metabolic diterpenoids for defense in several plant species, including rice (Oryza sativa). These diterpene synthases consist of three domains, αßγ domains. Active sites of ent-CPS exist at the interface of ß and γ domain, while those of KS are located within the α domain. We herein carried out domain-deletion experiments using several KSs and KS like enzymes (KSLs) to obtain insights into the roles of domains other than active-site domains. As previously reported in taxadiene synthase, deletion of γ or ßγ domains drastically decreased activities of specialized-metabolic OsKSL5, OsKSL8, OsKSL7 and OsKSL10 in O. sativa. However, unexpectedly, only α domains of several gibberellin-biosynthetic KSs, including OsKS1 in O. sativa, AtKS in Arabidopsis thaliana, TaKS in wheat (Triticum aestivum) and BdKS1 in Brachypodium distachyon, retained their original functions. Additionally, the specialized-metabolic OsKSL4, which is closely related to OsKS1, also functioned without its ßγ domains. Domain-swapping experiments showed that replacing ßγ domains in OsKSL7 with those from other KS/KSLs retained the OsKSL7 activity. Moreover, deletion of ßγ domains of bifunctional PpCPS/KS in moss (Physcomitrella patens) drastically impaired its KS-related activity. Thus, we demonstrate that monofunctional gibberellin-biosynthetic KSs are the unique diterpene synthases that retain their functions without ßγ domains.


Subject(s)
Alkyl and Aryl Transferases , Gibberellins , Oryza , Plant Proteins , Gibberellins/metabolism , Alkyl and Aryl Transferases/metabolism , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/chemistry , Oryza/enzymology , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Catalytic Domain , Diterpenes, Kaurane/metabolism , Diterpenes, Kaurane/chemistry , Arabidopsis/genetics , Arabidopsis/enzymology , Arabidopsis/metabolism , Diterpenes/metabolism , Diterpenes/chemistry , Protein Domains , Catalysis
3.
Plant J ; 116(2): 375-388, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37395679

ABSTRACT

Scutellaria barbata is a traditional Chinese herb medicine and a major source of bioactive clerodane diterpenoids. However, barely clerodanes have been isolated from the closely related S. baicalensis. Here we assembled a chromosome-level genome of S. barbata and identified three class II clerodane diterpene synthases (SbarKPS1, SbarKPS2 and SbaiKPS1) from these two organisms. Using in vitro and in vivo assays, SbarKPS1 was characterized as a monofunctional (-)-kolavenyl diphosphate synthases ((-)-KPS), while SbarKPS2 and SbaiKPS1 produced major neo-cleroda-4(18),13E-dienyl diphosphate with small amount of (-)-KPP. SbarKPS1 and SbarKPS2 shared a high protein sequence identity and formed a tandem gene pair, indicating tandem duplication and sub-functionalization probably led to the evolution of monofunctional (-)-KPS in S. barbata. Additionally, SbarKPS1 and SbarKPS2 were primarily expressed in the leaves and flowers of S. barbata, which was consistent with the distribution of major clerodane diterpenoids scutebarbatine A and B. In contrast, SbaiKPS1 was barely expressed in any tissue of S. baicalensis. We further explored the downstream class I diTPS by functional characterizing of SbarKSL3 and SbarKSL4. Unfortunately, no dephosphorylated product was detected in the coupled assays with SbarKSL3/KSL4 and four class II diTPSs (SbarKPS1, SbarKPS2, SbarCPS2 and SbarCPS4) when a phosphatase inhibitor cocktail was included. Co-expression of SbarKSL3/KSL4 with class II diTPSs in yeast cells did not increase the yield of the corresponding dephosphorylated products, either. Together, these findings elucidated the involvement of two class II diTPSs in clerodane biosynthesis in S. barbata, while the class I diTPS is likely not responsible for the subsequent dephosphorylation step.

4.
Biosci Biotechnol Biochem ; 88(1): 8-15, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37833097

ABSTRACT

Gibberellins are diterpenoid phytohormones that regulate plant growth, and are biosynthesized from a diterpene intermediate, ent-kaurene, which is produced from geranylgeranyl diphosphate via ent-copalyl diphosphate (ent-CDP). The successive 2 cyclization reactions are catalyzed by 2 distinct diterpene synthases, ent-CDP synthase (ent-CPS) and ent-kaurene synthase (KS). Various diterpene synthase genes involved in specialized metabolism were likely created through duplication and neofunctionalization of gibberellin-biosynthetic ent-CPS and KS genes in crops. Brachypodium distachyon is a monocotyledonous species that is a model plant in grasses. We herein found 1 ent-CPS gene homolog BdCPS and 4 tandemly arrayed KS-like genes BdKS1, KSL2, KSL3, and KSL4 in the B. distachyon genome, a simpler collection of paralogs than in crops. Phylogenetic and biochemical analyses showed that BdCPS and BdKS1 are responsible for gibberellin biosynthesis. BdKSL2 and BdKSL3 are suggested to be involved in specialized diterpenoid metabolism. Moreover, we restored KS activity of BdKSL2 through amino acid substitution.


Subject(s)
Alkyl and Aryl Transferases , Brachypodium , Diterpenes , Gibberellins , Edible Grain/metabolism , Brachypodium/genetics , Brachypodium/metabolism , Phylogeny , Alkyl and Aryl Transferases/genetics , Diterpenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
5.
Angew Chem Int Ed Engl ; 62(33): e202306020, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37326357

ABSTRACT

CsCTS, a new diterpene synthase from Cephalotaxus sinensis responsible for forming cephalotene, the core skeleton of cephalotane-type diterpenoids with a highly rigid 6/6/5/7 tetracyclic ring system, was functionally characterized. The stepwise cyclization mechanism is proposed mainly based on structural investigation of its derailment products, and further demonstrated through isotopic labeling experiments and density functional theory calculations. Homology modeling and molecular dynamics simulation combined with site-directed mutagenesis revealed the critical amino acid residues for the unique carbocation-driven cascade cyclization mechanism of CsCTS. Altogether, this study reports the discovery of the diterpene synthase that catalyzes the first committed step of cephalotane-type diterpenoid biosynthesis and delineates its cyclization mechanism, laying the foundation to decipher and artificially construct the complete biosynthetic pathway of this type diterpenoids.


Subject(s)
Diterpenes , Diterpenes/chemistry , Diterpenes/metabolism , Cyclization , Catalysis , Models, Molecular , Mutagenesis, Site-Directed , Binding Sites
6.
Int J Mol Sci ; 23(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36362268

ABSTRACT

Diterpene alkaloids (DAs) are characteristic compounds in Aconitum, which are classified into four skeletal types: C18, C19, C20, and bisditerpenoid alkaloids. C20-DAs are thought to be the precursor of the other types. Their biosynthetic pathway, however, is largely unclear. Herein, we combine metabolomics and transcriptomics to unveil the methyl jasmonate (MJ) inducible biosynthesis of DAs in the sterile seedling of A. gymnandrum, the only species in the Subgenus Gymnaconitum (Stapf) Rapaics. Target metabolomics based on root and aerial portions identified 51 C19-DAs and 15 C20-DAs, with 40 inducible compounds. The highest content of C20-DA atisine was selected for further network analysis. PacBio Isoform sequencing integrated with RNA sequencing not only provided the full-length transcriptome but also their response to induction, revealing 1994 genes that exhibited up-regulated expression. Further, 38 genes involved in terpenoid biosynthesis were identified, including 7 diterpene synthases. In addition to the expected function of the four diterpene synthases, AgCPS5 was identified to be a new ent-8,13-CPP synthase in Aconitum and could also combine with AgKSL1 to form the C20-DAs precursor ent-atiserene. Combined with multiple network analyses, six CYP450 and seven 2-ODD genes predicted to be involved in the biosynthesis of atisine were also identified. This study not only sheds light on diterpene synthase evolution in Aconitum but also provides a rich dataset of full-length transcriptomes, systemic metabolomes, and gene expression profiles, setting the groundwork for further investigation of the C20-DAs biosynthesis pathway.


Subject(s)
Aconitum , Alkaloids , Diterpenes , Aconitum/genetics , Aconitum/metabolism , Transcriptome , Alkaloids/metabolism , Diterpenes/metabolism , Biosynthetic Pathways/genetics
7.
Beilstein J Org Chem ; 18: 1396-1402, 2022.
Article in English | MEDLINE | ID: mdl-36262672

ABSTRACT

Fusicoccane-type terpenoids are a subgroup of diterpenoids featured with a unique 5-8-5 ring system. They are widely distributed in nature and possess a variety of biological activities. Up to date, only five fusicoccane-type diterpene synthases have been identified. Here, we identify a two-gene biosynthetic gene cluster containing a new fusicoccane-type diterpene synthase gene tadA and an associated cytochrome P450 gene tadB from Talaromyces wortmannii ATCC 26942. Heterologous expression reveals that TadA catalyzes the formation of a new fusicoccane-type diterpene talaro-7,13-diene. D2O isotope labeling combined with site-directed mutagenesis indicates that TadA might employ a different C2,6 cyclization strategy from the known fusicoccane-type diterpene synthases, in which a neutral intermediate is firstly formed and then protonated by an environmental proton. In addition, we demonstrate that the associated cytochrome P450 enzyme TadB is able to catalyze multiple oxidation of talaro-7,13-diene to yield talaro-6,13-dien-5,8-dione.

8.
Med Res Rev ; 41(6): 2971-2997, 2021 11.
Article in English | MEDLINE | ID: mdl-33938025

ABSTRACT

Diterpenoids, including more than 18,000 compounds, represent an important class of metabolites that encompass both phytohormones and some industrially relevant compounds. These molecules with complex, diverse structures and physiological activities, have high value in the pharmaceutical industry. Most medicinal diterpenoids are extracted from plants. Major advances in understanding the biosynthetic pathways of these active compounds are providing unprecedented opportunities for the industrial production of diterpenoids by metabolic engineering and synthetic biology. Here, we summarize recent developments in the field of diterpenoid biosynthesis from medicinal herbs. An overview of the pathways and known biosynthetic enzymes is presented. In particular, we look at the main findings from the past decade and review recent progress in the biosynthesis of different groups of ringed compounds. We also discuss diterpenoid production using synthetic biology and metabolic engineering strategies, and draw on new technologies and discoveries to bring together many components into a useful framework for diterpenoid production.


Subject(s)
Diterpenes , Plants, Medicinal , Biosynthetic Pathways , Diterpenes/chemistry , Diterpenes/metabolism , Humans , Synthetic Biology
9.
Biosci Biotechnol Biochem ; 85(9): 1945-1952, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34244709

ABSTRACT

Various diterpene synthases have been functionally identified in cultivated rice (Oryza sativa). These are the homologs of ent-copalyl diphosphate (ent-CDP) synthase and ent-kaurene synthase (KS) that are responsible for the biosynthesis of gibberellins, diterpenoid phytohormones. We isolated a cDNA encoding full-length OsKSL12, a previously uncharacterized KS like (KSL) enzyme that consists of a ß-domain and an α-domain with an active center, but lacks an N-terminal γ-domain. Functional analysis using a bacterial expression system showed that recombinant OsKSL12 converted ent-CDP into ent-manool or ent-13-epi-manool. Comparative genomics revealed that functional OsKSL12 homologs exist in diverse wild species in the Oryzeae-Oryza nivara (Oryza rufipogon), Oryza coarctata, Oryza granulata, Leersia perrieri, and Leersia tisseranti. KSL12 homologs in O. granulata, L. perrieri, and L. tisseranti preferentially reacted with geranylgeranyl diphosphate rather than ent-CDP, resulting in geranyllinalool rather than ent-manool or ent-13-epi-manool as the main product, meaning that KSL12 functionally diversified during evolution in the Oryzeae.


Subject(s)
Alkyl and Aryl Transferases/analysis , Diterpenes/chemistry , Oryza/enzymology , Base Sequence , Cloning, Molecular , DNA, Complementary/genetics , Evolution, Molecular , Genome, Plant , Oryza/genetics , Phylogeny , Protein Domains
10.
J Biol Chem ; 294(4): 1349-1362, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30498089

ABSTRACT

Members of the mint family (Lamiaceae) accumulate a wide variety of industrially and medicinally relevant diterpenes. We recently sequenced leaf transcriptomes from 48 phylogenetically diverse Lamiaceae species. Here, we summarize the available chemotaxonomic and enzyme activity data for diterpene synthases (diTPSs) in the Lamiaceae and leverage the new transcriptomes to explore the diTPS sequence and functional space. Candidate genes were selected with an intent to evenly sample the sequence homology space and to focus on species in which diTPS transcripts were found, yet from which no diterpene structures have been previously reported. We functionally characterized nine class II diTPSs and 10 class I diTPSs from 11 distinct plant species and found five class II activities, including two novel activities, as well as a spectrum of class I activities. Among the class II diTPSs, we identified a neo-cleroda-4(18),13E-dienyl diphosphate synthase from Ajuga reptans, catalyzing the likely first step in the biosynthesis of a variety of insect-antifeedant compounds. Among the class I diTPSs was a palustradiene synthase from Origanum majorana, leading to the discovery of specialized diterpenes in that species. Our results provide insights into the diversification of diterpene biosynthesis in the mint family and establish a comprehensive foundation for continued investigation of diterpene biosynthesis in the Lamiaceae.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Databases, Pharmaceutical , Diterpenes/metabolism , Lamiaceae/enzymology , Plant Leaves/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Lamiaceae/genetics , Lamiaceae/growth & development , Phylogeny , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Proteins/genetics
11.
Plant J ; 100(6): 1254-1272, 2019 12.
Article in English | MEDLINE | ID: mdl-31448467

ABSTRACT

Taiwania cryptomerioides is a monotypic gymnosperm species, valued for the high decay resistance of its wood. This durability has been attributed to the abundance of terpenoids, especially the major diterpenoid metabolite ferruginol, with antifungal and antitermite activity. Specialized diterpenoid metabolism in gymnosperms primarily recruits bifunctional class-I/II diterpene synthases (diTPSs), whereas monofunctional class-II and class-I enzymes operate in angiosperms. In this study, we identified a previously unrecognized group of monofunctional diTPSs in T. cryptomerioides, which suggests a distinct evolutionary divergence of the diTPS family in this species. Specifically, five monofunctional diTPS functions not previously observed in gymnosperms were characterized, including monofunctional class-II enzymes forming labda-13-en-8-ol diphosphate (LPP, TcCPS2) and (+)-copalyl diphosphate (CPP, TcCPS4), and three class-I diTPSs producing biformene (TcKSL1), levopimaradiene (TcKSL3) and phyllocladanol (TcKSL5), respectively. Methyl jasmonate (MeJA) elicited the accumulation of levopimaradiene and the corresponding biosynthetic diTPS genes, TcCPS4 and TcKSL3, is consistent with a possible role in plant defense. Furthermore, TcCPS4 and TcKSL3 are likely to contribute to abietatriene biosynthesis via levopimaradiene as an intermediate in ferruginol biosynthesis in Taiwania. In conclusion, this study provides deeper insight into the functional landscape and molecular evolution of specialized diterpenoid metabolism in gymnosperms as a basis to better understand the role of these metabolites in tree chemical defense.


Subject(s)
Cupressaceae/enzymology , Cupressaceae/genetics , Cupressaceae/metabolism , Cycadopsida/genetics , Cycadopsida/metabolism , Diterpenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Amino Acid Sequence , Cupressaceae/classification , Escherichia coli/genetics , Evolution, Molecular , Fossils , Gene Expression Regulation, Plant , Genes, Plant/genetics , Metabolic Networks and Pathways/genetics , Recombinant Proteins , Sequence Analysis, Protein , Transcriptome
12.
Plant Cell Physiol ; 61(11): 1850-1859, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-32810270

ABSTRACT

Gibberellins (GAs) are labdane-related diterpenoid phytohormones that regulate various aspects of higher plant growth. A biosynthetic intermediate of GAs is ent-kaurene, a tetra-cyclic diterpene that is produced through successive cyclization of geranylgeranyl diphosphate catalyzed by the two distinct monofunctional diterpene synthases-ent-copalyl diphosphate synthase (ent-CPS) and ent-kaurene synthase (KS). Various homologous genes of the two diterpene synthases have been identified in cereals, including rice (Oryza sativa), wheat (Triticum aestivum) and maize (Zea mays), and are believed to have been derived from GA biosynthetic ent-CPS and KS genes through duplication and neofunctionalization. They play roles in specialized metabolism, giving rise to diverse labdane-related diterpenoids for defense because a variety of diterpene synthases generate diverse carbon-skeleton structures. This review mainly describes the diterpene synthase homologs that have been identified and characterized in rice, wheat and maize and shows the evolutionary history of various homologs in rice inferred by comparative genomics studies using wild rice species, such as Oryza rufipogon and Oryza brachyantha. In addition, we introduce labdane-related diterpene synthases in bryophytes and gymnosperms to illuminate the macroscopic evolutionary history of diterpene synthases in the plant kingdom-bifunctional enzymes possessing both CPS and KS activities are present in bryophytes; gymnosperms possess monofunctional CPS and KS responsible for GA biosynthesis and also possess bifunctional diterpene synthases facilitating specialized metabolism for defense.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Edible Grain/enzymology , Plant Proteins/metabolism , Alkyl and Aryl Transferases/genetics , Diterpenes/metabolism , Edible Grain/genetics , Edible Grain/metabolism , Evolution, Molecular , Oryza/enzymology , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Triticum/enzymology , Triticum/genetics , Triticum/metabolism
13.
Metab Eng ; 60: 87-96, 2020 07.
Article in English | MEDLINE | ID: mdl-32268192

ABSTRACT

Miltiradiene is a key intermediate in the biosynthesis of many important natural diterpene compounds with significant pharmacological activity, including triptolide, tanshinones, carnosic acid and carnosol. Sufficient accumulation of miltiradiene is vital for the production of these medicinal compounds. In this study, comprehensive engineering strategies were applied to construct a high-yielding miltiradiene producing yeast strain. First, a chassis strain that can accumulate 2.1 g L-1 geranylgeraniol was constructed. Then, diterpene synthases from various species were evaluated for their ability to produce miltiradiene, and a chimeric miltiradiene synthase, consisting of class II diterpene synthase (di-TPS) CfTPS1 from Coleus forskohlii (Plectranthus barbatus) and class I di-TPS SmKSL1 from Salvia miltiorrhiza showed the highest efficiency in the conversion of GGPP to miltiradiene in yeast. Moreover, the miltiradiene yield was further improved by protein modification, which resulted in a final yield of 550.7 mg L-1 in shake flasks and 3.5 g L-1 in a 5-L bioreactor. This work offers an efficient and green process for the production of the important intermediate miltiradiene, and lays a foundation for further pathway reconstruction and the biotechnological production of valuable natural diterpenes.


Subject(s)
Diterpenes/metabolism , Metabolic Engineering/methods , Mutant Chimeric Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Terpenes/metabolism , Biosynthetic Pathways , CRISPR-Cas Systems , Computer Simulation , Diterpenes/chemistry , Fermentation , Metabolic Networks and Pathways , Mutant Chimeric Proteins/genetics , Mutation , Plasmids
14.
J Struct Biol ; 207(1): 29-39, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30981884

ABSTRACT

The labdane-related diterpenoids (LRDs) are a large group of natural products with a broad range of biological activities. They are synthesized through two consecutive reactions catalyzed by class II and I diterpene synthases (DTSs). The structural complexity of LRDs mainly depends on the catalytic activity of class I DTSs, which catalyze the formation of bicyclic to pentacyclic LRDs, using as a substrate the catalytic product of class II DTSs. To date, the structural and mechanistic details for the biosynthesis of bicyclic LRDs skeletons catalyzed by class I DTSs remain unclear. This work presents the first X-ray crystal structure of an (E)-biformene synthase, LrdC, from the soil bacterium Streptomyces sp. strain K155. LrdC was identified as a part of an LRD cluster of five genes and was found to be a class I DTS that catalyzes the Mg2+-dependent synthesis of bicyclic LRD (E)-biformene by the dephosphorylation and rearrangement of normal copalyl pyrophosphate (CPP). Structural analysis of LrdC coupled with docking studies suggests that Phe189 prevents cyclization beyond the bicyclic LRD product through a strong stabilization of the allylic carbocation intermediate, while Tyr317 functions as a general base catalyst to deprotonate the CPP substrate. Structural comparisons of LrdC with homology models of bacterial bicyclic LRD-forming enzymes (CldD, RmnD and SclSS), as well as with the crystallographic structure of bacterial tetracyclic LRD ent-kaurene synthase (BjKS), provide further structural insights into the biosynthesis of bacterial LRD natural products.


Subject(s)
Bacteria/chemistry , Diterpenes/metabolism , Streptomyces/enzymology , Alkyl and Aryl Transferases/chemistry , Bacteria/enzymology , Bacterial Proteins/chemistry , Crystallography, X-Ray , Molecular Structure , Organophosphates/chemistry
15.
Plant J ; 93(1): 50-65, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29086455

ABSTRACT

Tripterygium wilfordii, which has long been used as a medicinal plant, exhibits impressive and effective anti-inflammatory, immunosuppressive and anti-tumor activities. The main active ingredients are diterpenoids and triterpenoids, such as triptolide and celastrol, respectively. A major challenge to harnessing these natural products is that they are found in very low amounts in planta. Access has been further limited by the lack of knowledge regarding their underlying biosynthetic pathways, particularly for the abeo-abietane tri-epoxide lactone triptolide. Here suspension cell cultures of T. wilfordii were found to produce triptolide in an inducible fashion, with feeding studies indicating that miltiradiene is the relevant abietane olefin precursor. Subsequently, transcriptome data were used to identify eight putative (di)terpene synthases that were then characterized for their potential involvement in triptolide biosynthesis. This included not only biochemical studies which revealed the expected presence of class II diterpene cyclases that produce the intermediate copalyl diphosphate (CPP), along with the more surprising finding of an atypical class I (di)terpene synthase that acts on CPP to produce the abietane olefin miltiradiene, but also their subcellular localization and, critically, genetic analysis. In particular, RNA interference targeting either both of the CPP synthases, TwTPS7v2 and TwTPS9v2, or the subsequently acting miltiradiene synthase, TwTPS27v2, led to decreased production of triptolide. Importantly, these results then both confirm that miltiradiene is the relevant precursor and the relevance of the identified diterpene synthases, enabling future studies of the biosynthesis of this important bioactive natural product.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Diterpenes/metabolism , Phenanthrenes/metabolism , Tripterygium/enzymology , Alkyl and Aryl Transferases/genetics , Biosynthetic Pathways , Epoxy Compounds/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Medicinal , RNA Interference , Tripterygium/genetics
16.
BMC Plant Biol ; 19(1): 114, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30909879

ABSTRACT

BACKGROUND: Horehound (Marrubium vulgare) is a medicinal plant whose signature bioactive compounds, marrubiin and related furanoid diterpenoid lactones, have potential applications for the treatment of cardiovascular diseases and type II diabetes. Lack of scalable plant cultivation and the complex metabolite profile of M. vulgare limit access to marrubiin via extraction from plant biomass. Knowledge of the marrubiin-biosynthetic enzymes can enable the development of metabolic engineering platforms for marrubiin production. We previously identified two diterpene synthases, MvCPS1 and MvELS, that act sequentially to form 9,13-epoxy-labd-14-ene. Conversion of 9,13-epoxy-labd-14-ene by cytochrome P450 monooxygenase (P450) enzymes can be hypothesized to facilitate key functional modification reactions in the formation of marrubiin and related compounds. RESULTS: Mining a M. vulgare leaf transcriptome database identified 95 full-length P450 candidates. Cloning and functional analysis of select P450 candidates showing high transcript abundance revealed a member of the CYP71 family, CYP71AU87, that catalyzed the hydroxylation of 9,13-epoxy-labd-14-ene to yield two isomeric products, 9,13-epoxy labd-14-ene-18-ol and 9,13-epoxy labd-14-ene-19-ol, as verified by GC-MS and NMR analysis. Additional transient Nicotiana benthamiana co-expression assays of CYP71AU87 with different diterpene synthase pairs suggested that CYP71AU87 is specific to the sequential MvCPS1 and MvELS product 9,13-epoxy-labd-14-ene. Although the P450 products were not detectable in planta, high levels of CYP71AU87 gene expression in marrubiin-accumulating tissues supported a role in the formation of marrubiin and related diterpenoids in M. vulgare. CONCLUSIONS: In a sequential reaction with the diterpene synthase pair MvCPS1 and MvELS, CYP71AU87 forms the isomeric products 9,13-epoxy labd-14-ene-18/19-ol as probable intermediates in marrubiin biosynthesis. Although its metabolic relevance in planta will necessitate further genetic studies, identification of the CYP71AU87 catalytic activity expands our knowledge of the functional landscape of plant P450 enzymes involved in specialized diterpenoid metabolism and can provide a resource for the formulation of marrubiin and related bioactive natural products.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Diterpenes/metabolism , Marrubium/metabolism , Plant Proteins/metabolism , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Flowers/genetics , Flowers/metabolism , Gas Chromatography-Mass Spectrometry , Gene Expression Profiling , Gene Expression Regulation, Plant , Hydroxylation , Isomerism , Marrubium/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Plants, Genetically Modified , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Substrate Specificity , Nicotiana/genetics
17.
Chembiochem ; 20(1): 111-117, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30393911

ABSTRACT

The diterpene synthase clerodienyl diphosphate synthase 1 (PvCPS1) from the crop plant switchgrass (Panicum virgatum) stereoselectively converts (E,E,E)-geranylgeranyl diphosphate (GGPP) into the clerodane natural product, cis-trans-clerodienyl diphosphate (CLPP, 1). Structure-guided point mutations of PvCPS1 redirected product stereoselectivity toward the formation of a rare cis-clerodane diastereomer, cis-cis-CLPP (2). Additionally, an alternative cis-clerodane diastereomer, (5S,8S,9R,10R)-13Z-CLPP (3), was produced when treating PvCPS1 and select variants thereof with the cis-prenyl substrate (Z,Z,Z)-nerylneryl diphosphate (NNPP). These results support the hypothesis that substrate configuration and minor active-site alterations impact precatalysis substrate folding in the stereoselective biosynthesis of clerodane diterpenoid scaffolds, and can be employed to provide enzymatic access to a broader range of bioactive clerodane natural products.


Subject(s)
Alkyl and Aryl Transferases/chemistry , Diterpenes, Clerodane/metabolism , Plant Proteins/chemistry , Alkyl and Aryl Transferases/genetics , Biocatalysis , Catalytic Domain , Diterpenes, Clerodane/chemistry , Models, Chemical , Panicum/enzymology , Plant Proteins/genetics , Point Mutation , Quantum Theory , Stereoisomerism , Thermodynamics
18.
Biochem Biophys Res Commun ; 503(3): 1221-1227, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30005875

ABSTRACT

Cultivated rice (Oryza sativa; Os) produces a variety of labdane-related diterpenoids; not only phytohormone gibberellins (GAs) but also phytoalexins for defense including phytocassanes, momilactones and oryzalexins. Their carbon skeleton diterpenes are constructed from geranylgeranyl diphosphate via ent-copalyl diphosphate (ent-CDP) or its diastereomer syn-CDP. These two-step reactions are successively catalyzed by homologs of the two diterpene synthases, ent-CDP synthase (ent-CPS) and ent-kaurene synthase (KS) that are responsible for the biosynthesis of GAs; e.g. OsCPS4 and OsKSL8 that are involved in the biosynthesis of oryzalexin S, a rice phytoalexin. Oryza brachyantha (Ob) is the most distant wild rice species from Os among the Oryza genus. We previously reported that the Ob genome contains ObCPS_11g, ObKSL8-a, ObKSL8-b and ObKSL8-c for specialized metabolism at a locus similar to the OsKSL8 locus on chromosome 11. These Ob genes are closely related to OsCPS4 and OsKSL8, respectively. We herein characterize the diterpene synthase genes in Ob, using functional analyses and expression analysis. Recombinant OsKSL8 and ObKSL8-a showed the same in vitro function when syn-CDP or normal-CDP were used as substrates. Nonetheless, our results suggest that Ob produces normal-CDP-related diterpenoid phytoalexins, presumably via ObKSL8-a, while Os produces a syn-CDP-related phytoalexin, oryzalexin S, via OsKSL8. This difference must be due to the kinds of CPS that are present in each species; Os has OsCPS4 encoding syn-CPS, while Ob has ObCPS_11g encoding normal-CPS. Thus, we propose the evolutionary history underlying oryzalexin S biosynthesis: the gain of a syn-CPS was a critical event allowing the biosynthesis of oryzalexin S.


Subject(s)
Alkyl and Aryl Transferases/genetics , Diterpenes/metabolism , Oryza/enzymology , Oryza/genetics , Sesquiterpenes/metabolism , Alkyl and Aryl Transferases/metabolism , Oryza/metabolism , Phylogeny , Seeds/enzymology , Seeds/genetics , Sesquiterpenes/chemistry , Species Specificity , Phytoalexins
19.
Molecules ; 23(11)2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30424547

ABSTRACT

Scutellaria barbata (Lamiaceae) is an important medicinal herb widely used in China, Korea, India, and other Asian countries. Neo-clerodane diterpenoids are the largest known group of Scutellaria diterpenoids and show promising cytotoxic activity against several cancer cell lines. Here, Illumina-based deep transcriptome analysis of flowers, the aerial parts (leaf and stem), and roots of S. barbata was used to explore terpenoid-related genes. In total, 121,958,564 clean RNA-sequence reads were assembled into 88,980 transcripts, with an average length of 1370 nt and N50 length of 2144 nt, indicating high assembly quality. We identified nearly all known terpenoid-related genes (33 genes) involved in biosynthesis of the terpenoid backbone and 14 terpene synthase genes which generate skeletons for different terpenoids. Three full length diterpene synthase genes were functionally identified using an in vitro assay. SbTPS8 and SbTPS9 were identified as normal-CPP and ent-CPP synthase, respectively. SbTPS12 reacts with SbTPS8 to produce miltiradiene. Furthermore, SbTPS12 was proven to be a less promiscuous class I diterpene synthase. These results give a comprehensive understanding of the terpenoid biosynthesis in S. barbata and provide useful information for enhancing the production of bioactive neo-clerodane diterpenoids through genetic engineering.


Subject(s)
Alkyl and Aryl Transferases/genetics , Diterpenes/metabolism , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Scutellaria/genetics , Scutellaria/metabolism , Transcriptome , Alkyl and Aryl Transferases/metabolism , Computational Biology/methods , Diterpenes/chemistry , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Metabolic Networks and Pathways/genetics , Molecular Sequence Annotation , Phylogeny , Scutellaria/classification
20.
J Exp Bot ; 68(5): 1109-1122, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28204567

ABSTRACT

Salvia divinorum (Lamiaceae) is an annual herb used by indigenous cultures of Mexico for medicinal and ritual purposes. The biosynthesis of salvinorin A, its major bioactive neo-clerodane diterpenoid, remains virtually unknown. This investigation aimed to identify the enzyme that catalyzes the first reaction of salvinorin A biosynthesis, the formation of (-)-kolavenyl diphosphate [(-)-KPP], which is subsequently dephosphorylated to afford (-)-kolavenol. Peltate glandular trichomes were identified as the major and perhaps exclusive site of salvinorin accumulation in S. divinorum. The trichome-specific transcriptome was used to identify candidate diterpene synthases (diTPSs). In vitro and in planta characterization of a class II diTPS designated as SdKPS confirmed its activity as (-)-KPP synthase and its involvement in salvinorin A biosynthesis. Mutation of a phenylalanine into histidine in the active site of SdKPS completely converts the product from (-)-KPP into ent-copalyl diphosphate. Structural elements were identified that mediate the natural formation of the neo-clerodane backbone by this enzyme and suggest how SdKPS and other diTPSs may have evolved from ent-copalyl diphosphate synthase.


Subject(s)
Diterpenes, Clerodane/biosynthesis , Plant Proteins/genetics , Salvia/genetics , Salvia/metabolism , Transcriptome , Diphosphates/metabolism , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL