Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.955
Filter
Add more filters

Publication year range
1.
Cell ; 169(2): 229-242.e21, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28388408

ABSTRACT

Phenotypic variability is a hallmark of diseases involving chromosome gains and losses, such as Down syndrome and cancer. Allelic variances have been thought to be the sole cause of this heterogeneity. Here, we systematically examine the consequences of gaining and losing single or multiple chromosomes to show that the aneuploid state causes non-genetic phenotypic variability. Yeast cell populations harboring the same defined aneuploidy exhibit heterogeneity in cell-cycle progression and response to environmental perturbations. Variability increases with degree of aneuploidy and is partly due to gene copy number imbalances, suggesting that subtle changes in gene expression impact the robustness of biological networks and cause alternate behaviors when they occur across many genes. As inbred trisomic mice also exhibit variable phenotypes, we further propose that non-genetic individuality is a universal characteristic of the aneuploid state that may contribute to variability in presentation and treatment responses of diseases caused by aneuploidy.


Subject(s)
Aneuploidy , Genetic Heterogeneity , Phenotype , Animals , Cell Cycle , Cell Division , DNA Damage , Gene Expression Regulation , Kinetics , Mice , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics
2.
Physiol Rev ; 104(1): 103-197, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37843394

ABSTRACT

Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Quality of Life , Oxidative Stress/physiology , Oxidation-Reduction , Lipids
3.
Immunity ; 55(11): 2074-2084.e5, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36243008

ABSTRACT

Down syndrome (DS) is typically caused by triplication of chromosome 21. Phenotypically, DS presents with developmental, neurocognitive, and immune features. Epidemiologically, individuals with DS have less frequent viral infection, but when present, these infections lead to more severe disease. The potent antiviral cytokine type I Interferon (IFN-I) receptor subunits IFNAR1 and IFNAR2 are located on chromosome 21. While increased IFNAR1/2 expression initially caused hypersensitivity to IFN-I, it triggered excessive negative feedback. This led to a hypo-response to subsequent IFN-I stimuli and an ensuing viral susceptibility in DS compared to control cells. Upregulation of IFNAR2 expression phenocopied the DS IFN-I dynamics independent of trisomy 21. CD14+ monocytes from individuals with DS exhibited markers of prior IFN-I exposure and had muted responsiveness to ex vivo IFN-I stimulation. Our findings unveil oscillations of hyper- and hypo-response to IFN-I in DS, predisposing individuals to both lower incidence of viral disease and increased infection-related morbidity and mortality.


Subject(s)
Down Syndrome , Interferon Type I , Humans , Interferon Type I/metabolism , Down Syndrome/genetics , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Antiviral Agents , Disease Susceptibility , Receptors, Interferon/metabolism
4.
Immunol Rev ; 322(1): 300-310, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38050836

ABSTRACT

Over 200,000 individuals in the United States alone live with Down Syndrome (DS), the most common genetic disorder associated with intellectual disability. DS has a constellation of features across the body, including dysregulation of the immune system. Individuals with DS have both a higher frequency of autoimmunity and more severe infections than the general population, highlighting the importance of understanding the immune system in this population. Individuals with DS present with dysregulation of both the innate and adaptive immune systems. Elevated cytokine levels, increased type I and type II IFN signaling, a shift toward memory phenotypes in T cells, and a decrease in the size of the B-cell compartment are observed in individuals with DS, which contribute to both autoinflammation and severe infections. Herein, we discuss the current knowledge of the immune system in individuals with Down Syndrome as well as ideas of necessary further investigations to decipher the mechanisms by which trisomy 21 leads to immune dysregulation, with the ultimate goal of identifying clinical targets to improve treatment.


Subject(s)
Down Syndrome , Humans , Down Syndrome/complications , Down Syndrome/genetics , Autoimmunity , Immune System , Cytokines , Phenotype
5.
Trends Genet ; 40(6): 463-464, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38664113

ABSTRACT

Using genetic methods, aneuploidies can be detected in ancient human remains, which is so far the only way to reliably prove their existence in the past. As highlighted in recent studies by Rohrlach et al. and by Anastasiadou et al., this initial step enables a deeper exploration of the history of rare diseases, encompassing the social and historical contexts of the afflicted individuals.


Subject(s)
Aneuploidy , Genome, Human , Humans , DNA, Ancient/analysis , Genome, Human/genetics
6.
Mol Cell ; 76(5): 797-810.e10, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31606272

ABSTRACT

Protein silencing represents an essential tool in biomedical research. Targeted protein degradation (TPD) strategies exemplified by PROTACs are rapidly emerging as modalities in drug discovery. However, the scope of current TPD techniques is limited because many intracellular materials are not substrates of proteasomal clearance. Here, we described a novel targeted-clearance strategy (autophagy-targeting chimera [AUTAC]) that contains a degradation tag (guanine derivatives) and a warhead to provide target specificity. As expected from the substrate scope of autophagy, AUTAC degraded fragmented mitochondria as well as proteins. Mitochondria-targeted AUTAC accelerated both the removal of dysfunctional fragmented mitochondria and the biogenesis of functionally normal mitochondria in patient-derived fibroblast cells. Cytoprotective effects against acute mitochondrial injuries were also seen. Canonical autophagy is viewed as a nonselective bulk decomposition system, and none of the available autophagy-inducing agents exhibit useful cargo selectivity. With its target specificity, AUTAC provides a new modality for research on autophagy-based drugs.


Subject(s)
Autophagy/physiology , Guanine/chemistry , Proteolysis/drug effects , Autophagy-Related Proteins/metabolism , Cell Line , Guanine/physiology , Humans , Mitochondria/metabolism , Mitophagy/physiology , Protein Engineering/methods , Protein Kinases/metabolism , Protein Stability
7.
Trends Genet ; 39(3): 172-174, 2023 03.
Article in English | MEDLINE | ID: mdl-36496311

ABSTRACT

The mechanisms underlying pathologies in Down syndrome remain poorly understood. In this forum article we compare the cellular phenotypes of chromosome 21 trisomy with other trisomic cells. We argue that both effects of the extra chromosome 21 and the global consequences of chromosome gain must be considered to understand complex pathologies of Down syndrome.


Subject(s)
Down Syndrome , Humans , Down Syndrome/genetics , Trisomy
8.
Development ; 150(8)2023 04 15.
Article in English | MEDLINE | ID: mdl-37102702

ABSTRACT

Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), occurs in 1 in 800 live births and is the most common human aneuploidy. DS results in multiple phenotypes, including craniofacial dysmorphology, which is characterised by midfacial hypoplasia, brachycephaly and micrognathia. The genetic and developmental causes of this are poorly understood. Using morphometric analysis of the Dp1Tyb mouse model of DS and an associated mouse genetic mapping panel, we demonstrate that four Hsa21-orthologous regions of mouse chromosome 16 contain dosage-sensitive genes that cause the DS craniofacial phenotype, and identify one of these causative genes as Dyrk1a. We show that the earliest and most severe defects in Dp1Tyb skulls are in bones of neural crest (NC) origin, and that mineralisation of the Dp1Tyb skull base synchondroses is aberrant. Furthermore, we show that increased dosage of Dyrk1a results in decreased NC cell proliferation and a decrease in size and cellularity of the NC-derived frontal bone primordia. Thus, DS craniofacial dysmorphology is caused by an increased dosage of Dyrk1a and at least three other genes.


Subject(s)
Down Syndrome , Mice , Humans , Animals , Down Syndrome/genetics , Skull , Chromosome Mapping , Phenotype , Disease Models, Animal
9.
Mol Biol Evol ; 41(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38989909

ABSTRACT

Many adhesion proteins, evolutionarily related through gene duplication, exhibit distinct and precise interaction preferences and affinities crucial for cell patterning. Yet, the evolutionary paths by which these proteins acquire new specificities and prevent cross-interactions within their family members remain unknown. To bridge this gap, this study focuses on Drosophila Down syndrome cell adhesion molecule-1 (Dscam1) proteins, which are cell adhesion proteins that have undergone extensive gene duplication. Dscam1 evolved under strong selective pressure to achieve strict homophilic recognition, essential for neuronal self-avoidance and patterning. Through a combination of phylogenetic analyses, ancestral sequence reconstruction, and cell aggregation assays, we studied the evolutionary trajectory of Dscam1 exon 4 across various insect lineages. We demonstrated that recent Dscam1 duplications in the mosquito lineage bind with strict homophilic specificities without any cross-interactions. We found that ancestral and intermediate Dscam1 isoforms maintained their homophilic binding capabilities, with some intermediate isoforms also engaging in promiscuous interactions with other paralogs. Our results highlight the robust selective pressure for homophilic specificity integral to the Dscam1 function within the process of neuronal self-avoidance. Importantly, our study suggests that the path to achieving such selective specificity does not introduce disruptive mutations that prevent self-binding but includes evolutionary intermediates that demonstrate promiscuous heterophilic interactions. Overall, these results offer insights into evolutionary strategies that underlie adhesion protein interaction specificities.


Subject(s)
Cell Adhesion Molecules , Drosophila Proteins , Evolution, Molecular , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Phylogeny , Gene Duplication , Drosophila/genetics , Culicidae/genetics
10.
Hum Mol Genet ; 33(1): 78-90, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37792788

ABSTRACT

Down syndrome (DS) is the most prevalent chromosomal disorder associated with a higher incidence of pulmonary arterial hypertension (PAH). The dysfunction of vascular endothelial cells (ECs) is known to cause pulmonary arterial remodeling in PAH, although the physiological characteristics of ECs harboring trisomy 21 (T21) are still unknown. In this study, we analyzed the human vascular ECs by utilizing the isogenic pairs of T21-induced pluripotent stem cells (iPSCs) and corrected disomy 21 (cDi21)-iPSCs. In T21-iPSC-derived ECs, apoptosis and mitochondrial reactive oxygen species (mROS) were significantly increased, and angiogenesis and oxygen consumption rate (OCR) were significantly impaired as compared with cDi21-iPSC-derived ECs. The RNA-sequencing identified that EGR1 on chromosome 5 was significantly upregulated in T21-ECs. Both EGR1 suppression by siRNA and pharmacological inhibitor could recover the apoptosis, mROS, angiogenesis, and OCR in T21-ECs. Alternately, the study also revealed that DYRK1A was responsible to increase EGR1 expression via PPARG suppression, and that chemical inhibition of DYRK1A could restore the apoptosis, mROS, angiogenesis, and OCR in T21-ECs. Finally, we demonstrated that EGR1 was significantly upregulated in the pulmonary arterial ECs from lung specimens of a patient with DS and PAH. In conclusion, DYRK1A/PPARG/EGR1 pathway could play a central role for the pulmonary EC functions and thus be associated with the pathogenesis of PAH in DS.


Subject(s)
Down Syndrome , Hypertension, Pulmonary , Induced Pluripotent Stem Cells , Pulmonary Arterial Hypertension , Humans , Induced Pluripotent Stem Cells/metabolism , Cell Differentiation/genetics , Endothelial Cells/metabolism , Down Syndrome/complications , Down Syndrome/genetics , Down Syndrome/metabolism , Hypertension, Pulmonary/genetics , PPAR gamma/metabolism , Pulmonary Arterial Hypertension/metabolism , Cells, Cultured , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism
11.
Annu Rev Pharmacol Toxicol ; 62: 211-233, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34990205

ABSTRACT

Those with Down syndrome (DS)-trisomy for chromosome 21-are routinely impacted by cognitive dysfunction and behavioral challenges in children and adults and Alzheimer's disease in older adults. No proven treatments specifically address these cognitive or behavioral changes. However, advances in the establishment of rodent models and human cell models promise to support development of such treatments. A research agenda that emphasizes the identification of overexpressed genes that contribute demonstrably to abnormalities in cognition and behavior in model systems constitutes a rational next step. Normalizing expression of such genes may usher in an era of successful treatments applicable across the life span for those with DS.


Subject(s)
Down Syndrome , Neurodegenerative Diseases , Aged , Animals , Disease Models, Animal , Down Syndrome/drug therapy , Down Syndrome/genetics , Female , Humans , Neurodegenerative Diseases/drug therapy , Pregnancy
12.
Am J Hum Genet ; 109(12): 2126-2140, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36459979

ABSTRACT

Chromosome gains are detrimental for the development of the human embryo. As such, autosomal trisomies almost always result in spontaneous abortion, and the rare embryos surviving until live birth suffer from a plethora of pathological defects. There is no treatment currently available to ameliorate the consequences of trisomies, such as Down syndrome (trisomy of chromosome 21). Identifying the source of the phenotypes observed in cells with extra chromosomes is crucial for understanding the underlying molecular causes of trisomy syndromes. Although increased expression of the genes localized on the extra chromosome triggers several pathological phenotypes, an alternative model suggests that global, aneuploidy-associated changes in cellular physiology also contribute to the pathology. Here, we compare the molecular consequences of trisomy syndromes in vivo against engineered cell lines carrying various chromosome gains in vitro. We point out several phenotypes that are shared by variable trisomies and, therefore, might be caused by the presence of an extra chromosome per se, independent of its identity. This alternative view may provide useful insights for understanding Down syndrome pathology and open additional opportunities for diagnostics and treatments.


Subject(s)
Down Syndrome , Trisomy , Female , Pregnancy , Humans , Trisomy/genetics , Down Syndrome/genetics , Chromosome Aberrations , Chromosomes, Human, Pair 21 , Aneuploidy
13.
Am J Hum Genet ; 109(2): 328-344, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35077668

ABSTRACT

Progress in earlier detection and clinical management has increased life expectancy and quality of life in people with Down syndrome (DS). However, no drug has been approved to help individuals with DS live independently and fully. Although rat models could support more robust physiological, behavioral, and toxicology analysis than mouse models during preclinical validation, no DS rat model is available as a result of technical challenges. We developed a transchromosomic rat model of DS, TcHSA21rat, which contains a freely segregating, EGFP-inserted, human chromosome 21 (HSA21) with >93% of its protein-coding genes. RNA-seq of neonatal forebrains demonstrates that TcHSA21rat expresses HSA21 genes and has an imbalance in global gene expression. Using EGFP as a marker for trisomic cells, flow cytometry analyses of peripheral blood cells from 361 adult TcHSA21rat animals show that 81% of animals retain HSA21 in >80% of cells, the criterion for a "Down syndrome karyotype" in people. TcHSA21rat exhibits learning and memory deficits and shows increased anxiety and hyperactivity. TcHSA21rat recapitulates well-characterized DS brain morphology, including smaller brain volume and reduced cerebellar size. In addition, the rat model shows reduced cerebellar foliation, which is not observed in DS mouse models. Moreover, TcHSA21rat exhibits anomalies in craniofacial morphology, heart development, husbandry, and stature. TcHSA21rat is a robust DS animal model that can facilitate DS basic research and provide a unique tool for preclinical validation to accelerate DS drug development.


Subject(s)
Anxiety/genetics , Chromosomes, Human, Pair 21 , Down Syndrome/genetics , Founder Effect , Hyperkinesis/genetics , Animals , Anxiety/metabolism , Anxiety/pathology , Cerebellum/metabolism , Cerebellum/pathology , Disease Models, Animal , Down Syndrome/metabolism , Down Syndrome/pathology , Female , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Hyperkinesis/metabolism , Hyperkinesis/pathology , Karyotype , Learning , Male , Mutagenesis, Insertional , Organ Size , Posture , Prosencephalon/metabolism , Prosencephalon/pathology , Rats , Rats, Transgenic
14.
Genes Cells ; 29(7): 589-598, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38715219

ABSTRACT

Calcineurin (CN) is a conserved Ca2+/calmodulin-dependent phosphoprotein phosphatase that plays a key role in Ca2+ signaling. Regulator of calcineurin 1 (RCAN1), also known as Down syndrome critical region gene 1 (DSCR1), interacts with calcineurin and inhibits calcineurin-dependent signaling in various organisms. Ppb1, the fission yeast calcineurin regulates Cl--homeostasis, and Ppb1 deletion induces MgCl2 hypersensitivity. Here, we characterize the conserved and novel roles of the fission yeast RCAN1 homolog rcn1+. Consistent with its role as an endogenous calcineurin inhibitor, Rcn1 overproduction reproduced the calcineurin-null phenotypes, including MgCl2 hypersensitivity and inhibition of calcineurin signaling upon extracellular Ca2+ stimuli as evaluated by the nuclear translocation and transcriptional activation of the calcineurin substrate Prz1. Notably, overexpression of rcn1+ causes hypersensitivity to arsenite, whereas calcineurin deletion induces arsenite tolerance, showing a phenotypic discrepancy between Rcn1 overexpression and calcineurin deletion. Importantly, although Rcn1 deletion induces modest sensitivities to arsenite and MgCl2 in wild-type cells, the arsenite tolerance, but not MgCl2 sensitivity, associated with Ppb1 deletion was markedly suppressed by Rcn1 deletion. Collectively, our findings reveal a previously unrecognized functional collaboration between Rcn1 and calcineurin, wherein Rcn1 not only negatively regulates calcineurin in the Cl- homeostasis, but also Rcn1 mediates calcineurin signaling to modulate arsenite cytotoxicity.


Subject(s)
Arsenites , Calcineurin , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Calcineurin/metabolism , Calcineurin/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Arsenites/toxicity , Arsenites/pharmacology , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Signal Transduction , DNA-Binding Proteins , Muscle Proteins
15.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-37997361

ABSTRACT

In this study, we investigated the impact of Dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) overexpression, a gene associated with Down syndrome, on hippocampal neuronal deficits in mice. Our findings revealed that mice overexpressing Dyrk1A (TgDyrk1A; TG) exhibited impaired hippocampal recognition memory, disrupted excitation-inhibition balance, and deficits in long-term potentiation (LTP). Specifically, we observed layer-specific deficits in dendritic arborization of TG CA1 pyramidal neurons in the stratum radiatum. Through computational modeling, we determined that these alterations resulted in reduced storage capacity and compromised integration of inputs, with decreased high γ oscillations. Contrary to prevailing assumptions, our model suggests that deficits in neuronal architecture, rather than over-inhibition, primarily contribute to the reduced network. We explored the potential of environmental enrichment (EE) as a therapeutic intervention and found that it normalized the excitation-inhibition balance, restored LTP, and improved short-term recognition memory. Interestingly, we observed transient significant dendritic remodeling, leading to recovered high γ. However, these effects were not sustained after EE discontinuation. Based on our findings, we conclude that Dyrk1A overexpression-induced layer-specific neuromorphological disturbances impair the encoding of place and temporal context. These findings contribute to our understanding of the underlying mechanisms of Dyrk1A-related hippocampal deficits and highlight the challenges associated with long-term therapeutic interventions for cognitive impairments.


Subject(s)
Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Animals , Mice , Disease Models, Animal , Mice, Transgenic , Neurons , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Pyramidal Cells
16.
Proc Natl Acad Sci U S A ; 119(46): e2212954119, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36343257

ABSTRACT

Down syndrome (DS) is caused by the triplication of chromosome 21 and is the most common chromosomal disorder in humans. Those individuals with DS who live beyond age 40 y develop a progressive dementia that is similar to Alzheimer's disease (AD). Both DS and AD brains exhibit numerous extracellular amyloid plaques composed of Aß and intracellular neurofibrillary tangles composed of tau. Since AD is a double-prion disorder, we asked if both Aß and tau prions feature in DS. Frozen brains from people with DS, familial AD (fAD), sporadic AD (sAD), and age-matched controls were procured from brain biorepositories. We selectively precipitated Aß and tau prions from DS brain homogenates and measured the number of prions using cellular bioassays. In brain extracts from 28 deceased donors with DS, ranging in age from 19 to 65 y, we found nearly all DS brains had readily measurable levels of Aß and tau prions. In a cross-sectional analysis of DS donor age at death, we found that the levels of Aß and tau prions increased with age. In contrast to DS brains, the levels of Aß and tau prions in the brains of 37 fAD and sAD donors decreased as a function of age at death. Whether DS is an ideal model for assessing the efficacy of putative AD therapeutics remains to be determined.


Subject(s)
Alzheimer Disease , Down Syndrome , Prions , Adult , Humans , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Brain/metabolism , Cross-Sectional Studies , Down Syndrome/pathology , Prions/metabolism , tau Proteins/metabolism
17.
Circulation ; 147(5): 425-441, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36716257

ABSTRACT

Cardiovascular disease is a leading cause of morbidity and mortality in individuals with Down syndrome. Congenital heart disease is the most common cardiovascular condition in this group, present in up to 50% of people with Down syndrome and contributing to poor outcomes. Additional factors contributing to cardiovascular outcomes include pulmonary hypertension; coexistent pulmonary, endocrine, and metabolic diseases; and risk factors for atherosclerotic disease. Moreover, disparities in the cardiovascular care of people with Down syndrome compared with the general population, which vary across different geographies and health care systems, further contribute to cardiovascular mortality; this issue is often overlooked by the wider medical community. This review focuses on the diagnosis, prevalence, and management of cardiovascular disease encountered in people with Down syndrome and summarizes available evidence in 10 key areas relating to Down syndrome and cardiac disease, from prenatal diagnosis to disparities in care in areas of differing resource availability. All specialists and nonspecialist clinicians providing care for people with Down syndrome should be aware of best clinical practice in all aspects of care of this distinct population.


Subject(s)
Cardiovascular Diseases , Cardiovascular System , Down Syndrome , Heart Defects, Congenital , Pregnancy , Female , Humans , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Down Syndrome/complications , Down Syndrome/epidemiology , Down Syndrome/therapy , Consensus , Heart Defects, Congenital/complications , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/epidemiology
18.
Neurobiol Dis ; 190: 106359, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992782

ABSTRACT

Aberrant neurodevelopment in Down syndrome (DS)-caused by triplication of human chromosome 21-is commonly attributed to gene dosage imbalance, linking overexpression of trisomic genes with disrupted developmental processes, with DYRK1A particularly implicated. We hypothesized that regional brain DYRK1A protein overexpression in trisomic mice varies over development in sex-specific patterns that may be distinct from Dyrk1a transcription, and reduction of Dyrk1a copy number from 3 to 2 in otherwise trisomic mice reduces DYRK1A, independent of other trisomic genes. DYRK1A overexpression varied with age, sex, and brain region, with peak overexpression on postnatal day (P) 6 in both sexes. Sex-dependent differences were also evident from P15-P24. Reducing Dyrk1a copy number confirmed that these differences depended on Dyrk1a gene dosage and not other trisomic genes. Trisomic Dyrk1a mRNA and protein expression were not highly correlated. Sex-specific patterns of DYRK1A overexpression during trisomic neurodevelopment may provide mechanistic targets for therapeutic intervention in DS.


Subject(s)
Down Syndrome , Animals , Female , Humans , Male , Mice , Brain/metabolism , Disease Models, Animal , Down Syndrome/genetics , Down Syndrome/metabolism , Mice, Transgenic , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism
19.
Neurobiol Dis ; 196: 106523, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705491

ABSTRACT

Down syndrome (DS) is the most common condition with intellectual disability and is caused by trisomy of Homo sapiens chromosome 21 (HSA21). The increased dosage of genes on HSA21 is associated with early neurodevelopmental changes and subsequently at adult age with the development of Alzheimer-like cognitive decline. However, the molecular mechanisms promoting brain pathology along aging are still missing. The novel Ts66Yah model represents an evolution of the Ts65Dn, used in characterizing the progression of brain degeneration, and it manifest phenotypes closer to human DS condition. In this study we performed a longitudinal analysis (3-9 months) of adult Ts66Yah mice. Our data support the behavioural alterations occurring in Ts66Yah mice at older age with improvement in the detection of spatial memory defects and also a new anxiety-related phenotype. The evaluation of hippocampal molecular pathways in Ts66Yah mice, as effect of age, demonstrate the aberrant regulation of redox balance, proteostasis, stress response, metabolic pathways, programmed cell death and synaptic plasticity. Intriguingly, the genotype-driven changes observed in those pathways occur early promoting altered brain development and the onset of a condition of premature aging. In turn, aging may account for the subsequent hippocampal deterioration that fall in characteristic neuropathological features. Besides, the analysis of sex influence in the alteration of hippocampal mechanisms demonstrate only a mild effect. Overall, data collected in Ts66Yah provide novel and consolidated insights, concerning trisomy-driven processes that contribute to brain pathology in conjunction with aging. This, in turn, aids in bridging the existing gap in comprehending the intricate nature of DS phenotypes.


Subject(s)
Aging , Brain , Disease Models, Animal , Down Syndrome , Animals , Down Syndrome/genetics , Down Syndrome/pathology , Down Syndrome/metabolism , Aging/genetics , Aging/pathology , Aging/physiology , Mice , Male , Brain/metabolism , Brain/pathology , Female , Cognition/physiology , Hippocampus/metabolism , Hippocampus/pathology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Mice, Transgenic
20.
Am J Med Genet C Semin Med Genet ; 196(1): e32041, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37072379

ABSTRACT

Research regarding caregivers for individuals with Down syndrome mainly focuses on outcomes for the pediatric population and not on the experience of caregivers themselves. Our objective was to understand caregiver-reported experiences and concerns for themselves and the individual they care for through a survey of caregivers of adults with Down syndrome. We conducted a survey of N = 438 caregivers of adults with Down syndrome and asked about the perspectives of the respondents surrounding caregiving and demographics. The most common concerns among caregivers were planning for future needs (72.1%) and what happens when they (the caregiver) are gone (68.3%). Concerns they had for the individual they cared for were employment (63.2%) and friendships/relationships (63.2%). We found no significant difference in responses based on caregiver education level. Our survey identified six themes for the feedback about what clinical and research professionals should know to better serve individuals with Down syndrome, their families, and those who support them. Many caregivers discussed topics including healthcare, coordination, competence, and ability. More efforts for research into the caregiver experience for adults with Down syndrome are needed.


Subject(s)
Caregivers , Down Syndrome , Adult , Humans , Child , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL