Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.385
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 39: 1-18, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33902314

ABSTRACT

An imbalance in the microbiota may contribute to many human illnesses, which has prompted efforts to rebalance it by targeting the microbes themselves. However, by supplying the habitat, the host wields a prominent influence over microbial growth at body surfaces, raising the possibility that rebalancing the microbiota by targeting our immune system would be a viable alternative. Host control mechanisms that sculpt the microbial habitat form a functional unit with the microbiota, termed microbiota-nourishing immunity, that confers colonization resistance against pathogens. The host components of microbiota-nourishing immunity can be viewed as habitat filters that select for microbial traits licensing growth and survival in host habitat patches. Here we review current knowledge of how host-derived habitat filters shape the size, species composition, and spatial heterogeneity of the microbiota and discuss whether these host control mechanisms could be harnessed for developing approaches to rebalance microbial communities during dysbiosis.


Subject(s)
Dysbiosis , Microbiota , Animals , Humans
2.
Annu Rev Immunol ; 37: 377-403, 2019 04 26.
Article in English | MEDLINE | ID: mdl-31026410

ABSTRACT

The gut-associated lymphoid tissue (GALT) faces a considerable challenge. It encounters antigens derived from an estimated 1014 commensal microbes and greater than 30 kg of food proteins yearly. It must distinguish these harmless antigens from potential pathogens and mount the appropriate host immune response. Local and systemic hyporesponsiveness to dietary antigens, classically referred to as oral tolerance, comprises a distinct complement of adaptive cellular and humoral immune responses. It is increasingly evident that a functional epithelial barrier engaged in intimate interplay with innate immune cells and the resident microbiota is critical to establishing and maintaining oral tolerance. Moreover, innate immune cells serve as a bridge between the microbiota, epithelium, and the adaptive immune system, parlaying tonic microbial stimulation into signals critical for mucosal homeostasis. Dysregulation of gut homeostasis and the subsequent disruption of tolerance therefore have clinically significant consequences for the development of food allergy.


Subject(s)
Dysbiosis/immunology , Food Hypersensitivity/immunology , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Administration, Oral , Allergens/immunology , Animals , Food , Food Hypersensitivity/microbiology , Homeostasis , Humans , Immune Tolerance , Immunity, Innate , Intestinal Mucosa/microbiology
3.
Cell ; 185(7): 1172-1188.e28, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35303419

ABSTRACT

Intestinal mucus forms the first line of defense against bacterial invasion while providing nutrition to support microbial symbiosis. How the host controls mucus barrier integrity and commensalism is unclear. We show that terminal sialylation of glycans on intestinal mucus by ST6GALNAC1 (ST6), the dominant sialyltransferase specifically expressed in goblet cells and induced by microbial pathogen-associated molecular patterns, is essential for mucus integrity and protecting against excessive bacterial proteolytic degradation. Glycoproteomic profiling and biochemical analysis of ST6 mutations identified in patients show that decreased sialylation causes defective mucus proteins and congenital inflammatory bowel disease (IBD). Mice harboring a patient ST6 mutation have compromised mucus barriers, dysbiosis, and susceptibility to intestinal inflammation. Based on our understanding of the ST6 regulatory network, we show that treatment with sialylated mucin or a Foxo3 inhibitor can ameliorate IBD.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Sialyltransferases/genetics , Animals , Homeostasis , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Mice , Mucus/metabolism , Sialyltransferases/metabolism , Symbiosis
4.
Cell ; 182(2): 447-462.e14, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32758418

ABSTRACT

The precise mechanism by which oral infection contributes to the pathogenesis of extra-oral diseases remains unclear. Here, we report that periodontal inflammation exacerbates gut inflammation in vivo. Periodontitis leads to expansion of oral pathobionts, including Klebsiella and Enterobacter species, in the oral cavity. Amassed oral pathobionts are ingested and translocate to the gut, where they activate the inflammasome in colonic mononuclear phagocytes, triggering inflammation. In parallel, periodontitis results in generation of oral pathobiont-reactive Th17 cells in the oral cavity. Oral pathobiont-reactive Th17 cells are imprinted with gut tropism and migrate to the inflamed gut. When in the gut, Th17 cells of oral origin can be activated by translocated oral pathobionts and cause development of colitis, but they are not activated by gut-resident microbes. Thus, oral inflammation, such as periodontitis, exacerbates gut inflammation by supplying the gut with both colitogenic pathobionts and pathogenic T cells.


Subject(s)
Colitis/pathology , Enterobacter/physiology , Gastrointestinal Microbiome , Klebsiella/physiology , Mouth/microbiology , Animals , Colitis/microbiology , Colon/microbiology , Colon/pathology , Disease Models, Animal , Enterobacter/isolation & purification , Female , Inflammasomes/metabolism , Interleukin-10/deficiency , Interleukin-10/genetics , Interleukin-1beta/metabolism , Klebsiella/isolation & purification , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Periodontitis/microbiology , Periodontitis/pathology , Th17 Cells/cytology , Th17 Cells/immunology , Th17 Cells/metabolism
5.
Cell ; 180(2): 221-232, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31978342

ABSTRACT

Human diseases are increasingly linked with an altered or "dysbiotic" gut microbiota, but whether such changes are causal, consequential, or bystanders to disease is, for the most part, unresolved. Human microbiota-associated (HMA) rodents have become a cornerstone of microbiome science for addressing causal relationships between altered microbiomes and host pathology. In a systematic review, we found that 95% of published studies (36/38) on HMA rodents reported a transfer of pathological phenotypes to recipient animals, and many extrapolated the findings to make causal inferences to human diseases. We posit that this exceedingly high rate of inter-species transferable pathologies is implausible and overstates the role of the gut microbiome in human disease. We advocate for a more rigorous and critical approach for inferring causality to avoid false concepts and prevent unrealistic expectations that may undermine the credibility of microbiome science and delay its translation.


Subject(s)
Dysbiosis/microbiology , Gastrointestinal Microbiome/physiology , Rodentia/microbiology , Animals , Disease/etiology , Fecal Microbiota Transplantation/methods , Humans , Mice , Microbiota/physiology , Models, Animal , Rats
6.
Immunity ; 57(9): 2013-2029, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39151425

ABSTRACT

The intestinal microbiota determines immune responses against extraintestinal antigens, including tumor-associated antigens. Indeed, depletion or gross perturbation of the microbiota undermines the efficacy of cancer immunotherapy, thereby compromising the clinical outcome of cancer patients. In this review, we discuss the long-distance effects of the gut microbiota and the mechanisms governing antitumor immunity, such as the translocation of intestinal microbes into tumors, migration of leukocyte populations from the gut to the rest of the body, including tumors, as well as immunomodulatory microbial products and metabolites. The relationship between these pathways is incompletely understood, in particular the significance of the tumor microbiota with respect to the identification of host and/or microbial products that regulate the egress of bacteria and immunocytes toward tumor beds.


Subject(s)
Gastrointestinal Microbiome , Immunologic Surveillance , Neoplasms , Humans , Neoplasms/immunology , Neoplasms/microbiology , Neoplasms/therapy , Gastrointestinal Microbiome/immunology , Animals , Immunologic Surveillance/immunology , Immunotherapy/methods , Monitoring, Immunologic
7.
Immunity ; 57(10): 2269-2279, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39383844

ABSTRACT

The immune system recognizes a multitude of innocuous antigens from food and intestinal commensal microbes toward which it orchestrates appropriate, non-inflammatory responses. This process requires antigen-presenting cells (APCs) that induce T cells with either regulatory or effector functions. Compromised APC function disrupts the T cell balance, leading to inflammation and dysbiosis. Although their precise identities continue to be debated, it has become clear that multiple APC lineages direct the differentiation of distinct microbiota-specific CD4+ T cell programs. Here, we review how unique APC subsets instruct T cell differentiation and function in response to microbiota and dietary antigens. These discoveries provide new opportunities to investigate T cell-APC regulatory networks controlling immune homeostasis and perturbations associated with inflammatory and allergic diseases.


Subject(s)
Antigen-Presenting Cells , Humans , Antigen-Presenting Cells/immunology , Animals , Cell Differentiation/immunology , Intestines/immunology , Homeostasis/immunology , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Inflammation/immunology , T-Lymphocytes/immunology
8.
Immunity ; 55(9): 1645-1662.e7, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35882236

ABSTRACT

Healthy skin maintains a diverse microbiome and a potent immune system to fight off infections. Here, we discovered that the epithelial-cell-derived antimicrobial peptides defensins activated orphan G-protein-coupled receptors (GPCRs) Mrgpra2a/b on neutrophils. This signaling axis was required for effective neutrophil-mediated skin immunity and microbiome homeostasis. We generated mutant mouse lines lacking the entire Defensin (Def) gene cluster in keratinocytes or Mrgpra2a/b. Def and Mrgpra2 mutant animals both exhibited skin dysbiosis, with reduced microbial diversity and expansion of Staphylococcus species. Defensins and Mrgpra2 were critical for combating S. aureus infections and the formation of neutrophil abscesses, a hallmark of antibacterial immunity. Activation of Mrgpra2 by defensin triggered neutrophil release of IL-1ß and CXCL2 which are vital for proper amplification and propagation of the antibacterial immune response. This study demonstrated the importance of epithelial-neutrophil signaling via the defensin-Mrgpra2 axis in maintaining healthy skin ecology and promoting antibacterial host defense.


Subject(s)
Bacterial Infections , Neutrophils , Receptors, G-Protein-Coupled , Animals , Mice , Anti-Bacterial Agents , Carrier Proteins , Defensins/genetics , Dysbiosis , Keratinocytes , Receptors, G-Protein-Coupled/metabolism , Staphylococcus aureus
9.
Cell ; 165(7): 1762-1775, 2016 Jun 16.
Article in English | MEDLINE | ID: mdl-27315483

ABSTRACT

Maternal obesity during pregnancy has been associated with increased risk of neurodevelopmental disorders, including autism spectrum disorder (ASD), in offspring. Here, we report that maternal high-fat diet (MHFD) induces a shift in microbial ecology that negatively impacts offspring social behavior. Social deficits and gut microbiota dysbiosis in MHFD offspring are prevented by co-housing with offspring of mothers on a regular diet (MRD) and transferable to germ-free mice. In addition, social interaction induces synaptic potentiation (LTP) in the ventral tegmental area (VTA) of MRD, but not MHFD offspring. Moreover, MHFD offspring had fewer oxytocin immunoreactive neurons in the hypothalamus. Using metagenomics and precision microbiota reconstitution, we identified a single commensal strain that corrects oxytocin levels, LTP, and social deficits in MHFD offspring. Our findings causally link maternal diet, gut microbial imbalance, VTA plasticity, and behavior and suggest that probiotic treatment may relieve specific behavioral abnormalities associated with neurodevelopmental disorders. VIDEO ABSTRACT.


Subject(s)
Autism Spectrum Disorder/microbiology , Diet, High-Fat , Gastrointestinal Microbiome , Obesity/complications , Social Behavior , Animals , Dysbiosis/physiopathology , Female , Germ-Free Life , Housing, Animal , Limosilactobacillus reuteri , Male , Mice , Mice, Inbred C57BL , Oxytocin/analysis , Oxytocin/metabolism , Pregnancy , Ventral Tegmental Area
10.
Immunity ; 54(6): 1137-1153.e8, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34051146

ABSTRACT

Alterations in the cGAS-STING DNA-sensing pathway affect intestinal homeostasis. We sought to delineate the functional role of STING in intestinal inflammation. Increased STING expression was a feature of intestinal inflammation in mice with colitis and in humans afflicted with inflammatory bowel disease. Mice bearing an allele rendering STING constitutively active exhibited spontaneous colitis and dysbiosis, as well as progressive chronic intestinal inflammation and fibrosis. Bone marrow chimera experiments revealed STING accumulation in intestinal macrophages and monocytes as the initial driver of inflammation. Depletion of Gram-negative bacteria prevented STING accumulation in these cells and alleviated intestinal inflammation. STING accumulation occurred at the protein rather than transcript level, suggesting post-translational stabilization. We found that STING was ubiquitinated in myeloid cells, and this K63-linked ubiquitination could be elicited by bacterial products, including cyclic di-GMP. Our findings suggest a positive feedback loop wherein dysbiosis foments the accumulation of STING in intestinal myeloid cells, driving intestinal inflammation.


Subject(s)
Colitis/immunology , Dysbiosis/immunology , Immunity, Innate/immunology , Membrane Proteins/immunology , Myeloid Cells/immunology , Ubiquitination/immunology , Animals , Case-Control Studies , Female , Humans , Inflammation/immunology , Intestines/immunology , Male , Mice , Mice, Inbred C57BL , Monocytes/immunology
11.
Immunity ; 54(10): 2321-2337.e10, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34582748

ABSTRACT

Hair follicles (HFs) function as hubs for stem cells, immune cells, and commensal microbes, which must be tightly regulated during homeostasis and transient inflammation. Here we found that transmembrane endopeptidase ADAM10 expression in upper HFs was crucial for regulating the skin microbiota and protecting HFs and their stem cell niche from inflammatory destruction. Ablation of the ADAM10-Notch signaling axis impaired the innate epithelial barrier and enabled Corynebacterium species to predominate the microbiome. Dysbiosis triggered group 2 innate lymphoid cell-mediated inflammation in an interleukin-7 (IL-7) receptor-, S1P receptor 1-, and CCR6-dependent manner, leading to pyroptotic cell death of HFs and irreversible alopecia. Double-stranded RNA-induced ablation models indicated that the ADAM10-Notch signaling axis bolsters epithelial innate immunity by promoting ß-defensin-6 expression downstream of type I interferon responses. Thus, ADAM10-Notch signaling axis-mediated regulation of host-microbial symbiosis crucially protects HFs from inflammatory destruction, which has implications for strategies to sustain tissue integrity during chronic inflammation.


Subject(s)
ADAM10 Protein/immunology , Amyloid Precursor Protein Secretases/immunology , Dysbiosis/immunology , Hair Follicle/pathology , Lymphocytes/immunology , Membrane Proteins/immunology , Receptors, Notch/immunology , Skin/microbiology , Alopecia/immunology , Alopecia/pathology , Animals , Corynebacterium , Dysbiosis/pathology , Female , Hair Follicle/immunology , Immunity, Innate , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Mice , Signal Transduction/immunology , Skin/immunology , Skin/pathology
12.
Immunity ; 51(2): 367-380.e4, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31350179

ABSTRACT

Epithelial barrier defects are implicated in the pathogenesis of inflammatory bowel disease (IBD); however, the role of microbiome dysbiosis and the cytokine networks orchestrating chronic intestinal inflammation in response to barrier impairment remain poorly understood. Here, we showed that altered Schaedler flora (ASF), a benign minimal microbiota, was sufficient to trigger colitis in a mouse model of intestinal barrier impairment. Colitis development required myeloid-cell-specific adaptor protein MyD88 signaling and was orchestrated by the cytokines IL-12, IL-23, and IFN-γ. Colon inflammation was driven by IL-12 during the early stages of the disease, but as the mice aged, the pathology shifted toward an IL-23-dependent inflammatory response driving disease chronicity. These findings reveal that IL-12 and IL-23 act in a temporally distinct, biphasic manner to induce microbiota-driven chronic intestinal inflammation. Similar mechanisms might contribute to the pathogenesis of IBD particularly in patients with underlying intestinal barrier defects.


Subject(s)
Colitis/immunology , Inflammatory Bowel Diseases/immunology , Interleukin-12/metabolism , Interleukin-23/metabolism , Intestinal Mucosa/pathology , Microbiota/immunology , Animals , Chronic Disease , Disease Models, Animal , Humans , Inflammation , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-12/genetics , Interleukin-23/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/metabolism , Signal Transduction , Transplantation Chimera
13.
Immunol Rev ; 322(1): 233-243, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38014621

ABSTRACT

Common variable immunodeficiency (CVID) is a heterogenous disease category created to distinguish late-onset antibody deficiencies from early-onset diseases like agammaglobulinemia or more expansively dysfunctional combined immunodeficiencies. Opinions vary on which affected patients should receive a CVID diagnosis which confuses clinicians and erects reproducibility barriers for researchers. Most experts agree that CVID's most indeliable feature is defective germinal center (GC) production of isotype-switched, affinity-maturated antibodies. Here, we review the biological factors contributing to CVID-associated GC dysfunction including genetic, epigenetic, tolerogenic, microbiome, and regulatory abnormalities. We also discuss the consequences of these biological phenomena to the development of non-infectious disease complications. Finally, we opine on topics and lines of investigation we think hold promise for expanding our mechanistic understanding of this protean condition and for improving the lives of affected patients.


Subject(s)
Common Variable Immunodeficiency , Humans , Common Variable Immunodeficiency/genetics , B-Lymphocytes , Reproducibility of Results , Wind , Germinal Center
14.
Immunity ; 49(5): 929-942.e5, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30446385

ABSTRACT

Commensal microbes colonize the gut epithelia of virtually all animals and provide several benefits to their hosts. Changes in commensal populations can lead to dysbiosis, which is associated with numerous pathologies and decreased lifespan. Peptidoglycan recognition proteins (PGRPs) are important regulators of the commensal microbiota and intestinal homeostasis. Here, we found that a null mutation in Drosophila PGRP-SD was associated with overgrowth of Lactobacillus plantarum in the fly gut and a shortened lifespan. L. plantarum-derived lactic acid triggered the activation of the intestinal NADPH oxidase Nox and the generation of reactive oxygen species (ROS). In turn, ROS production promoted intestinal damage, increased proliferation of intestinal stem cells, and dysplasia. Nox-mediated ROS production required lactate oxidation by the host intestinal lactate dehydrogenase, revealing a host-commensal metabolic crosstalk that is probably broadly conserved. Our findings outline a mechanism whereby host immune dysfunction leads to commensal dysbiosis that in turn promotes age-related pathologies.


Subject(s)
Drosophila/physiology , Lactic Acid/metabolism , Longevity , Microbiota , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Dysbiosis , Gene Expression , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Mutation , NADPH Oxidases/genetics , Signal Transduction , Symbiosis
15.
Immunity ; 49(6): 1103-1115.e6, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30566883

ABSTRACT

Retinoic acid (RA), a vitamin A metabolite, regulates transcriptional programs that drive protective or pathogenic immune responses in the intestine, in a manner dependent on RA concentration. Vitamin A is obtained from diet and is metabolized by intestinal epithelial cells (IECs), which operate in intimate association with microbes and immune cells. Here we found that commensal bacteria belonging to class Clostridia modulate RA concentration in the gut by suppressing the expression of retinol dehydrogenase 7 (Rdh7) in IECs. Rdh7 expression and associated RA amounts were lower in the intestinal tissue of conventional mice, as compared to germ-free mice. Deletion of Rdh7 in IECs diminished RA signaling in immune cells, reduced the IL-22-dependent antimicrobial response, and enhanced resistance to colonization by Salmonella Typhimurium. Our findings define a regulatory circuit wherein bacterial regulation of IEC-intrinsic RA synthesis protects microbial communities in the gut from excessive immune activity, achieving a balance that prevents colonization by enteric pathogens.


Subject(s)
Dysbiosis/metabolism , Epithelial Cells/metabolism , Interleukins/metabolism , Intestinal Mucosa/metabolism , Tretinoin/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Animals , Bacteria/classification , Bacteria/genetics , Dysbiosis/microbiology , Epithelial Cells/microbiology , Host Microbial Interactions , Intestinal Mucosa/cytology , Intestinal Mucosa/microbiology , Lymphocytes/metabolism , Lymphocytes/microbiology , Mice, Inbred C57BL , Mice, Knockout , Microbiota/genetics , Microbiota/physiology , RNA, Ribosomal, 16S/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/physiology , Symbiosis , Interleukin-22
16.
Immunol Rev ; 314(1): 93-110, 2023 03.
Article in English | MEDLINE | ID: mdl-36271881

ABSTRACT

Neutrophils are of key importance in periodontal health and disease. In their absence or when they are functionally defective, as occurs in certain congenital disorders, affected individuals develop severe forms of periodontitis in early age. These observations imply that the presence of immune-competent neutrophils is essential to homeostasis. However, the presence of supernumerary or hyper-responsive neutrophils, either because of systemic priming or innate immune training, leads to imbalanced host-microbe interactions in the periodontium that culminate in dysbiosis and inflammatory tissue breakdown. These disease-provoking imbalanced interactions are further exacerbated by periodontal pathogens capable of subverting neutrophil responses to their microbial community's benefit and the host's detriment. This review attempts a synthesis of these findings for an integrated view of the neutrophils' ambivalent role in periodontal disease and, moreover, discusses how some of these concepts underpin the development of novel therapeutic approaches to treat periodontal disease.


Subject(s)
Neutrophils , Periodontitis , Humans , Inflammation , Periodontium , Homeostasis
17.
Trends Immunol ; 44(8): 568-570, 2023 08.
Article in English | MEDLINE | ID: mdl-37451906

ABSTRACT

The gut microbiome influences the response, resistance, and toxicity of cancer immunotherapy, but the underlying mechanisms remain unknown. Fidelle et al. identify intestinal MAdCAM-1 as a mechanistic target through which gut dysbiosis blunts antitumor immunity, with opportunities for putative therapeutic intervention.


Subject(s)
Gastrointestinal Microbiome , T-Lymphocytes , Humans , Immunotherapy , Dysbiosis
18.
Immunity ; 47(2): 339-348.e4, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28801232

ABSTRACT

The gut microbiota regulate susceptibility to multiple human diseases. The Nlrp6-ASC inflammasome is widely regarded as a hallmark host innate immune axis that shapes the gut microbiota composition. This notion stems from studies reporting dysbiosis in mice lacking these inflammasome components when compared with non-littermate wild-type animals. Here, we describe microbial analyses in inflammasome-deficient mice while minimizing non-genetic confounders using littermate-controlled Nlrp6-deficient mice and ex-germ-free littermate-controlled ASC-deficient mice that were all allowed to shape their gut microbiota naturally after birth. Careful microbial phylogenetic analyses of these cohorts failed to reveal regulation of the gut microbiota composition by the Nlrp6- and ASC-dependent inflammasomes. Our results obtained in two geographically separated animal facilities dismiss a generalizable impact of Nlrp6- and ASC-dependent inflammasomes on the composition of the commensal gut microbiota and highlight the necessity for littermate-controlled experimental design in assessing the influence of host immunity on gut microbial ecology.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Bacteria/genetics , Colitis/immunology , Dysbiosis/immunology , Gastrointestinal Microbiome/immunology , Inflammasomes/metabolism , Receptors, Cell Surface/metabolism , Animals , CARD Signaling Adaptor Proteins , Cells, Cultured , Colitis/chemically induced , Colitis/microbiology , Dysbiosis/microbiology , Female , Genetic Background , Immunity, Innate , Mice , Mice, Inbred C57BL , Mice, Knockout , Microbiota , RNA, Ribosomal, 16S/analysis , Receptors, Cell Surface/genetics , Sodium Dodecyl Sulfate
19.
Circ Res ; 2024 Oct 23.
Article in English | MEDLINE | ID: mdl-39440438

ABSTRACT

BACKGROUND: Tryptophan metabolism is important in blood pressure regulation. The tryptophan-indole pathway is exclusively mediated by the gut microbiota. ACE2 (angiotensin-converting enzyme 2) participates in tryptophan absorption, and a lack of ACE2 leads to changes in the gut microbiota. The gut microbiota has been recognized as a regulator of blood pressure. Furthermore, there is ample evidence for sex differences in the gut microbiota. However, it is unclear whether such sex differences impact blood pressure differentially through the tryptophan-indole pathway. METHODS: To study the sex-specific mechanisms of gut microbiota-mediated tryptophan-indole pathway in hypertension, we generated a novel rat model with Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-associated protein 9)-targeted deletion of Ace2 in the Dahl salt-sensitive rat. Cecal microbiota transfers from donors of both sexes to female S recipients were performed. Also, Dahl salt-sensitive rats of both sexes were orally gavaged with indole to investigate blood pressure response. RESULTS: The female gut microbiota and its tryptophan-indole pathway exhibited greater buffering capacity when exposed to tryptophan, due to Ace2 deficiency, and salt. In contrast, the male gut microbiota and its tryptophan-indole pathway were more vulnerable. Female rats with male cecal microbiota responded to salt with a higher blood pressure increase. Indole, a tryptophan-derived metabolite produced by gut bacteria, increased blood pressure in male but not in female rats. Moreover, salt altered host-mediated tryptophan metabolism, characterized by reduced serum serotonin of both sexes and higher levels of kynurenine derivatives in the females. CONCLUSIONS: We uncovered a novel sex-specific mechanism in the gut microbiota-mediated tryptophan-indole pathway in blood pressure regulation. Salt tipped the tryptophan metabolism between the host and gut microbiota in a sex-dependent manner. Our study provides evidence for a novel concept that gut microbiota and its metabolism play sex-specific roles in the development of salt-sensitive hypertension.

20.
Bioessays ; 46(8): e2400050, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38924108

ABSTRACT

Microbiome research is changing how ecosystems, including animal bodies, are understood. In the case of humans, microbiome knowledge is transforming medical approaches and applications. However, the field is still young, and many conceptual and explanatory issues need resolving. These include how microbiome causality is understood, and how to conceptualize the role microbiomes have in the health status of their hosts and other ecosystems. A key concept that crops up in the medical microbiome literature is "balance." A balanced microbiome is thought to produce health and an imbalanced one disease. Based on a quantitative and qualitative analysis of how balance is used in the microbiome literature, this "think again" essay critically analyses each of the several subconceptions of balance. As well as identifying problems with these uses, the essay suggests some starting points for filling this conceptual gap in microbiome research.


Subject(s)
Microbiota , Animals , Humans , Ecosystem , Microbiota/physiology
SELECTION OF CITATIONS
SEARCH DETAIL