Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add more filters

Publication year range
1.
Am J Primatol ; 86(1): e23569, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37899689

ABSTRACT

Deforestation and habitat fragmentation is the primary threat to primate populations. The primates that live within degraded and anthropogenically disturbed habitats typical of fragmented landscapes have to cope with lower availability of resources in comparison to primates in continuous, undisturbed forests. While some species are sensitive to forest fragmentation, some evidence exists to suggest that primates can alter their behavior and adapt to such changes, which enables their survival in suboptimal habitat. In this study, we assessed how forest fragmentation and its associated edge-effects impact the feeding ecology and activity levels of a nocturnal primate community in the Sahamalaza-Iles Radama National Park, North West Madagascar. From March 06, 2019 to May 17, 2022, we collected data on tree and invertebrate phenology at our study site, and feeding ecology and activity for 159 lemur individuals from four species. Fruit and flower availability varied significantly between continuous and fragmented forest, and between forest core and edge areas, with continuous forest exhibiting higher continuous fruit and flower availability. Lemur feeding ecology varied significantly too, as the feeding niches of all four species were significantly different between continuous and fragmented forest and between core and edge areas. However, lemur activity levels were mostly consistent among all forest areas. The results of this study suggest that nocturnal lemurs are able to adapt their dietary ecology in response to the available food sources within their habitat. Due to this flexible ecology and dietary plasticity, the lemurs do not need to significantly alter their behavior in different environments to fulfill their dietary needs. While nocturnal lemurs demonstrate adaptability and flexibility to degraded habitat, it is unclear how far this plasticity will stretch considering that Madagascar's forests are still being cleared at an alarming rate. Urgent conservation action is therefore needed to ensure the future of lemur habitat.


Subject(s)
Lemur , Lemuridae , Strepsirhini , Animals , Lemur/physiology , Madagascar , Ecology , Lemuridae/physiology , Ecosystem , Forests
2.
Am J Primatol ; : e23621, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528343

ABSTRACT

Edge effects result from the penetration to varying depths and intensities, of abiotic and biotic conditions from the surrounding non-forest matrix into the forest interior. Although 70% of the world's forests are within 1 km of a forest edge, making edge effects a dominant feature of most forest habitats, there are few empirical data on inter-site differences in edge responses in primates. We used spatially explicit capture-recapture (SECR) models to determine spatial patterns of density for two species of mouse lemurs (Microcebus murinus and Microcebus ravelobensis) in two forest landscapes in northwestern Madagascar. The goal of our study was to determine if mouse lemurs displayed spatially variable responses to edge effects. We trapped animals using Sherman live traps in the Mariarano Classified Forest (MCF) and in the Ambanjabe Forest Fragment Site (AFFS) site within Ankarafantsika National Park. We trapped 126 M. murinus and 79 M. ravelobensis at MCF and 78 M. murinus and 308 M. ravelobensis at AFFS. For M. murinus, our top model predicted a positive edge response, where density increased towards edge habitats. In M. ravelobensis, our top model predicted a negative edge response, where density was lower near the forest edges and increased towards the forest interior. At regional and landscape-specific scales, SECR models estimated different density patterns between M. murinus and M. ravelobensis as a result of variation in edge distance. The spatial variability of our results using SECR models indicate the importance of studying the population ecology of primates at varying scales that are appropriate to the processes of interest. Our results lend further support to the theory that some lemurs exhibit a form of ecological flexibility in their responses to forest loss, forest fragmentation, and associated edge effects.

3.
Am J Primatol ; : e23610, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402143

ABSTRACT

Social behavior is a key adaptation for group-living primates. It is important to assess changes to social behavior in human-impacted landscape zones to better understand the impact of anthropogenic disturbance on primate species. We investigated social behavior rate and type in three species of platyrrhines across 100 m anthropogenic edge and interior zones of a fragmented forest in Costa Rica, La Suerte Biological Research Station (LSBRS). Following results from other sites, we predicted that spider monkeys (Ateles geoffroyi), capuchin monkeys (Cebus imitator) and howler monkeys (Alouatta palliata) would show lower rates and fewer types of social behavior in forest edge compared to interior. We collected 1341 h of instantaneous focal data from 2017 to 2023 across the three monkey species. We found mixed support for our predictions, with spider and capuchin monkeys modifying some but not all aspects of social behavior across forest zones at LSBRS. Spider monkeys had lower rates of social behavior and capuchin monkeys performed different types of social behaviors in forest edge compared to interior at LSBRS. In contrast, howler monkeys did not modify social behavior. Two out of three platyrrhine species altered their social behavior when in anthropogenic edges, indicating behavioral adjustment when in human-altered habitat areas at LSBRS.

4.
Small ; 19(14): e2207177, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36703535

ABSTRACT

2D molybdenum disulfide (MoS2 ) is developed as a potential alternative non-precious metal electrocatalyst for energy conversion. It is well known that 2D MoS2 has three main phases 2H, 1T, and 1T'. However, the most stable 2H-phase shows poor electrocatalysis in its basal plane, compared with its edge sites. In this work, a facile one-step hydrothermal-driven in situ porousizing of MoS2 into self-supporting nano islands to maximally expose the edges of MoS2 grains for efficient utilization of the active stable sites at the edges of MoS2 is reported. The results show that such active, aggregation-free nano islands greatly enhance MoS2 's hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) bifunctional electrocatalytic activities. At a low overpotential of 248 and 300 mV, the porous MoS2 nano islands can generate a current density of 10 mA cm-2 in HER and OER, which is much better than typical nanosheet morphology. Surprisingly, the porous MoS2 nano islands even exhibit better performance than the current commercial RuO2 catalyst in OER. This discovery will be another effective strategy to promote robust 2H-phase, instead of 1T/1T'-phase, MoS2 to achieve efficient endurable bifunctional HER/OER, which is expected to further replace precious metal catalysts in industry.

5.
J Theor Biol ; 557: 111324, 2023 01 21.
Article in English | MEDLINE | ID: mdl-36334851

ABSTRACT

Land conversion and the resulting contact between domesticated and wild species has arguably been the single largest contributor to the emergence of novel epizootic and zoonotic diseases in the past century. An unintended consequence of these interactions is zoonotic or epizootic disease spillovers from wild species to humans and their domesticates. Disease spillovers are edge effects of land conversion and are sensitive to the size and shape of converted areas. We combine spatial metrics from landscape ecology with theoretical epidemiological models to understand how the size and shape of land conversion affect epizootic and zoonotic disease transmission of single and two species populations. We show that the less compact the converted area, and the greater the depth of the contact zone, the more rapidly will an introduced disease spread through the domesticated population.


Subject(s)
Benchmarking , Ecology , Humans , Animals , Epidemiological Models , Zoonoses/epidemiology
6.
Electrochim Acta ; 4722023 Dec 20.
Article in English | MEDLINE | ID: mdl-39070043

ABSTRACT

Blocking electrochemistry, a subfield of single-entity electrochemistry, enables in-situ sizing of redox-inactive particles. This method exploits the adsorptive impact of individual insulating particles on a microelectrode, which decreases the electrochemically active surface area of the electrode. Against the background of an electroactive redox reaction in solution, each individual impacting particle results in a discrete current drop, with the magnitude of the drop corresponding to the size of the blocking particle. One significant limitation of this technique is "edge effects", resulting from the inhomogeneous flux of the redox species' diffusion due to increased mass transport to the edge of the disk electrode surface. "Edge effects" cause increased errors in size detection, resulting in poor analytical precision. Here, we use computational simulations to demonstrate that inhomogeneous diffusional edge flux of quasi-reversible redox species is mitigated at lowered overpotentials. This phenomenon is further illustrated experimentally by lowering the applied potential such that the system is operating under a kinetically-controlled regime instead of a diffusion-limited regime, which mitigates edge effects and increases particle sizing precision significantly. In addition, we found this method to be generalizable, as the precision enhancement is not limited to geometrically spherical particles but also occurs for cubic particles. This work presents a simple, novel methodology for edge effect mitigation with general applicability across different particle types.

7.
Proc Natl Acad Sci U S A ; 117(14): 7863-7870, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32229568

ABSTRACT

Nearly 20% of tropical forests are within 100 m of a nonforest edge, a consequence of rapid deforestation for agriculture. Despite widespread conversion, roughly 1.2 billion ha of tropical forest remain, constituting the largest terrestrial component of the global carbon budget. Effects of deforestation on carbon dynamics in remnant forests, and spatial variation in underlying changes in structure and function at the plant scale, remain highly uncertain. Using airborne imaging spectroscopy and light detection and ranging (LiDAR) data, we mapped and quantified changes in forest structure and foliar characteristics along forest/oil palm boundaries in Malaysian Borneo to understand spatial and temporal variation in the influence of edges on aboveground carbon and associated changes in ecosystem structure and function. We uncovered declines in aboveground carbon averaging 22% along edges that extended over 100 m into the forest. Aboveground carbon losses were correlated with significant reductions in canopy height and leaf mass per area and increased foliar phosphorus, three plant traits related to light capture and growth. Carbon declines amplified with edge age. Our results indicate that carbon losses along forest edges can arise from multiple, distinct effects on canopy structure and function that vary with edge age and environmental conditions, pointing to a need for consideration of differences in ecosystem sensitivity when developing land-use and conservation strategies. Our findings reveal that, although edge effects on ecosystem structure and function vary, forests neighboring agricultural plantations are consistently vulnerable to long-lasting negative effects on fundamental ecosystem characteristics controlling primary productivity and carbon storage.


Subject(s)
Carbon/metabolism , Conservation of Natural Resources , Ecosystem , Tropical Climate , Agriculture/trends , Biomass , Borneo , Forests , Phosphorus/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Trees
8.
Nanotechnology ; 33(49)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36067708

ABSTRACT

Materials exhibiting an exchange bias effect are a class of magnetic systems that have a wide range of possible technological applications e.g. in sensors, read heads, and spintronic devices. In this study, we demonstrate the effect of laser interference patterning on the magnetic properties of Pd/CoO/Co/Pd multilayers. Laser patterning creates arrays of well-ordered stripes, rectangles, and squares on the substrate surface. We found that the laser treatment caused magnetic softening of the structure edges while the centers of the objects remained unchanged and exhibited the exchange bias effect. In this study we focused on the shape and configurational magnetic anisotropies induced by patterning and showed that the magnetic properties varied depending on the angle at which the external magnetic field was applied with respect to the pattern geometry.

9.
Oecologia ; 198(4): 1031-1042, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35279725

ABSTRACT

Understanding how habitat edges affect ecological processes is crucial given widespread and increasing modifications to natural landscapes. Resource specialization is a key factor affecting among-species edge responses, but we know little about how intraspecific resource use variation mediates edge utilization. Here, we integrate stomach content analysis, geometric morphometrics and feeding experiments to explore the role of resource polymorphism in mediating marsh crab (Panopeus obesus) foraging within the marsh-oyster reef boundary. Stomachs of edge individuals contained a greater proportion of morphologically defended edge prey (bivalves) compared to core marsh individuals, and edge individuals possessed relatively tall and robust claw morphology for manipulating such prey. We further show experimentally that phenotypic changes of edge P. obesus are associated with enhanced feeding efficiency on small, but not large edge prey. Morphological and ecological traits of edge P. obesus overlapped with the edge-occurring congener, P. herbstii, suggesting some degree of functional convergence despite the potential for interspecific competition within edges. Though this polymorphism is likely plastic, the success of P. obesus along edges could subsidize predator production within marshes and alter top-down pressure across mosaic estuarine landscapes. More generally, our study reveals polymorphism as a driver of edge utilization, while yielding new insight into the processes that maintain or erode spatial niche differentiation within predator guilds.


Subject(s)
Brachyura , Ostreidae , Animals , Brachyura/genetics , Ecosystem , Humans , Predatory Behavior/physiology , Wetlands
10.
J Environ Manage ; 308: 114625, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35121455

ABSTRACT

Vegetation clearance is the major land use change in agricultural landscape, where woody species are removed to support agricultural production. Native woody species are now largely restricted to the thin strips along the road (roadside verges). Despite the importance of roadside verges as refugia for native species, their impacts on ecological functions and the driving factors have been little explored over extensive areas, limiting our capacity to argue for the retention and improvement of these 'off-reserve' habitats within agroecosystems. We compared the magnitude of ecological functions between paired roadside verges and adjacent agricultural land at 111 sites along a vegetation condition gradient in eastern Australia to examine the ecological importance of roadside verges and the potential regulators. Eighty-six percent of our 21 ecological attributes differed between roadsides and adjacent agricultural land, with roadside verges supporting greater carbon stocks, vegetation coverage, plant diversity, habitat complexity and tree recruitment, and were subject to less modification and erosion. These ecological effects strengthened with increasing roadside verge width, particularly for plant cover and diversity, the proportion of native plant species and habitat complexity. Management practices were major regulators of roadside functions, with roadside verge width and site modification negatively associated with tree recruitment and the soil organic carbon pool. Site modification and roadside verge width also indirectly reduced the soil organic carbon pool by either suppressing tree diversity or promoting the proportion of native plant species. Our study provides empirical evidence of the ecological importance of roadside verges in maintaining ecosystem functions and the sustainability of native plant communities in peri-agricultural landscapes. Our study also demonstrates the negative effects of site modification on tree recruitment and soil organic carbon pools, highlighting the importance of mitigating management activities (e.g., tree removal, fire, grazing) in the conservation of roadside verges.


Subject(s)
Ecosystem , Poaceae , Carbon , Forests , Soil
11.
Ecol Appl ; 31(3): e02281, 2021 04.
Article in English | MEDLINE | ID: mdl-33336476

ABSTRACT

Exploration practices for oil sands developments in the boreal forest of western Canada create a network of thousands of kilometers of linear features, particularly seismic lines that dissect these forests posing significant environmental challenges. As wildfire is one of the prevalent stand-replacing natural disturbances in the Canadian boreal forest, it is an important driver of environmental change and stand development that may contribute to the mitigation of such linear industrial footprint. Here, we evaluate the short-term cumulative (also known as combined) effects of seismic lines and wildfire on biodiversity and site conditions. One year after the Horse River (Fort McMurray, Alberta, Canada) fire event in the spring of 2016, we compared dissected and undisturbed forests in burned and unburned boreal peatlands, assessing changes in overall stand structure and the responses of a variety of organisms. Soil moisture was significantly higher on seismic lines than in the adjacent forest, suggesting why most of the study sites within the fire perimeter showed little evidence of burning at the line in relation to the adjacent forest. Low fire severity on seismic lines seemed an important driver of local species diversity for ants, beetles, spiders, and plants in disturbed peatlands, resulting in similar species composition on seismic lines both within and outside the burned area, but different assemblages in burned and unburned adjacent forests. Our results suggest that fire did not erase seismic lines; rather, wildfire might increase the influence of this footprint on the recovering adjacent forest. Longer-term monitoring will be necessary to understand how boreal treed peatlands respond to the cumulative effect of wildfire and linear disturbances.


Subject(s)
Fires , Wildfires , Alberta , Animals , Forests , Horses , Oil and Gas Fields
12.
Folia Primatol (Basel) ; 92(1): 49-57, 2021.
Article in English | MEDLINE | ID: mdl-33291105

ABSTRACT

Forest fragmentation increases forest edge relative to forest interior, with lower vegetation quality common for primates in edge zones. Because most primates live in human-modified tropical forests within 1 km of their edges, it is critical to understand how primates cope with edge effects. Few studies have investigated how primates inhabiting a fragment alter their behaviour across forest edge and interior zones. Here we investigate how anthropogenic edges affect the activity and spatial cohesion of mantled howler monkeys (Alouatta palliata) at the La Suerte Biological Research Station (LSBRS), a Costa Rican forest fragment. We predicted the monkeys would spend greater proportions of their activity budget feeding and resting and a lower proportion travelling in edge compared to forest interior to compensate for lower resource availability in the edge. We also predicted that spatial cohesion would be lower in the edge to mitigate feeding competition. We collected data on activity and spatial cohesion (nearest neighbour distance; number of individuals within 5 m) in forest edge and interior zones via instantaneous sampling of focal animals. Contrary to predictions, the monkeys spent equal proportions of time feeding, resting and travelling in forest edge and interior. Similarly, there were no biologically meaningful differences in the number of individuals or the distance between nearest neighbours in the edge (1.0 individuals; 1.56 m) versus the interior (0.8 individuals; 1.73 m). Our results indicate that A. palliata at LSBRS do not adjust their activity or spatial cohesion patterns in response to anthropogenic edge effects, suggesting that the monkeys here exhibit less behavioural flexibility than A. palliata at some other sites. To develop effective primate conservation plans, it is therefore crucial to study primate species' responses to fragmentation across their geographic range.


Subject(s)
Alouatta/physiology , Ecosystem , Forests , Animals , Behavior, Animal/physiology , Costa Rica , Feeding Behavior , Female , Male , Motor Activity , Rest , Social Behavior
13.
Ann Bot ; 126(7): 1181-1191, 2020 11 24.
Article in English | MEDLINE | ID: mdl-32710752

ABSTRACT

BACKGROUND AND AIMS: In fragmented forests, proximity to forest edges can favour the establishment of resource-acquisitive species over more resource-conservative species. During seedling recruitment, resource-acquisitive species may benefit from either higher light availability or weaker top-down effects of natural enemies. The relative importance of light and enemies for recruitment has seldom been examined with respect to edge effects. METHODS: In a human-modified wet tropical forest in India, we first examined how functional traits indicative of resource-acquisitive vs. resource-conservative strategies, i.e. specific leaf area (SLA), leaf dry matter content, wood density and seed size, explained interspecific differences in densities of seedling recruits with distance to the forest edge. Then, we checked whether fungicide and insecticide treatments and canopy openness (proxy for light availability) explained edge effects on trait-mediated changes in seedling density. Finally, we examined whether light availability and natural enemy activity explained edge effects on functional diversity of seedling recruits. KEY RESULTS: Up to 60 m from edges, recruit densities increased with decreasing seed size, but not at 90-100 m, where recruit densities increased with higher SLA. Trait-mediated variation in recruit densities changed with pesticides only at 90-100 m: compared with control plots, fungicide increased recruit densities for low SLA species and insecticide increased smaller seeded species. For SLA, wood density and seed size, functional diversity of recruits was higher at 90-100 m than at 0-5 m. At 90-100 m, fungicide decreased functional diversity for SLA and insecticide reduced seed size diversity compared with control plots. Canopy openness explained neither variation in recruit density in relation to traits nor functional diversity. CONCLUSIONS: Altered biotic interactions can mediate local changes to trait composition and functional diversity during seedling recruitment in forest fragments, hinting at downstream effects on the structure and function of human-modified forests.


Subject(s)
Seedlings , Trees , Animals , Forests , Fungi , Humans , India , Insecta , Tropical Climate
14.
Ecol Appl ; 30(5): e02097, 2020 07.
Article in English | MEDLINE | ID: mdl-32078225

ABSTRACT

In recent decades, a paradigm shift in forest management and associated policies has led to greater emphasis on harvest practices that retain mature, overstory trees in forest stands that would otherwise be clear-cut. While it is often assumed that the maintenance of compositional and structural complexity, such as that achieved through retention forestry approaches, will also mitigate negative impacts to functional diversity, empirical evidence of this relationship is sparse. We examined the effects of an aggregated retention system on taxonomic and functional diversity in a regenerating aspen-dominated forest. Sampling was conducted along transects arranged to capture the transition from harvested (regenerating) forest to mature, unharvested forest (both intact forest stands and 0.1 ha retention aggregates). We then assessed the magnitude and distance of edge effects on multiple indices of taxonomic and functional diversity as well as functional identity. Twelve years after harvest, the distance and magnitude of edge effects on functional and taxonomic diversity did not differ between the two unharvested patch sizes (intact vs. aggregate); however, intact forest exhibited greater resistance to edge effects and greater depth of edge influence into harvested areas for some traits compared to aggregates. Analyses relying on functional traits were generally applicable across sites within a highly variable forest type, and our results demonstrate the promise of using functional traits to assess management impacts on plant diversity across a landscape. Aggregates maintained some functional attributes associated with interior forest and influenced adjacent regeneration. However, trends in some traits (i.e., shade tolerance and seed mass), particularly in the seedling layer, suggest aggregates of this size provide primarily edge habitat.


Subject(s)
Forestry , Moths , Animals , Ecosystem , Forests , Trees
15.
Oecologia ; 193(2): 403-413, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32556593

ABSTRACT

Nested scales of habitat heterogeneity may independently or synergistically influence faunal interactions. Fragmentation effects (i.e., the breaking apart of landscapes) and edge effects (i.e., ecological differences between edges and interiors of patches, nested within landscapes) are distinct yet related ecological concepts, linked mathematically by the habitat edge-to-area ratio. Our study quantified the separate and interactive effects of fragmentation and edge on predation using temperate seagrass. To assess how predation and generalized consumption were influenced by fragmentation state (i.e., continuous, fragmented), and proximity to edge (i.e., edges, interiors), we used tethering assays with two prey-items: juvenile crabs, Callinectes sapidus, and "squidpops" (dried squid mantle). We also investigated whether faunal densities (a proxy for consumption potential) and temperature (a proxy for a broad suite of seasonal changes) correlated with predation across landscapes. Results showed fragmentation state affected predation (i.e., crab) mortality, yet edge effects did not. Moreover, the directionality of fragmentation effects shifted across a temperature/seasonal gradient. Predation mortality more than doubled in continuous landscapes amidst temperature increases, surpassing initially higher mortality in fragmented landscapes, which did not systematically vary with temperature. This mortality magnitude "flip" matched spatiotemporal trends in faunal densities between continuous and fragmented meadows. Consumption rates of both prey-items increased alongside temperature and neither demonstrated edge effects. However, crabs showed fragmentation effects not seen with squidpops, suggesting differing foraging strategies used by consumers of these prey-items. We conclude that fragmentation and edge effects have dynamic influences on temperate predator-prey interactions, as faunal favorability of habitat heterogeneity can "flip" temporally.


Subject(s)
Brachyura , Predatory Behavior , Animals , Ecosystem , Seasons
16.
BMC Ecol ; 20(1): 69, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33334336

ABSTRACT

BACKGROUND: Edge effects can influence species composition and community structure as a result of changes in microenvironment and edaphic variables. We investigated effects of habitat edges on vegetation structure, abundance and body mass of one vulnerable Microcebus species in northwestern Madagascar. We trapped mouse lemurs along four 1000-m transects (total of 2424 trap nights) that ran perpendicular to the forest edge. We installed 16 pairs of 20 m2 vegetation plots along each transect and measured nine vegetation parameters. To determine the responses of the vegetation and animals to an increasing distance to the edge, we tested the fit of four alternative mathematical functions (linear, power, logistic and unimodal) to the data and derived the depth of edge influence (DEI) for all parameters. RESULTS: Logistic and unimodal functions best explained edge responses of vegetation parameters, and the logistic function performed best for abundance and body mass of M. ravelobensis. The DEI varied between 50 m (no. of seedlings, no. of liana, dbh of large trees [dbh ≥ 10 cm]) and 460 m (tree height of large trees) for the vegetation parameters, whereas it was 340 m for M. ravelobensis abundance and 390 m for body mass, corresponding best to the DEI of small tree [dbh < 10 cm] density (360 m). Small trees were significantly taller and the density of seedlings was higher in the interior than in the edge habitat. However, there was no significant difference in M. ravelobensis abundance and body mass between interior and edge habitats, suggesting that M. ravelobensis did not show a strong edge response in the study region. Finally, regression analyses revealed three negative (species abundance and three vegetation parameters) and two positive relationships (body mass and two vegetation parameters), suggesting an impact of vegetation structure on M. ravelobensis which may be partly independent of edge effects. CONCLUSIONS: A comparison of our results with previous findings reveals that edge effects are variable in space in a small nocturnal primate from Madagascar. Such an ecological plasticity could be extremely relevant for mitigating species responses to habitat loss and anthropogenic disturbances.


Subject(s)
Cheirogaleidae , Animals , Ecosystem , Forests , Madagascar , Mice , Trees
17.
Sensors (Basel) ; 21(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374790

ABSTRACT

The advantage of using the Network Address Translation device is that the internal IP address, which makes the IP address space of Internet of Things (IoT) devices expanded, is invisible from the outside and safe from external attacks. However, the use of these private IPv4 addresses poses traversal problems, especially for the mobile IoTs to operate peer-to-peer applications. An alternative solution is to use IPv6 technologies for future IoT devices. However, IPv6 package, including IPSec, is too complex to apply to the IoT device because it is a technology developed for the user terminal with enough computing power. This paper proposes a gatekeeper to enable the real IP addresses of IoTs inside the same subnetwork to be not explicitly addressable and visible from outside of the gatekeeper. Each IoT device publishes its virtual IP address via the Registrar Server or Domain Name System (DNS) with which the gatekeeper shares the address mapping information. While the gatekeeper maintains the mapping information for the local IoT devices, the registration server or DNS has global address mapping information so that any peer can reach the mapping information. All incoming and outgoing packets must pass through the gatekeeper responsible for the address conversion and security checks for them from the entrance. This paper aims to apply our gatekeeper system to a platform of self-driving cars that allows surrounding IoT cameras and autonomous vehicles to communicate with each other securely, safely, and rapidly. So, this paper finally analyzes improvement effects on latency to show that our gatekeeper system guarantees the latency goal of 20 ms under the environment of 5G links.

18.
Ecol Appl ; 29(6): e01952, 2019 09.
Article in English | MEDLINE | ID: mdl-31206818

ABSTRACT

Assessing the persistent impacts of fragmentation on aboveground structure of tropical forests is essential to understanding the consequences of land use change for carbon storage and other ecosystem functions. We investigated the influence of edge distance and fragment size on canopy structure, aboveground woody biomass (AGB), and AGB turnover in the Biological Dynamics of Forest Fragments Project (BDFFP) in central Amazon, Brazil, after 22+ yr of fragment isolation, by combining canopy variables collected with portable canopy profiling lidar and airborne laser scanning surveys with long-term forest inventories. Forest height decreased by 30% at edges of large fragments (>10 ha) and interiors of small fragments (<3 ha). In larger fragments, canopy height was reduced up to 40 m from edges. Leaf area density profiles differed near edges: the density of understory vegetation was higher and midstory vegetation lower, consistent with canopy reorganization via increased regeneration of pioneers following post-fragmentation mortality of large trees. However, canopy openness and leaf area index remained similar to control plots throughout fragments, while canopy spatial heterogeneity was generally lower at edges. AGB stocks and fluxes were positively related to canopy height and negatively related to spatial heterogeneity. Other forest structure variables typically used to assess the ecological impacts of fragmentation (basal area, density of individuals, and density of pioneer trees) were also related to lidar-derived canopy surface variables. Canopy reorganization through the replacement of edge-sensitive species by disturbance-tolerant ones may have mitigated the biomass loss effects due to fragmentation observed in the earlier years of BDFFP. Lidar technology offered novel insights and observational scales for analysis of the ecological impacts of fragmentation on forest structure and function, specifically aboveground biomass storage.


Subject(s)
Ecosystem , Rainforest , Brazil , Forests , Trees , Tropical Climate
19.
Parasitology ; 146(8): 1036-1046, 2019 07.
Article in English | MEDLINE | ID: mdl-31064439

ABSTRACT

In birds, vector-borne parasites invading the bloodstream are important agents of disease, affect fitness and shape population viability, thus being of conservation interest. Here, we molecularly identified protozoan blood parasites in two populations of the threatened Aquatic Warbler Acrocephalus paludicola, a migratory passerine nesting in open marsh. We explored whether prevalence and lineage diversity of the parasites vary by population and whether infection status is explained by landscape metrics of habitat edge and individual traits (body mass, fat score, wing length and sex). Aquatic Warblers were infected by genera Plasmodium, Leucocytozoon and Trypanosoma, with seven, one and four lineages, and 29.9, 0.7 and 12.5% prevalence, respectively. No Haemoproteus infections were detected. Prevalence did not vary between the populations, but lineage diversity was higher in Polesie than in Biebrza for all the lineages pooled and for Plasmodium. Infection by Trypanosoma decreased with patch core area and increased with density of habitat edge. Infection status was not predicted by the individual traits. Our study is the first to show an association between edge-related landscape features and blood parasitism in an open habitat bird. This finding will support informed conservation measures for avian species of the globally shrinking marshland and other treeless habitats.


Subject(s)
Ecosystem , Songbirds , Trypanosoma/physiology , Trypanosomiasis/veterinary , Animals , Biodiversity , Biological Variation, Individual , Plasmodium/isolation & purification , Poland/epidemiology , Prevalence , Trypanosomatina/isolation & purification , Trypanosomiasis/epidemiology , Trypanosomiasis/parasitology
20.
Environ Monit Assess ; 191(5): 281, 2019 Apr 16.
Article in English | MEDLINE | ID: mdl-30989385

ABSTRACT

Rapid population and economic growth quickly degrade and deplete forest resources in many developing countries, even within protected areas. Monitoring forest cover change is critical for assessing ecosystem changes and targeting conservation efforts. Yet the most biodiverse forests on the planet are also the most difficult to monitor remotely due to their frequent cloud cover. To begin to reconcile this problem, we develop and implement an effective and efficient approach to mapping forest loss in the extremely cloud-prevalent southern Ghana region using dense time series Landsat 7 and 8 images from 1999 to 2018, based on median value temporal compositing of a novel vegetation index called the spectral variability vegetation index (SVVI). Resultant land-cover and land-use maps yielded 90 to 94% mapping accuracies. Our results indicate 625 km2 of forest loss within the 9800-km2 total mapping area, including within forest reserves and their environs between circa 2003 and 2018. Within the reserves, reduced forest cover is found near the reserve boundaries compared with their interiors, suggesting a more degraded environment near the edge of the protected areas. A fully protected reserve, Kakum National Park, showed little forest cover change compared with many other less protected reserves (such as a production reserve-Subri River). Anthropogenic activities, such as mining, agriculture, and built area expansion, were the main land-use transitions from forest. The reserves and census districts that are located near large-scale open pit mining indicated the most drastic forest loss. No significant correlation was found between the magnitudes of forest cover change and population density change for reserves and within a 1.5-km buffer surrounding the reserves. While other anthropogenic factors should be explored in relation to deforestation, our qualitative analysis revealed that reserve protection status (management policies) appears to be an important factor. The mapping approach described in this study provided a highly accurate and effective means to monitor land-use changes in forested and cloud-prone regions with great promise for application to improved monitoring of moist tropical and other forests characterized by high cloud cover.


Subject(s)
Agriculture , Conservation of Natural Resources/methods , Environmental Monitoring/methods , Forests , Biodiversity , Ecosystem , Ghana , Parks, Recreational , Population Density , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL