Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
Cell ; 184(25): 6138-6156.e28, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34890552

ABSTRACT

How the functions of multicellular organs emerge from the underlying evolution of cell types is poorly understood. We deconstructed evolution of an organ novelty: a rove beetle gland that secretes a defensive cocktail. We show how gland function arose via assembly of two cell types that manufacture distinct compounds. One cell type, comprising a chemical reservoir within the abdomen, produces alkane and ester compounds. We demonstrate that this cell type is a hybrid of cuticle cells and ancient pheromone and adipocyte-like cells, executing its function via a mosaic of enzymes from each parental cell type. The second cell type synthesizes benzoquinones using a chimera of conserved cellular energy and cuticle formation pathways. We show that evolution of each cell type was shaped by coevolution between the two cell types, yielding a potent secretion that confers adaptive value. Our findings illustrate how cooperation between cell types arises, generating new, organ-level behaviors.


Subject(s)
Benzoquinones/metabolism , Coleoptera/metabolism , Drosophila melanogaster/metabolism , Pheromones/metabolism , Animals , Biological Evolution , Biosynthetic Pathways
2.
Annu Rev Biochem ; 87: 187-216, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29925259

ABSTRACT

How individual enzymes evolved is relatively well understood. However, individual enzymes rarely confer a physiological advantage on their own. Judging by its current state, the emergence of metabolism seemingly demanded the simultaneous emergence of many enzymes. Indeed, how multicomponent interlocked systems, like metabolic pathways, evolved is largely an open question. This complexity can be unlocked if we assume that survival of the fittest applies not only to genes and enzymes but also to the metabolites they produce. This review develops our current knowledge of enzyme evolution into a wider hypothesis of pathway and network evolution. We describe the current models for pathway evolution and offer an integrative metabolite-enzyme coevolution hypothesis. Our hypothesis addresses the origins of new metabolites and of new enzymes and the order of their recruitment. We aim to not only survey established knowledge but also present open questions and potential ways of addressing them.


Subject(s)
Enzymes/genetics , Enzymes/metabolism , Evolution, Molecular , Metabolic Networks and Pathways/genetics , Enzymes/chemistry , Kinetics , Models, Biological , Models, Molecular , Multienzyme Complexes/chemistry , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Phylogeny , Substrate Specificity/genetics
3.
Proc Natl Acad Sci U S A ; 121(12): e2313513121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38483989

ABSTRACT

Cooperative interactions between amino acids are critical for protein function. A genetic reflection of cooperativity is epistasis, which is when a change in the amino acid at one position changes the sequence requirements at another position. To assess epistasis within an enzyme active site, we utilized CTX-M ß-lactamase as a model system. CTX-M hydrolyzes ß-lactam antibiotics to provide antibiotic resistance, allowing a simple functional selection for rapid sorting of modified enzymes. We created all pairwise mutations across 17 active site positions in the ß-lactamase enzyme and quantitated the function of variants against two ß-lactam antibiotics using next-generation sequencing. Context-dependent sequence requirements were determined by comparing the antibiotic resistance function of double mutations across the CTX-M active site to their predicted function based on the constituent single mutations, revealing both positive epistasis (synergistic interactions) and negative epistasis (antagonistic interactions) between amino acid substitutions. The resulting trends demonstrate that positive epistasis is present throughout the active site, that epistasis between residues is mediated through substrate interactions, and that residues more tolerant to substitutions serve as generic compensators which are responsible for many cases of positive epistasis. Additionally, we show that a key catalytic residue (Glu166) is amenable to compensatory mutations, and we characterize one such double mutant (E166Y/N170G) that acts by an altered catalytic mechanism. These findings shed light on the unique biochemical factors that drive epistasis within an enzyme active site and will inform enzyme engineering efforts by bridging the gap between amino acid sequence and catalytic function.


Subject(s)
Escherichia coli , beta-Lactamases , Escherichia coli/genetics , Catalytic Domain/genetics , Mutation , Amino Acid Substitution , beta-Lactamases/chemistry
4.
Bioessays ; 46(3): e2300178, 2024 03.
Article in English | MEDLINE | ID: mdl-38247183

ABSTRACT

Protein post-translational modifications (PTMs) play a crucial role in all cellular functions by regulating protein activity, interactions and half-life. Despite the enormous diversity of modifications, various PTM systems show parallels in their chemical and catalytic underpinnings. Here, focussing on modifications that involve the addition of new elements to amino-acid sidechains, I describe historical milestones and fundamental concepts that support the current understanding of PTMs. The historical survey covers selected key research programmes, including the study of protein phosphorylation as a regulatory switch, protein ubiquitylation as a degradation signal and histone modifications as a functional code. The contribution of crucial techniques for studying PTMs is also discussed. The central part of the essay explores shared chemical principles and catalytic strategies observed across diverse PTM systems, together with mechanisms of substrate selection, the reversibility of PTMs by erasers and the recognition of PTMs by reader domains. Similarities in the basic chemical mechanism are highlighted and their implications are discussed. The final part is dedicated to the evolutionary trajectories of PTM systems, beginning with their possible emergence in the context of rivalry in the prokaryotic world. Together, the essay provides a unified perspective on the diverse world of major protein modifications.


Subject(s)
Protein Processing, Post-Translational , Proteins , Histone Code , Ubiquitination , Logic
5.
Subcell Biochem ; 104: 33-47, 2024.
Article in English | MEDLINE | ID: mdl-38963482

ABSTRACT

Catalases are essential enzymes for removal of hydrogen peroxide, enabling aerobic and anaerobic metabolism in an oxygenated atmosphere. Monofunctional heme catalases, catalase-peroxidases, and manganese catalases, evolved independently more than two billion years ago, constituting a classic example of convergent evolution. Herein, the diversity of catalase sequences is analyzed through sequence similarity networks, providing the context for sequence distribution of major catalase families, and showing that many divergent catalase families remain to be experimentally studied.


Subject(s)
Catalase , Evolution, Molecular , Catalase/chemistry , Catalase/genetics , Catalase/metabolism , Humans , Animals , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/chemistry , Heme/chemistry , Heme/metabolism
6.
Biochem J ; 480(22): 1845-1863, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37991346

ABSTRACT

Enzymes have been shaped by evolution over billions of years to catalyse the chemical reactions that support life on earth. Dispersed in the literature, or organised in online databases, knowledge about enzymes can be structured in distinct dimensions, either related to their quality as biological macromolecules, such as their sequence and structure, or related to their chemical functions, such as the catalytic site, kinetics, mechanism, and overall reaction. The evolution of enzymes can only be understood when each of these dimensions is considered. In addition, many of the properties of enzymes only make sense in the light of evolution. We start this review by outlining the main paradigms of enzyme evolution, including gene duplication and divergence, convergent evolution, and evolution by recombination of domains. In the second part, we overview the current collective knowledge about enzymes, as organised by different types of data and collected in several databases. We also highlight some increasingly powerful computational tools that can be used to close gaps in understanding, in particular for types of data that require laborious experimental protocols. We believe that recent advances in protein structure prediction will be a powerful catalyst for the prediction of binding, mechanism, and ultimately, chemical reactions. A comprehensive mapping of enzyme function and evolution may be attainable in the near future.


Subject(s)
Computational Biology , Enzymes , Proteins , Catalysis , Catalytic Domain , Enzymes/genetics , Enzymes/metabolism , Evolution, Molecular , Proteins/genetics
7.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33472976

ABSTRACT

The monotopic phosphoglycosyl transferase (monoPGT) superfamily comprises over 38,000 nonredundant sequences represented in bacterial and archaeal domains of life. Members of the superfamily catalyze the first membrane-committed step in en bloc oligosaccharide biosynthetic pathways, transferring a phosphosugar from a soluble nucleoside diphosphosugar to a membrane-resident polyprenol phosphate. The singularity of the monoPGT fold and its employment in the pivotal first membrane-committed step allows confident assignment of both protein and corresponding pathway. The diversity of the family is revealed by the generation and analysis of a sequence similarity network for the superfamily, with fusion of monoPGTs with other pathway members being the most frequent and extensive elaboration. Three common fusions were identified: sugar-modifying enzymes, glycosyl transferases, and regulatory domains. Additionally, unexpected fusions of the monoPGT with members of the polytopic PGT superfamily were discovered, implying a possible evolutionary link through the shared polyprenol phosphate substrate. Notably, a phylogenetic reconstruction of the monoPGT superfamily shows a radial burst of functionalization, with a minority of members comprising only the minimal PGT catalytic domain. The commonality and identity of the fusion partners in the monoPGT superfamily is consistent with advantageous colocalization of pathway members at membrane interfaces.


Subject(s)
Bacterial Proteins/chemistry , Glycoconjugates/chemistry , Glycosyltransferases/chemistry , Gram-Negative Bacteria/enzymology , Gram-Positive Bacteria/enzymology , Polysaccharides/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cytoplasm/enzymology , Cytoplasm/genetics , Evolution, Molecular , Gene Expression , Gene Regulatory Networks , Glycoconjugates/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Gram-Negative Bacteria/classification , Gram-Negative Bacteria/genetics , Gram-Positive Bacteria/classification , Gram-Positive Bacteria/genetics , Metabolic Networks and Pathways/genetics , Models, Molecular , Periplasm/enzymology , Periplasm/genetics , Phylogeny , Polysaccharides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
8.
Angew Chem Int Ed Engl ; : e202409610, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087463

ABSTRACT

Recent decades have seen a dramatic increase in the commercial use of biocatalysts, transitioning from energy-intensive traditional chemistries to more sustainable methods. Current enzyme engineering techniques, such as directed evolution, require the generation and testing of large mutant libraries to identify optimized variants. Unfortunately, conventional screening methods are unable to screen such large libraries in a robust and timely manner. Droplet-based microfluidic systems have emerged as a powerful high-throughput tool for library screening at kilohertz rates. Unfortunately, almost all reported systems are based on fluorescence detection, restricting their use to a limited number of enzyme types that naturally convert fluorogenic substrates or require the use of surrogate substrates. To expand the range of enzymes amenable to evolution using droplet-based microfluidic systems, we present an absorbance-activated droplet sorter that allows of droplet sorting at kilohertz rates without the need for optical monitoring of the microfluidic system. To demonstrate the utility of the sorter, we rapidly screen a 105-member aldehyde dehydrogenase library towards D-glyceraldehyde using a NADH mediated coupled assay that generates WST-1 formazan as the colorimetric product. We successfully identify a variant with a 51% improvement in catalytic efficiency and a significant increase in overall activity across a broad substrate spectrum.

9.
J Biol Chem ; 298(8): 102122, 2022 08.
Article in English | MEDLINE | ID: mdl-35697072

ABSTRACT

Aminotransferases (ATs) are pyridoxal 5'-phosphate-dependent enzymes that catalyze the transamination reactions between amino acid donor and keto acid acceptor substrates. Modern AT enzymes constitute ∼2% of all classified enzymatic activities, play central roles in nitrogen metabolism, and generate multitude of primary and secondary metabolites. ATs likely diverged into four distinct AT classes before the appearance of the last universal common ancestor and further expanded to a large and diverse enzyme family. Although the AT family underwent an extensive functional specialization, many AT enzymes retained considerable substrate promiscuity and multifunctionality because of their inherent mechanistic, structural, and functional constraints. This review summarizes the evolutionary history, diverse metabolic roles, reaction mechanisms, and structure-function relationships of the AT family enzymes, with a special emphasis on their substrate promiscuity and multifunctionality. Comprehensive characterization of AT substrate specificity is still needed to reveal their true metabolic functions in interconnecting various branches of the nitrogen metabolic network in different organisms.


Subject(s)
Pyridoxal Phosphate , Transaminases , Biological Evolution , Nitrogen/metabolism , Pyridoxal Phosphate/metabolism , Structure-Activity Relationship , Substrate Specificity , Transaminases/metabolism
10.
Plant J ; 109(4): 940-951, 2022 02.
Article in English | MEDLINE | ID: mdl-34816537

ABSTRACT

Diosgenin is an important compound in the pharmaceutical industry and it is biosynthesized in several eudicot and monocot species, herein represented by fenugreek (a eudicot), and Dioscorea zingiberensis (a monocot). Formation of diosgenin can be achieved by the early C22,16-oxidations of cholesterol followed by a late C26-oxidation. This study reveals that, in both fenugreek and D. zingiberensis, the early C22,16-oxygenase(s) shows strict 22R-stereospecificity for hydroxylation of the substrates. Evidence against the recently proposed intermediacy of 16S,22S-dihydroxycholesterol in diosgenin biosynthesis was also found. Moreover, in contrast to the eudicot fenugreek, which utilizes a single multifunctional cytochrome P450 (TfCYP90B50) to perform the early C22,16-oxidations, the monocot D. zingiberensis has evolved two separate cytochrome P450 enzymes, with DzCYP90B71 being specific for the 22R-oxidation and DzCYP90G6 for the C16-oxidation. We suggest that the DzCYP90B71/DzCYP90G6 pair represent more broadly conserved catalysts for diosgenin biosynthesis in monocots.


Subject(s)
Dioscorea/metabolism , Diosgenin/metabolism , Hydroxycholesterols/metabolism , Trigonella/metabolism , Biosynthetic Pathways , Cholesterol , Cytochrome P-450 Enzyme System/metabolism , Hydroxylation , Oxygenases/metabolism , Plant Extracts
11.
Mol Biol Evol ; 39(3)2022 03 02.
Article in English | MEDLINE | ID: mdl-35021222

ABSTRACT

Next-generation sequencing has resulted in an explosion of available data, much of which remains unstudied in terms of biochemical function; yet, experimental characterization of these sequences has the potential to provide unprecedented insight into the evolution of enzyme activity. One way to make inroads into the experimental study of the voluminous data available is to engage students by integrating teaching and research in a college classroom such that eventually hundreds or thousands of enzymes may be characterized. In this study, we capitalize on this potential to focus on SABATH methyltransferase enzymes that have been shown to methylate the important plant hormone, salicylic acid (SA), to form methyl salicylate. We analyze data from 76 enzymes of flowering plant species in 23 orders and 41 families to investigate how widely conserved substrate preference is for SA methyltransferase orthologs. We find a high degree of conservation of substrate preference for SA over the structurally similar metabolite, benzoic acid, with recent switches that appear to be associated with gene duplication and at least three cases of functional compensation by paralogous enzymes. The presence of Met in active site position 150 is a useful predictor of SA methylation preference in SABATH methyltransferases but enzymes with other residues in the homologous position show the same substrate preference. Although our dense and systematic sampling of SABATH enzymes across angiosperms has revealed novel insights, this is merely the "tip of the iceberg" since thousands of sequences remain uncharacterized in this enzyme family alone.


Subject(s)
Magnoliopsida , Methyltransferases , Plant Proteins , Magnoliopsida/classification , Magnoliopsida/enzymology , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Salicylic Acid/metabolism , Substrate Specificity
12.
Biotechnol Lett ; 45(5-6): 655-665, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37071382

ABSTRACT

OBJECTIVES: To improve the biochemical characteristics of the GH2 family ß-galactosidases using a family shuffling method based on degenerate oligonucleotide gene shuffling. RESULTS: Four ß-galactosidase genes from the genus Alteromonas were divided into 14 gene segments, and each included the homologous sequence in the adjacent segments. The gene segments were regenerated into complete ß-galactosidase genes and amplified by PCR. The obtained chimeric genes were cloned into a plasmid and screened for ß-galactosidase activity. Approximately 320 positive clones were observed on the screening plate, of which nine sequenced genes were chimera. Additionally, the M22 and M250 mutants were expressed, purified, and characterized. The optimal temperature and substrate specificity of the recombinant M22 and M250 were consistent with those of the wild-type enzymes. The catalytic efficiency of recombinant M22 enzyme was higher than that of the wild-type enzymes, and the recombinant M250 displayed weak transglycosylation activity. CONCLUSIONS: The chimeric genes of GH2 ß-galactosidase were obtained using a controlled family shuffling that will provide an enzyme evolutionary method to obtain the ß-galactosidases with excellent characteristics for laboratory and industrial purposes.


Subject(s)
Oligonucleotides , Polymerase Chain Reaction , Temperature , beta-Galactosidase/genetics , beta-Galactosidase/chemistry
13.
Proc Natl Acad Sci U S A ; 117(20): 10806-10817, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32371491

ABSTRACT

Radiation of the plant pyridoxal 5'-phosphate (PLP)-dependent aromatic l-amino acid decarboxylase (AAAD) family has yielded an array of paralogous enzymes exhibiting divergent substrate preferences and catalytic mechanisms. Plant AAADs catalyze either the decarboxylation or decarboxylation-dependent oxidative deamination of aromatic l-amino acids to produce aromatic monoamines or aromatic acetaldehydes, respectively. These compounds serve as key precursors for the biosynthesis of several important classes of plant natural products, including indole alkaloids, benzylisoquinoline alkaloids, hydroxycinnamic acid amides, phenylacetaldehyde-derived floral volatiles, and tyrosol derivatives. Here, we present the crystal structures of four functionally distinct plant AAAD paralogs. Through structural and functional analyses, we identify variable structural features of the substrate-binding pocket that underlie the divergent evolution of substrate selectivity toward indole, phenyl, or hydroxyphenyl amino acids in plant AAADs. Moreover, we describe two mechanistic classes of independently arising mutations in AAAD paralogs leading to the convergent evolution of the derived aldehyde synthase activity. Applying knowledge learned from this study, we successfully engineered a shortened benzylisoquinoline alkaloid pathway to produce (S)-norcoclaurine in yeast. This work highlights the pliability of the AAAD fold that allows change of substrate selectivity and access to alternative catalytic mechanisms with only a few mutations.


Subject(s)
Aromatic-L-Amino-Acid Decarboxylases/chemistry , Catalytic Domain , Evolution, Molecular , Plant Proteins/chemistry , Amino Acids, Aromatic/chemistry , Amino Acids, Aromatic/metabolism , Aromatic-L-Amino-Acid Decarboxylases/genetics , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Substrate Specificity
14.
BMC Biol ; 20(1): 293, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36575514

ABSTRACT

BACKGROUND: Antibody affinity maturation in vertebrates requires the enzyme activation-induced cytidine deaminase (AID) which initiates secondary antibody diversification by mutating the immunoglobulin loci. AID-driven antibody diversification is conserved across jawed vertebrates since bony and cartilaginous fish. Two exceptions have recently been reported, the Pipefish and Anglerfish, in which the AID-encoding aicda gene has been lost. Both cases are associated with unusual reproductive behavior, including male pregnancy and sexual parasitism. Several cold water fish in the Atlantic cod (Gadinae) family carry an aicda gene that encodes for a full-length enzyme but lack affinity-matured antibodies and rely on antibodies of broad antigenic specificity. Hence, we examined the functionality of their AID. RESULTS: By combining genomics, transcriptomics, immune responsiveness, and functional enzymology of AID from 36 extant species, we demonstrate that AID of that Atlantic cod and related fish have extremely lethargic or no catalytic activity. Through ancestral reconstruction and functional enzymology of 71 AID enzymes, we show that this enzymatic inactivation likely took place relatively recently at the emergence of the true cod family (Gadidae) from their ancestral Gadiformes order. We show that this AID inactivation is not only concordant with the previously shown loss of key adaptive immune genes and expansion of innate and cell-based immune genes in the Gadiformes but is further reflected in the genomes of these fish in the form of loss of AID-favored sequence motifs in their immunoglobulin variable region genes. CONCLUSIONS: Recent demonstrations of the loss of the aicda gene in two fish species challenge the paradigm that AID-driven secondary antibody diversification is absolutely conserved in jawed vertebrates. These species have unusual reproductive behaviors forming an evolutionary pressure for a certain loss of immunity to avoid tissue rejection. We report here an instance of catalytic inactivation and functional loss of AID rather than gene loss in a conventionally reproducing vertebrate. Our data suggest that an expanded innate immunity, in addition to lower pathogenic pressures in a cold environment relieved the pressure to maintain robust secondary antibody diversification. We suggest that in this unique scenario, the AID-mediated collateral genome-wide damage would form an evolutionary pressure to lose AID function.


Subject(s)
Gadiformes , Animals , Male , Water , Cytidine Deaminase/genetics , Fishes/genetics , Vertebrates
15.
Int J Mol Sci ; 24(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37762455

ABSTRACT

The human genome involves six functional arachidonic acid lipoxygenase (ALOX) genes and the corresponding enzymes (ALOX15, ALOX15B, ALOX12, ALOX12B, ALOXE3, ALOX5) have been implicated in cell differentiation and in the pathogenesis of inflammatory, hyperproliferative, metabolic, and neurological disorders. In other vertebrates, ALOX-isoforms have also been identified, but they occur less frequently. Since bony fish represent the most abundant subclass of vertebrates, we recently expressed and characterized putative ALOX15 orthologs of three different bony fish species (Nothobranchius furzeri, Pundamilia nyererei, Scleropages formosus). To explore whether these enzymes represent functional equivalents of mammalian ALOX15 orthologs, we here compared a number of structural and functional characteristics of these ALOX-isoforms with those of mammalian enzymes. We found that in contrast to mammalian ALOX15 orthologs, which exhibit a broad substrate specificity, a membrane oxygenase activity, and a special type of dual reaction specificity, the putative bony fish ALOX15 orthologs strongly prefer C20 fatty acids, lack any membrane oxygenase activity and exhibit a different type of dual reaction specificity with arachidonic acid. Moreover, mutagenesis studies indicated that the Triad Concept, which explains the reaction specificity of all mammalian ALOX15 orthologs, is not applicable for the putative bony fish enzymes. The observed functional differences between putative bony fish ALOX15 orthologs and corresponding mammalian enzymes suggest a targeted optimization of the catalytic properties of ALOX15 orthologs during vertebrate development.

16.
Chimia (Aarau) ; 77(6): 376-383, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-38047776

ABSTRACT

The fortieth anniversary of biocatalysis started at Ciba-Geigy and later at Novartis is a great time to pause and reflect on development of science and technology in this field. Enzyme-based synthesis became a highly valued enabling tool for pharmaceutical research and development over the last decades. In this perspective we aim to discuss how the scientific approaches and trends evolved over the time and present future challenges and opportunities.


Subject(s)
Biocatalysis
17.
J Biol Chem ; 296: 100055, 2021.
Article in English | MEDLINE | ID: mdl-33172891

ABSTRACT

Triuret (carbonyldiurea) is an impurity found in industrial urea fertilizer (<0.1% w/w) that is applied, worldwide, around 300 million pounds each year on agricultural lands. In addition to anthropogenic sources, endogenous triuret has been identified in amoeba and human urine, the latter being diagnostic for hypokalemia. The present study is the first to describe the metabolic breakdown of triuret, which funnels into biuret metabolism. We identified the gene responsible for triuret decomposition (trtA) in bacterial genomes, clustered with biuH, which encodes biuret hydrolase and has close protein sequence homology. TrtA is a member of the isochorismatase-like hydrolase (IHL) protein family, similarly to BiuH, and has a catalytic efficiency (kcat/KM) of 6 x 105 M-1s-1, a KM for triuret of 20 µM, and exquisite substrate specificity. Indeed, TrtA has four orders of magnitude less activity with biuret. Crystal structures of TrtA in apo and holo form were solved and compared with the BiuH structure. The high substrate selectivity was found to be conveyed by second shell residues around each active site. Mutagenesis of residues conserved in TrtA to the alternate consensus found in BiuHs revealed residues critical to triuret hydrolase activity but no single mutant evolved more biuret activity, and likely a combination of mutations is required to interconvert between TrtA, BiuH functions. TrtA-mediated triuret metabolism is relatively rare in recorded genomes (1-2%), but is largely found in plant-associated, nodulating, and endophytic bacteria. This study suggests functions for triuret hydrolase in certain eukaryotic intermediary processes and prokaryotic intermediary or biodegradative metabolism.


Subject(s)
Hydrolases/metabolism , Urea/analogs & derivatives , Biodegradation, Environmental , Catalytic Domain , Crystallography, X-Ray , Genome, Bacterial , Hydrolases/chemistry , Hydrolysis , Kinetics , Protein Conformation , Soil Microbiology , Substrate Specificity , Urea/metabolism
18.
Plant Mol Biol ; 108(4-5): 307-323, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35006475

ABSTRACT

KEY MESSAGE: This review outlines research performed in the last two decades on the structural, kinetic, regulatory and evolutionary aspects of ADP-glucose pyrophosphorylase, the regulatory enzyme for starch biosynthesis. ADP-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in the pathway of glycogen and starch synthesis in bacteria and plants, respectively. Plant ADP-Glc PPase is a heterotetramer allosterically regulated by metabolites and post-translational modifications. In this review, we focus on the three-dimensional structure of the plant enzyme, the amino acids that bind the regulatory molecules, and the regions involved in transmitting the allosteric signal to the catalytic site. We provide a model for the evolution of the small and large subunits, which produce heterotetramers with distinct catalytic and regulatory properties. Additionally, we review the various post-translational modifications observed in ADP-Glc PPases from different species and tissues. Finally, we discuss the subcellular localization of the enzyme found in grain endosperm from grasses, such as maize and rice. Overall, this work brings together research performed in the last two decades to better understand the multiple mechanisms involved in the regulation of ADP-Glc PPase. The rational modification of this enzyme could improve the yield and resilience of economically important crops, which is particularly important in the current scenario of climate change and food shortage.


Subject(s)
Evolution, Molecular , Glucose-1-Phosphate Adenylyltransferase/chemistry , Glucose-1-Phosphate Adenylyltransferase/physiology , Plants/enzymology , Allosteric Regulation , Glucose-1-Phosphate Adenylyltransferase/genetics , Models, Molecular , Protein Conformation , Starch/biosynthesis , Starch/chemistry
19.
Mol Biol Evol ; 38(7): 2704-2714, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33662138

ABSTRACT

Convergent evolution is widespread but the extent to which common ancestral conditions are necessary to facilitate the independent acquisition of similar traits remains unclear. In order to better understand how ancestral biosynthetic catalytic capabilities might lead to convergent evolution of similar modern-day biochemical pathways, we resurrected ancient enzymes of the caffeine synthase (CS) methyltransferases that are responsible for theobromine and caffeine production in flowering plants. Ancestral CS enzymes of Theobroma, Paullinia, and Camellia exhibited similar substrate preferences but these resulted in the formation of different sets of products. From these ancestral enzymes, descendants with similar substrate preference and product formation independently evolved after gene duplication events in Theobroma and Paullinia. Thus, it appears that the convergent modern-day pathways likely originated from ancestral pathways with different inferred flux. Subsequently, the modern-day enzymes originated independently via gene duplication and their convergent catalytic characteristics evolved to partition the multiple ancestral activities by different mutations that occurred in homologous regions of the ancestral proteins. These results show that even when modern-day pathways and recruited genes are similar, the antecedent conditions may be distinctive such that different evolutionary steps are required to generate convergence.


Subject(s)
Cacao/enzymology , Evolution, Molecular , Methyltransferases/genetics , Paullinia/enzymology , Xanthines/metabolism , Cacao/genetics , Camellia/enzymology , Camellia/genetics , Gene Duplication , Methyltransferases/metabolism , Mutation , Paullinia/genetics , Substrate Specificity
20.
Mol Biol Evol ; 38(9): 3938-3952, 2021 08 23.
Article in English | MEDLINE | ID: mdl-33964160

ABSTRACT

Enzymes speed up reactions that would otherwise be too slow to sustain the metabolism of selfreplicators. Yet, most enzymes seem only moderately efficient, exhibiting kinetic parameters orders of magnitude lower than their expected physically achievable maxima and spanning over surprisingly large ranges of values. Here, we question how these parameters evolve using a mechanistic model where enzyme efficiency is a key component of individual competition for resources. We show that kinetic parameters are under strong directional selection only up to a point, above which enzymes appear to evolve under near-neutrality, thereby confirming the qualitative observation of other modeling approaches. While the existence of a large fitness plateau could potentially explain the extensive variation in enzyme features reported, we show using a population genetics model that such a widespread distribution is an unlikely outcome of evolution on a common landscape, as mutation-selection-drift balance occupy a narrow area even when very moderate biases towards lower efficiency are considered. Instead, differences in the evolutionary context encountered by each enzyme should be involved, such that each evolves on an individual, unique landscape. Our results point to drift and effective population size playing an important role, along with the kinetics of nutrient transporters, the tolerance to high concentrations of intermediate metabolites, and the reversibility of reactions. Enzyme concentration also shapes selection on kinetic parameters, but we show that the joint evolution of concentration and efficiency does not yield extensive variance in evolutionary outcomes when documented costs to protein expression are applied.


Subject(s)
Enzymes , Genetics, Population , Biological Transport , Enzymes/genetics , Enzymes/metabolism , Kinetics , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL