Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 726
Filter
Add more filters

Publication year range
1.
Annu Rev Pharmacol Toxicol ; 63: 517-540, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36202091

ABSTRACT

Early human life is considered a critical window of susceptibility to external exposures. Infants are exposed to a multitude of environmental factors, collectively referred to as the exposome. The chemical exposome can be summarized as the sum of all xenobiotics that humans are exposed to throughout a lifetime. We review different exposure classes and routes that impact fetal and infant metabolism and the potential toxicological role of mixture effects. We also discuss the progress in human biomonitoring and present possiblemodels for studying maternal-fetal transfer. Data gaps on prenatal and infant exposure to xenobiotic mixtures are identified and include natural biotoxins, in addition to commonly reported synthetic toxicants, to obtain a more holistic assessment of the chemical exposome. We highlight the lack of large-scale studies covering a broad range of xenobiotics. Several recommendations to advance our understanding of the early-life chemical exposome and the subsequent impact on health outcomes are proposed.


Subject(s)
Environmental Exposure , Exposome , Pregnancy , Infant , Female , Humans , Child, Preschool , Environmental Exposure/adverse effects , Xenobiotics/toxicity , Fetal Development
2.
Circ Res ; 134(9): 1083-1097, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38662860

ABSTRACT

Poor air quality accounts for more than 9 million deaths a year globally according to recent estimates. A large portion of these deaths are attributable to cardiovascular causes, with evidence indicating that air pollution may also play an important role in the genesis of key cardiometabolic risk factors. Air pollution is not experienced in isolation but is part of a complex system, influenced by a host of other external environmental exposures, and interacting with intrinsic biologic factors and susceptibility to ultimately determine cardiovascular and metabolic outcomes. Given that the same fossil fuel emission sources that cause climate change also result in air pollution, there is a need for robust approaches that can not only limit climate change but also eliminate air pollution health effects, with an emphasis of protecting the most susceptible but also targeting interventions at the most vulnerable populations. In this review, we summarize the current state of epidemiologic and mechanistic evidence underpinning the association of air pollution with cardiometabolic disease and how complex interactions with other exposures and individual characteristics may modify these associations. We identify gaps in the current literature and suggest emerging approaches for policy makers to holistically approach cardiometabolic health risk and impact assessment.


Subject(s)
Air Pollution , Cardiovascular Diseases , Environmental Exposure , Humans , Air Pollution/adverse effects , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Environmental Exposure/adverse effects , Air Pollutants/adverse effects , Cardiometabolic Risk Factors , Exposome , Metabolic Diseases/epidemiology , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Particulate Matter/adverse effects
3.
Circ Res ; 134(8): 1029-1045, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38603473

ABSTRACT

There has been increased awareness of the linkage between environmental exposures and cardiovascular health and disease. Atrial fibrillation is the most common sustained cardiac arrhythmia, affecting millions of people worldwide and contributing to substantial morbidity and mortality. Although numerous studies have explored the role of genetic and lifestyle factors in the development and progression of atrial fibrillation, the potential impact of environmental determinants on this prevalent condition has received comparatively less attention. This review aims to provide a comprehensive overview of the current evidence on environmental determinants of atrial fibrillation, encompassing factors such as air pollution, temperature, humidity, and other meteorologic conditions, noise pollution, greenspace, and the social environment. We discuss the existing evidence from epidemiological and mechanistic studies, critically evaluating the strengths and limitations of these investigations and the potential underlying biological mechanisms through which environmental exposures may affect atrial fibrillation risk. Furthermore, we address the potential implications of these findings for public health and clinical practice and identify knowledge gaps and future research directions in this emerging field.


Subject(s)
Air Pollution , Atrial Fibrillation , Cardiovascular System , Exposome , Humans , Atrial Fibrillation/epidemiology , Atrial Fibrillation/etiology , Environmental Exposure/adverse effects
4.
Annu Rev Pharmacol Toxicol ; 62: 383-404, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34499523

ABSTRACT

The aryl hydrocarbon receptor (AhR) is a transcriptional factor that regulates multiple functions following its activation by a variety of ligands, including xenobiotics, natural products, microbiome metabolites, and endogenous molecules. Because of this diversity, the AhR constitutes an exposome receptor. One of its main functions is to regulate several lines of defense against chemical insults and bacterial infections. Indeed, in addition to its well-established detoxication function, it has several functions at physiological barriers, and it plays a critical role in immunomodulation. The AhR is also involved in the development of several organs and their homeostatic maintenance. Its activity depends on the type of ligand and on the time frame of the receptor activation, which can be either sustained or transient, leading in some cases to opposite modes of regulations as illustrated in the regulation of different cancer pathways. The development of selective modulators and their pharmacological characterization are important areas of research.


Subject(s)
Exposome , Receptors, Aryl Hydrocarbon , Homeostasis , Humans , Ligands , Receptors, Aryl Hydrocarbon/metabolism , Xenobiotics/metabolism
5.
Int Immunol ; 36(5): 211-222, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38227765

ABSTRACT

The epithelial barrier theory links the recent rise in chronic non-communicable diseases, notably autoimmune and allergic disorders, to environmental agents disrupting the epithelial barrier. Global pollution and environmental toxic agent exposure have worsened over six decades because of uncontrolled growth, modernization, and industrialization, affecting human health. Introducing new chemicals without any reasonable control of their health effects through these years has led to documented adverse effects, especially on the skin and mucosal epithelial barriers. These substances, such as particulate matter, detergents, surfactants, food emulsifiers, micro- and nano-plastics, diesel exhaust, cigarette smoke, and ozone, have been shown to compromise the epithelial barrier integrity. This disruption is linked to the opening of the tight-junction barriers, inflammation, cell death, oxidative stress, and metabolic regulation. Consideration must be given to the interplay of toxic substances, underlying inflammatory diseases, and medications, especially in affected tissues. This review article discusses the detrimental effect of environmental barrier-damaging compounds on human health and involves cellular and molecular mechanisms.


Subject(s)
Particulate Matter , Vehicle Emissions , Humans , Particulate Matter/adverse effects , Vehicle Emissions/toxicity , Tight Junctions , Allergens , Oxidative Stress , Epithelial Cells
6.
Mol Cell Proteomics ; 22(6): 100561, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37119971

ABSTRACT

The world has witnessed a steady rise in both non-infectious and infectious chronic diseases, prompting a cross-disciplinary approach to understand and treating disease. Current medical care focuses on treating people after they become patients rather than preventing illness, leading to high costs in treating chronic and late-stage diseases. Additionally, a "one-size-fits all" approach to health care does not take into account individual differences in genetics, environment, or lifestyle factors, decreasing the number of people benefiting from interventions. Rapid advances in omics technologies and progress in computational capabilities have led to the development of multi-omics deep phenotyping, which profiles the interaction of multiple levels of biology over time and empowers precision health approaches. This review highlights current and emerging multi-omics modalities for precision health and discusses applications in the following areas: genetic variation, cardio-metabolic diseases, cancer, infectious diseases, organ transplantation, pregnancy, and longevity/aging. We will briefly discuss the potential of multi-omics approaches in disentangling host-microbe and host-environmental interactions. We will touch on emerging areas of electronic health record and clinical imaging integration with muti-omics for precision health. Finally, we will briefly discuss the challenges in the clinical implementation of multi-omics and its future prospects.


Subject(s)
Genomics , Neoplasms , Humans , Genomics/methods , Proteomics/methods , Multiomics , Metabolomics/methods
7.
BMC Med ; 22(1): 295, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020299

ABSTRACT

BACKGROUND: The increasing incidence of coeliac disease is leading to a growing interest in active search for associated factors, even the intrauterine and early life. The exposome approach to disease encompasses a life course perspective from conception onwards has recently been highlighted. Knowledge of early exposure to gluten immunogenic peptides (GIP) in utero could challenge the chronology of early prenatal tolerance or inflammation, rather than after the infant's solid diet after birth. METHODS: We developed an accurate and specific immunoassay to detect GIP in amniotic fluid (AF) and studied their accumulates, excretion dynamics and foetal exposure resulting from AF swallowing. One hundred twenty-five pregnant women with different gluten diets and gestational ages were recruited. RESULTS: GIP were detectable in AF from at least the 16th gestational week in gluten-consuming women. Although no significant differences in GIP levels were observed during gestation, amniotic GIP late pregnancy was not altered by maternal fasting, suggesting closed-loop entailing foetal swallowing of GIP-containing AF and subsequent excretion via the foetal kidneys. CONCLUSIONS: The study shows evidence, for the first time, of the foetal exposure to gluten immunogenic peptides and establishes a positive correlation with maternal gluten intake. The results obtained point to a novel physiological concept as they describe a plausible closed-loop circuit entailing foetal swallowing of GIP contained in AF and its subsequent excretion through the foetal kidneys. The study adds important new information to understanding the coeliac exposome.


Subject(s)
Celiac Disease , Glutens , Humans , Female , Pregnancy , Celiac Disease/immunology , Adult , Amniotic Fluid/chemistry , Amniotic Fluid/metabolism , Exposome , Peptides , Immunoassay/methods , Gastric Inhibitory Polypeptide , Fetus
8.
Mass Spectrom Rev ; 42(6): 2466-2486, 2023.
Article in English | MEDLINE | ID: mdl-36062854

ABSTRACT

Compared with the rapid advances in genomics leading to broad understanding of human disease, the linkage between chemical exposome and diseases is still under investigation. High-resolution mass spectrometry (HRMS) is expected to accelerate the process via relatively accurate and precise biomonitoring of human exposome. This review covers recent advancements in biomonitoring of exposed environmental chemicals (chemical exposome) using HRMS described in the 124 articles that resulted from a systematic literature search on Medline and Web of Science databases. The analytical strategic aspects, including the selection of specimens, sample preparation, instrumentation, untargeted versus targeted analysis, and workflows for MS-based biomonitoring to explore the environmental chemical space of human exposome, are deliberated. Applications of HRMS in human exposome investigation are presented by biomonitoring (1) exposed chemical compounds and their biotransformation products; (2) DNA/protein adducts; and (3) endogenous compound perturbations. Challenges and future perspectives are also discussed.

9.
Hum Reprod ; 39(3): 612-622, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38305414

ABSTRACT

STUDY QUESTION: Do the genetic determinants of idiopathic severe spermatogenic failure (SPGF) differ between generations? SUMMARY ANSWER: Our data support that the genetic component of idiopathic SPGF is impacted by dynamic changes in environmental exposures over decades. WHAT IS KNOWN ALREADY: The idiopathic form of SPGF has a multifactorial etiology wherein an interaction between genetic, epigenetic, and environmental factors leads to the disease onset and progression. At the genetic level, genome-wide association studies (GWASs) allow the analysis of millions of genetic variants across the genome in a hypothesis-free manner, as a valuable tool for identifying susceptibility risk loci. However, little is known about the specific role of non-genetic factors and their influence on the genetic determinants in this type of conditions. STUDY DESIGN, SIZE, DURATION: Case-control genetic association analyses were performed including a total of 912 SPGF cases and 1360 unaffected controls. PARTICIPANTS/MATERIALS, SETTING, METHODS: All participants had European ancestry (Iberian and German). SPGF cases were diagnosed during the last decade either with idiopathic non-obstructive azoospermia (n = 547) or with idiopathic non-obstructive oligozoospermia (n = 365). Case-control genetic association analyses were performed by logistic regression models considering the generation as a covariate and by in silico functional characterization of the susceptibility genomic regions. MAIN RESULTS AND THE ROLE OF CHANCE: This analysis revealed 13 novel genetic association signals with SPGF, with eight of them being independent. The observed associations were mostly explained by the interaction between each lead variant and the age-group. Additionally, we established links between these loci and diverse non-genetic factors, such as toxic or dietary habits, respiratory disorders, and autoimmune diseases, which might potentially influence the genetic architecture of idiopathic SPGF. LARGE SCALE DATA: GWAS data are available from the authors upon reasonable request. LIMITATIONS, REASONS FOR CAUTION: Additional independent studies involving large cohorts in ethnically diverse populations are warranted to confirm our findings. WIDER IMPLICATIONS OF THE FINDINGS: Overall, this study proposes an innovative strategy to achieve a more precise understanding of conditions such as SPGF by considering the interactions between a variable exposome through different generations and genetic predisposition to complex diseases. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the "Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020)" (ref. PY20_00212, P20_00583), the Spanish Ministry of Economy and Competitiveness through the Spanish National Plan for Scientific and Technical Research and Innovation (ref. PID2020-120157RB-I00 funded by MCIN/ AEI/10.13039/501100011033), and the 'Proyectos I+D+i del Programa Operativo FEDER 2020' (ref. B-CTS-584-UGR20). ToxOmics-Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, is also partially supported by the Portuguese Foundation for Science and Technology (Projects: UIDB/00009/2020; UIDP/00009/2020). The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Azoospermia , Oligospermia , Male , Humans , Genome-Wide Association Study , Genetic Predisposition to Disease , Azoospermia/genetics , Oligospermia/genetics , Environmental Exposure
10.
Allergy ; 79(2): 432-444, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37804001

ABSTRACT

BACKGROUND: Environmental exposure to peanut through non-oral routes is a risk factor for peanut allergy. Early-life exposure to air pollutants, including particulate matter (PM), is associated with sensitization to foods through unknown mechanisms. We investigated whether PM promotes sensitization to environmental peanut and the development of peanut allergy in a mouse model. METHODS: C57BL/6J mice were co-exposed to peanut and either urban particulate matter (UPM) or diesel exhaust particles (DEP) via the airways and assessed for peanut sensitization and development of anaphylaxis following peanut challenge. Peanut-specific CD4+ T helper (Th) cell responses were characterized by flow cytometry and Th cytokine production. Mice lacking select innate immune signaling genes were used to study mechanisms of PM-induced peanut allergy. RESULTS: Airway co-exposure to peanut and either UPM- or DEP-induced systemic sensitization to peanut and anaphylaxis following peanut challenge. Exposure to UPM or DEP triggered activation and migration of lung dendritic cells to draining lymph nodes and induction of peanut-specific CD4+ Th cells. UPM- and DEP-induced distinct Th responses, but both stimulated expansion of T follicular helper (Tfh) cells essential for peanut allergy development. MyD88 signaling was critical for UPM- and DEP-induced peanut allergy, whereas TLR4 signaling was dispensable. DEP-induced peanut allergy and Tfh-cell differentiation depended on IL-1 but not IL-33 signaling, whereas neither cytokine alone was necessary for UPM-mediated sensitization. CONCLUSION: Environmental co-exposure to peanut and PM induces peanut-specific Tfh cells and peanut allergy in mice.


Subject(s)
Anaphylaxis , Peanut Hypersensitivity , Mice , Animals , Mice, Inbred C57BL , Dust , Cytokines/metabolism , Particulate Matter/adverse effects
11.
Environ Sci Technol ; 58(20): 8771-8782, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38728551

ABSTRACT

This randomized crossover study investigated the metabolic and mRNA alterations associated with exposure to high and low traffic-related air pollution (TRAP) in 50 participants who were either healthy or were diagnosed with chronic pulmonary obstructive disease (COPD) or ischemic heart disease (IHD). For the first time, this study combined transcriptomics and serum metabolomics measured in the same participants over multiple time points (2 h before, and 2 and 24 h after exposure) and over two contrasted exposure regimes to identify potential multiomic modifications linked to TRAP exposure. With a multivariate normal model, we identified 78 metabolic features and 53 mRNA features associated with at least one TRAP exposure. Nitrogen dioxide (NO2) emerged as the dominant pollutant, with 67 unique associated metabolomic features. Pathway analysis and annotation of metabolic features consistently indicated perturbations in the tryptophan metabolism associated with NO2 exposure, particularly in the gut-microbiome-associated indole pathway. Conditional multiomics networks revealed complex and intricate mechanisms associated with TRAP exposure, with some effects persisting 24 h after exposure. Our findings indicate that exposure to TRAP can alter important physiological mechanisms even after a short-term exposure of a 2 h walk. We describe for the first time a potential link between NO2 exposure and perturbation of the microbiome-related pathways.


Subject(s)
Air Pollutants , Air Pollution , Gastrointestinal Microbiome , Humans , Male , London , Female , Middle Aged , Cross-Over Studies , Traffic-Related Pollution , Nitrogen Dioxide
12.
Environ Sci Technol ; 58(17): 7256-7269, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38641325

ABSTRACT

Through investigating the combined impact of the environmental exposures experienced by an individual throughout their lifetime, exposome research provides opportunities to understand and mitigate negative health outcomes. While current exposome research is driven by epidemiological studies that identify associations between exposures and effects, new frameworks integrating more substantial population-level metadata, including electronic health and administrative records, will shed further light on characterizing environmental exposure risks. Molecular biology offers methods and concepts to study the biological and health impacts of exposomes in experimental and computational systems. Of particular importance is the growing use of omics readouts in epidemiological and clinical studies. This paper calls for the adoption of mechanistic molecular biology approaches in exposome research as an essential step in understanding the genotype and exposure interactions underlying human phenotypes. A series of recommendations are presented to make the necessary and appropriate steps to move from exposure association to causation, with a huge potential to inform precision medicine and population health. This includes establishing hypothesis-driven laboratory testing within the exposome field, supported by appropriate methods to read across from model systems research to human.


Subject(s)
Environmental Exposure , Exposome , Humans , Molecular Biology
13.
Environ Sci Technol ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39053901

ABSTRACT

Indicators of male fertility are in decline globally, but the underlying causes, including the role of environmental exposures, are unclear. This study aimed to examine organic chemical pollutants in seminal plasma, including both known priority environmental chemicals and less studied chemicals, to identify uncharacterized male reproductive environmental toxicants. Semen samples were collected from 100 individuals and assessed for sperm concentration, percent motility, and total motile sperm. Targeted and nontargeted organic pollutant exposures were measured from seminal plasma using gas chromatography, which showed widespread detection of organic pollutants in seminal plasma across all exposure classes. We used principal component pursuit (PCP) on our targeted panel and derived one component (driven by etriadizole) associated with total motile sperm (p < 0.001) and concentration (p = 0.03). This was confirmed by the exposome-wide association models using individual chemicals, where etriadizole was negatively associated with total motile sperm (FDR q = 0.01) and concentration (q = 0.07). Using PCP on 814 nontargeted spectral peaks identified a component that was associated with total motile sperm (p = 0.001). Bayesian kernel machine regression identified one principal driver of this association, which was analytically confirmed to be N-nitrosodiethylamine. These findings are promising and consistent with experimental evidence showing that etridiazole and N-nitrosodiethylamine may be reproductive toxicants.

14.
Environ Sci Technol ; 58(12): 5229-5243, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38466915

ABSTRACT

Silicone-based passive samplers, commonly paired with gas chromatography-mass spectrometry (GC-MS) analysis, are increasingly utilized for personal exposure assessments. However, its compatibility with the biotic exposome remains underexplored. In this study, we introduce the wearable silicone-based AirPie passive sampler, coupled with nontargeted liquid chromatography with high-resolution tandem mass spectrometry (LC-HRMS/MS), GC-HRMS, and metagenomic shotgun sequencing methods, offering a comprehensive view of personalized airborne biotic and abiotic exposomes. We applied the AirPie samplers to 19 participants in a unique deep underwater confined environment, annotating 4,390 chemical and 2,955 microbial exposures, integrated with corresponding transcriptomic data. We observed significant shifts in environmental exposure and gene expression upon entering this unique environment. We noted increased exposure to pollutants, such as benzenoids, polycyclic aromatic hydrocarbons (PAHs), opportunistic pathogens, and associated antibiotic-resistance genes (ARGs). Transcriptomic analyses revealed the activation of neurodegenerative disease-related pathways, mostly related to chemical exposure, and the repression of immune-related pathways, linked to both biological and chemical exposures. In summary, we provided a comprehensive, longitudinal exposome map of the unique environment and underscored the intricate linkages between external exposures and human health. We believe that the AirPie sampler and associated analytical methods will have broad applications in exposome and precision medicine.


Subject(s)
Exposome , Neurodegenerative Diseases , Polycyclic Aromatic Hydrocarbons , Wearable Electronic Devices , Humans , Confined Spaces , Transcriptome , Environmental Monitoring/methods , Silicones
15.
Environ Sci Technol ; 58(13): 5695-5704, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38502526

ABSTRACT

The limited research on volatile organic compounds (VOCs) has not taken into account the interactions between constituents. We used the weighted quantile sum (WQS) model and generalized linear model (GLM) to quantify the joint effects of ambient VOCs exposome and identify the substances that play key roles. For a 0 day lag, a quartile increase of WQS index for n-alkanes, iso/anti-alkanes, aromatic, halogenated aromatic hydrocarbons, halogenated saturated chain hydrocarbons, and halogenated unsaturated chain hydrocarbons were associated with 1.09% (95% CI: 0.13, 2.06%), 0.98% (95% CI: 0.22, 1.74%), 0.92% (95% CI: 0.14, 1.69%), 1.03% (95% CI: 0.14, 1.93%), 1.69% (95% CI: 0.48, 2.91%), and 1.85% (95% CI: 0.93, 2.79%) increase in cardiovascular disease (CVD) emergency hospital admissions, respectively. Independent effects of key substances on CVD-related emergency hospital admissions were also reported. In particular, an interquartile range increase in 1,1,1-trichloroethane, methylene chloride, styrene, and methylcyclohexane is associated with a greater risk of CVD-associated emergency hospital admissions [3.30% (95% CI: 1.93, 4.69%), 3.84% (95% CI: 1.21, 6.53%), 5.62% (95% CI: 1.35, 10.06%), 8.68% (95% CI: 3.74, 13.86%), respectively]. We found that even if ambient VOCs are present at a considerably low concentration, they can cause cardiovascular damage. This should prompt governments to establish and improve concentration standards for VOCs and their sources. At the same time, policies should be introduced to limit VOCs emission to protect public health.


Subject(s)
Air Pollutants , Cardiovascular Diseases , Exposome , Hydrocarbons, Halogenated , Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , Air Pollutants/analysis , Environmental Monitoring , Cardiovascular Diseases/epidemiology , Hydrocarbons , Hospitals
16.
Environ Sci Technol ; 58(9): 4104-4114, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38373080

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are widely used in industrial production, causing potential health risks to the residents living around chemical industrial plants; however, the lack of data on population exposure and adverse effects impedes our understanding and ability to prevent risks. In this study, we performed screening and association analysis on exogenous PFAS pollutants and endogenous small-molecule metabolites in the serum of elderly residents living near industrial plants. Exposure levels of 11 legacy and novel PFASs were determined. PFOA and PFOS were major contributors, and PFNA, PFHxS, and 6:2 Cl-PFESA also showed high detection frequencies. Association analysis among PFASs and 287 metabolites identified via non-target screening was performed with adjustments of covariates and false discovery rate. Strongly associated metabolites were predominantly lipid and lipid-like molecules. Steroid hormone biosynthesis, primary bile acid biosynthesis, and fatty-acid-related pathways, including biosynthesis of unsaturated fatty acids, linoleic acid metabolism, α-linolenic acid metabolism, and fatty acid biosynthesis, were enriched as the metabolic pathways associated with mixed exposure to multiple PFASs, providing metabolic explanation and evidence for the potential mediating role of adverse health effects as a result of PFAS exposure. Our study achieved a comprehensive screening of PFAS exposure and associated metabolic profiling, demonstrating the promising application for integrated analysis of exposome and metabolome.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Humans , Aged , Fluorocarbons/analysis , Environmental Pollutants/analysis , Metabolomics , Fatty Acids
17.
Environ Sci Technol ; 58(12): 5383-5393, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38478982

ABSTRACT

Cardiometabolic health is complex and characterized by an ensemble of correlated and/or co-occurring conditions including obesity, dyslipidemia, hypertension, and diabetes mellitus. It is affected by social, lifestyle, and environmental factors, which in-turn exhibit complex correlation patterns. To account for the complexity of (i) exposure profiles and (ii) health outcomes, we propose to use a multitrait Bayesian variable selection approach and identify a sparse set of exposures jointly explanatory of the complex cardiometabolic health status. Using data from a subset (N = 941 participants) of the nutrition, environment, and cardiovascular health (NESCAV) study, we evaluated the link between measurements of the cumulative exposure to (N = 33) pollutants derived from hair and cardiometabolic health as proxied by up to nine measured traits. Our multitrait analysis showed increased statistical power, compared to single-trait analyses, to detect subtle contributions of exposures to a set of clinical phenotypes, while providing parsimonious results with improved interpretability. We identified six exposures that were jointly explanatory of cardiometabolic health as modeled by six complementary traits, of which, we identified strong associations between hexachlorobenzene and trifluralin exposure and adverse cardiometabolic health, including traits of obesity, dyslipidemia, and hypertension. This supports the use of this type of approach for the joint modeling, in an exposome context, of correlated exposures in relation to complex and multifaceted outcomes.


Subject(s)
Dyslipidemias , Exposome , Hypertension , Humans , Bayes Theorem , Obesity/epidemiology , Hair , Environmental Exposure
18.
Environ Sci Technol ; 58(5): 2236-2246, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38252460

ABSTRACT

Mycotoxins are toxic chemicals that adversely affect human health. Here, we assessed the influence of mycotoxin exposure on the longitudinal development of early life intestinal microbiota of Nigerian neonates and infants (NIs). Human biomonitoring assays based on liquid chromatography tandem mass spectrometry were applied to quantify mycotoxins in breast milk (n = 68) consumed by the NIs, their stool (n = 82), and urine samples (n = 15), which were collected longitudinally from month 1-18 postdelivery. Microbial community composition was characterized by 16S rRNA gene amplicon sequencing of stool samples and was correlated to mycotoxin exposure patterns. Fumonisin B1 (FB1), FB2, and alternariol monomethyl ether (AME) were frequently quantified in stool samples between months 6 and 18. Aflatoxin M1 (AFM1), AME, and citrinin were quantified in breast milk samples at low concentrations. AFM1, FB1, and ochratoxin A were quantified in urine samples at relatively high concentrations. Klebsiella and Escherichia/Shigella were dominant in very early life stool samples (month 1), whereas Bifidobacterium was dominant between months 3 and 6. The total mycotoxin levels in stool were significantly associated with NIs' gut microbiome composition (PERMANOVA, p < 0.05). However, no significant correlation was observed between specific microbiota and the detection of certain mycotoxins. Albeit a small cohort, this study demonstrates that mycotoxins may influence early life gut microbiome composition.


Subject(s)
Gastrointestinal Microbiome , Mycotoxins , Infant , Infant, Newborn , Female , Humans , Mycotoxins/urine , Biological Monitoring , RNA, Ribosomal, 16S , Tandem Mass Spectrometry/methods , Food Contamination/analysis
19.
Environ Sci Technol ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096285

ABSTRACT

Urinary analysis of exogenous and endogenous molecules constitutes an efficient, noninvasive approach to evaluate human health status. However, the exposome characterization of urinary molecules remains extremely challenging with current techniques. Herein, we develop an ExpoNano strategy based on hyper-cross-linked polymers (HCPs) to achieve ultrahigh-throughput measurement of exo/endogenous molecules in urine. The strategy includes a simple trapping-detrapping procedure (15 min) with HCPs in enzymatically treated urine, followed by mass spectrometer determination. Molecules that can be determined by ExpoNano have a wide range of molecular weight (75-837 Da) and Log Kow (octanol-water partition coefficient; -9.86 to 10.56). The HCPs can be repeatedly used five times without decreasing the trapping efficiency. Application of ExpoNano in a biomonitoring study revealed a total of 63 environmental chemicals detected in >50% of the urine pools collected from Chinese adults living in 13 cities, with a median concentration of 0.026-47 ng/mL, while nontargeted analysis detected an additional 243 exogenous molecules. Targeted and nontargeted analysis also detected 926 endogenous molecules in pooled urine. Collectively, the ExpoNano strategy demonstrates unique advantages over traditional urine analysis approaches, including a wide range of analytes, satisfactory trapping efficiency, high simplicity and reusability, and extremely reduced time demand and financial cost.

20.
Environ Sci Technol ; 58(29): 12784-12822, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38984754

ABSTRACT

In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.


Subject(s)
Mass Spectrometry , Humans , Mass Spectrometry/methods , Exposome , Metabolomics , Proteomics/methods , Environmental Exposure
SELECTION OF CITATIONS
SEARCH DETAIL