Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.244
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 186(26): 5798-5811.e26, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38134875

ABSTRACT

Cryoelectron microscopy (cryo-EM) has provided unprecedented insights into amyloid fibril structures, including those associated with disease. However, these structures represent the endpoints of long assembly processes, and their relationship to fibrils formed early in assembly is unknown. Consequently, whether different fibril architectures, with potentially different pathological properties, form during assembly remains unknown. Here, we used cryo-EM to determine structures of amyloid fibrils at different times during in vitro fibrillation of a disease-related variant of human islet amyloid polypeptide (IAPP-S20G). Strikingly, the fibrils formed in the lag, growth, and plateau phases have different structures, with new forms appearing and others disappearing as fibrillation proceeds. A time course with wild-type hIAPP also shows fibrils changing with time, suggesting that this is a general property of IAPP amyloid assembly. The observation of transiently populated fibril structures has implications for understanding amyloid assembly mechanisms with potential new insights into amyloid progression in disease.


Subject(s)
Amyloid , Islet Amyloid Polypeptide , Humans , Amyloid/chemistry , Cryoelectron Microscopy , Islet Amyloid Polypeptide/chemistry , Amyloidogenic Proteins
2.
Annu Rev Biochem ; 91: 403-422, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35729071

ABSTRACT

The remarkable variety of microbial species of human pathogens and microbiomes generates significant quantities of secreted amyloids, which are structured protein fibrils that serve diverse functions related to virulence and interactions with the host. Human amyloids are associated largely with fatal neurodegenerative and systemic aggregation diseases, and current research has put forward the hypothesis that the interspecies amyloid interactome has physiological and pathological significance. Moreover, functional and molecular-level connections between antimicrobial activity and amyloid structures suggest a neuroimmune role for amyloids that are otherwise known to be pathological. Compared to the extensive structural information that has been accumulated for human amyloids, high-resolution structures of microbial and antimicrobial amyloids are only emerging. These recent structures reveal both similarities and surprising departures from the typical amyloid motif, in accordance with their diverse activities, and advance the discovery of novel antivirulence and antimicrobial agents. In addition, the structural information has led researchers to postulate that amyloidogenic sequences are natural targets for structural mimicry, for instance in host-microbe interactions. Microbial amyloid research could ultimately be used to fight aggressive infections and possibly processes leading to autoimmune and neurodegenerative diseases.


Subject(s)
Amyloidosis , Anti-Infective Agents , Neurodegenerative Diseases , Amyloid/chemistry , Amyloidogenic Proteins , Amyloidosis/metabolism , Anti-Bacterial Agents , Anti-Infective Agents/pharmacology , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism
3.
Cell ; 185(8): 1346-1355.e15, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35247328

ABSTRACT

Misfolding and aggregation of disease-specific proteins, resulting in the formation of filamentous cellular inclusions, is a hallmark of neurodegenerative disease with characteristic filament structures, or conformers, defining each proteinopathy. Here we show that a previously unsolved amyloid fibril composed of a 135 amino acid C-terminal fragment of TMEM106B is a common finding in distinct human neurodegenerative diseases, including cases characterized by abnormal aggregation of TDP-43, tau, or α-synuclein protein. A combination of cryoelectron microscopy and mass spectrometry was used to solve the structures of TMEM106B fibrils at a resolution of 2.7 Å from postmortem human brain tissue afflicted with frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP, n = 8), progressive supranuclear palsy (PSP, n = 2), or dementia with Lewy bodies (DLB, n = 1). The commonality of abundant amyloid fibrils composed of TMEM106B, a lysosomal/endosomal protein, to a broad range of debilitating human disorders indicates a shared fibrillization pathway that may initiate or accelerate neurodegeneration.


Subject(s)
Frontotemporal Dementia , Membrane Proteins , Nerve Tissue Proteins , Neurodegenerative Diseases , Amyloid , Cryoelectron Microscopy , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/pathology , Humans , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism
4.
Annu Rev Biochem ; 89: 695-715, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32569527

ABSTRACT

The zona pellucida (ZP) is an extracellular matrix that surrounds all mammalian oocytes, eggs, and early embryos and plays vital roles during oogenesis, fertilization, and preimplantation development. The ZP is composed of three or four glycosylated proteins, ZP1-4, that are synthesized, processed, secreted, and assembled into long, cross-linked fibrils by growing oocytes. ZP proteins have an immunoglobulin-like three-dimensional structure and a ZP domain that consists of two subdomains, ZP-N and ZP-C, with ZP-N of ZP2 and ZP3 required for fibril assembly. A ZP2-ZP3 dimer is located periodically along ZP fibrils that are cross-linked by ZP1, a protein with a proline-rich N terminus. Fibrils in the inner and outer regions of the ZP are oriented perpendicular and parallel to the oolemma, respectively, giving the ZP a multilayered appearance. Upon fertilization of eggs, modification of ZP2 and ZP3 results in changes in the ZP's physical and biological properties that have important consequences. Certain structural features of ZP proteins suggest that they may be amyloid-like proteins.


Subject(s)
Amyloidogenic Proteins/chemistry , Zona Pellucida Glycoproteins/chemistry , Zygote/metabolism , Amyloidogenic Proteins/genetics , Amyloidogenic Proteins/metabolism , Animals , Embryo, Mammalian/metabolism , Embryo, Mammalian/ultrastructure , Female , Gene Expression Regulation, Developmental , Humans , Oocytes/growth & development , Oocytes/metabolism , Oocytes/ultrastructure , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Zona Pellucida/metabolism , Zona Pellucida/ultrastructure , Zona Pellucida Glycoproteins/genetics , Zona Pellucida Glycoproteins/metabolism , Zygote/growth & development , Zygote/ultrastructure
5.
Annu Rev Biochem ; 84: 465-97, 2015.
Article in English | MEDLINE | ID: mdl-25839340

ABSTRACT

Magic angle spinning (MAS) NMR studies of amyloid and membrane proteins and large macromolecular complexes are an important new approach to structural biology. However, the applicability of these experiments, which are based on (13)C- and (15)N-detected spectra, would be enhanced if the sensitivity were improved. Here we discuss two advances that address this problem: high-frequency dynamic nuclear polarization (DNP) and (1)H-detected MAS techniques. DNP is a sensitivity enhancement technique that transfers the high polarization of exogenous unpaired electrons to nuclear spins via microwave irradiation of electron-nuclear transitions. DNP boosts NMR signal intensities by factors of 10(2) to 10(3), thereby overcoming NMR's inherent low sensitivity. Alternatively, it permits structural investigations at the nanomolar scale. In addition, (1)H detection is feasible primarily because of the development of MAS rotors that spin at frequencies of 40 to 60 kHz or higher and the preparation of extensively (2)H-labeled proteins.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Amyloid/chemistry , Bacteria/chemistry , Humans , Hydrogen/analysis , Membrane Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/instrumentation
6.
Mol Cell ; 81(20): 4209-4227.e12, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34453888

ABSTRACT

The microtubule-associated protein tau oligomerizes, but the actions of oligomeric tau (oTau) are unknown. We have used Cry2-based optogenetics to induce tau oligomers (oTau-c). Optical induction of oTau-c elicits tau phosphorylation, aggregation, and a translational stress response that includes stress granules and reduced protein synthesis. Proteomic analysis identifies HNRNPA2B1 as a principle target of oTau-c. The association of HNRNPA2B1 with endogenous oTau was verified in neurons, animal models, and human Alzheimer brain tissues. Mechanistic studies demonstrate that HNRNPA2B1 functions as a linker, connecting oTau with N6-methyladenosine (m6A) modified RNA transcripts. Knockdown of HNRNPA2B1 prevents oTau or oTau-c from associating with m6A or from reducing protein synthesis and reduces oTau-induced neurodegeneration. Levels of m6A and the m6A-oTau-HNRNPA2B1 complex are increased up to 5-fold in the brains of Alzheimer subjects and P301S tau mice. These results reveal a complex containing oTau, HNRNPA2B1, and m6A that contributes to the integrated stress response of oTau.


Subject(s)
Adenosine/analogs & derivatives , Alzheimer Disease/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , RNA Processing, Post-Transcriptional , RNA/metabolism , tau Proteins/metabolism , Adenosine/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Case-Control Studies , Disease Models, Animal , Disease Progression , Female , HEK293 Cells , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Humans , Male , Methylation , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Protein Aggregates , Protein Aggregation, Pathological , RNA/genetics , Severity of Illness Index , tau Proteins/genetics
7.
Trends Biochem Sci ; 49(2): 119-133, 2024 02.
Article in English | MEDLINE | ID: mdl-37926650

ABSTRACT

Amyloids are implicated in neurodegenerative and systemic diseases, yet they serve important functional roles in numerous organisms. Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins (RBPs) that control central events of RNA biogenesis in normal and diseased cellular conditions. Many of these proteins contain prion-like sequences of low complexity, which not only assemble into functional fibrils in response to cellular cues but can also lead to disease when missense mutations arise in their sequences. Recent advances in cryo-electron microscopy (cryo-EM) have provided unprecedented high-resolution structural insights into diverse amyloid assemblies formed by hnRNPs and structurally related RBPs, including TAR DNA-binding protein 43 (TDP-43), Fused in Sarcoma (FUS), Orb2, hnRNPA1, hnRNPA2, and hnRNPDL-2. This review provides a comprehensive overview of these structures and explores their functional and pathological implications.


Subject(s)
Amyloid , RNA-Binding Proteins , Cryoelectron Microscopy , RNA-Binding Proteins/metabolism , Amyloid/chemistry , Amyloid/metabolism
8.
EMBO J ; 40(17): e106320, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34260075

ABSTRACT

Inflammation plays an important role in the pathogenesis of Alzheimer's disease (AD). Some evidence suggests that misfolded protein aggregates found in AD brains may have originated from the gut, but the mechanism underlying this phenomenon is not fully understood. C/EBPß/δ-secretase signaling in the colon was investigated in a 3xTg AD mouse model in an age-dependent manner. We applied chronic administration of 1% dextran sodium sulfate (DSS) to trigger gut leakage or colonic injection of Aß or Tau fibrils or AD patient brain lysates in 3xTg mice and combined it with excision/cutting of the gut-brain connecting vagus nerve (vagotomy), in order to explore the role of the gut-brain axis in the development of AD-like pathologies and to monitor C/EBPß/δ-secretase signaling under those conditions. We found that C/EBPß/δ-secretase signaling is temporally activated in the gut of AD patients and 3xTg mice, initiating formation of Aß and Tau fibrils that spread to the brain. DSS treatment promotes gut leakage and facilitates AD-like pathologies in both the gut and the brain of 3xTg mice in a C/EBPß/δ-secretase-dependent manner. Vagotomy selectively blunts this signaling, attenuates Aß and Tau pathologies, and restores learning and memory. Aß or Tau fibrils or AD patient brain lysates injected into the colon propagate from the gut into the brain via the vagus nerve, triggering AD pathology and cognitive dysfunction. The results indicate that inflammation activates C/EBPß/δ-secretase and initiates AD-associated pathologies in the gut, which are subsequently transmitted to the brain via the vagus nerve.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , CCAAT-Enhancer-Binding Proteins/metabolism , Colitis/metabolism , Colon/metabolism , tau Proteins/metabolism , Amyloid Precursor Protein Secretases/metabolism , Animals , Brain/metabolism , Cysteine Endopeptidases/metabolism , Mice , Mice, Inbred C57BL
9.
Cell Mol Life Sci ; 81(1): 209, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710967

ABSTRACT

As an integral lysosomal transmembrane protein, transmembrane protein 106B (TMEM106B) regulates several aspects of lysosomal function and is associated with neurodegenerative diseases. The TMEM106B gene mutations lead to lysosomal dysfunction and accelerate the pathological progression of Neurodegenerative diseases. Yet, the precise mechanism of TMEM106B in Neurodegenerative diseases remains unclear. Recently, different research teams discovered that TMEM106B is an amyloid protein and the C-terminal domain of TMEM106B forms amyloid fibrils in various Neurodegenerative diseases and normally elderly individuals. In this review, we discussed the physiological functions of TMEM106B. We also included TMEM106B gene mutations that cause neurodegenerative diseases. Finally, we summarized the identification and cryo-electronic microscopic structure of TMEM106B fibrils, and discussed the promising therapeutic strategies aimed at TMEM106B fibrils and the future directions for TMEM106B research in neurodegenerative diseases.


Subject(s)
Membrane Proteins , Nerve Tissue Proteins , Neurodegenerative Diseases , Animals , Humans , Amyloid/metabolism , Amyloid/genetics , Amyloid/chemistry , Lysosomes/metabolism , Lysosomes/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/chemistry , Mutation , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/chemistry , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology
10.
Cell Mol Life Sci ; 81(1): 128, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472451

ABSTRACT

Epigenetic dysregulation that leads to alterations in gene expression and is suggested to be one of the key pathophysiological factors of Parkinson's disease (PD). Here, we found that α-synuclein preformed fibrils (PFFs) induced histone H3 dimethylation at lysine 9 (H3K9me2) and increased the euchromatic histone methyltransferases EHMT1 and EHMT2, which were accompanied by neuronal synaptic damage, including loss of synapses and diminished expression levels of synaptic-related proteins. Furthermore, the levels of H3K9me2 at promoters in genes that encode the synaptic-related proteins SNAP25, PSD95, Synapsin 1 and vGLUT1 were increased in primary neurons after PFF treatment, which suggests a linkage between H3K9 dimethylation and synaptic dysfunction. Inhibition of EHMT1/2 with the specific inhibitor A-366 or shRNA suppressed histone methylation and alleviated synaptic damage in primary neurons that were treated with PFFs. In addition, the synaptic damage and motor impairment in mice that were injected with PFFs were repressed by treatment with the EHMT1/2 inhibitor A-366. Thus, our findings reveal the role of histone H3 modification by EHMT1/2 in synaptic damage and motor impairment in a PFF animal model, suggesting the involvement of epigenetic dysregulation in PD pathogenesis.


Subject(s)
Motor Disorders , Parkinson Disease , Animals , Mice , Histones/metabolism , Methylation , Neurons/metabolism , alpha-Synuclein/metabolism
11.
Proc Natl Acad Sci U S A ; 119(14): e2113520119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35349341

ABSTRACT

SignificanceClassic serine proteases are synthesized as inactive precursors that are proteolytically processed, resulting in irreversible activation. We report an alternative and reversible mechanism of activation that is executed by an inactive protease. This mechanism involves a protein complex between the serine protease HTRA1 and the cysteine protease calpain 2. Surprisingly, activation is restricted as it improves the proteolysis of soluble tau protein but not the dissociation and degradation of its amyloid fibrils, a task that free HTRA1 is efficiently performing. These data exemplify a challenge for protein quality control proteases in the clearing of pathogenic fibrils and suggest a potential for unexpected side effects of chemical modulators targeting PDZ or other domains located at a distance to the active site.


Subject(s)
Calpain , Serine Endopeptidases , Amyloid/metabolism , Calpain/metabolism , High-Temperature Requirement A Serine Peptidase 1/chemistry , Proteolysis , Serine Endopeptidases/metabolism , Serine Proteases/metabolism
12.
Nano Lett ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39116280

ABSTRACT

Biomaterials in nature form hierarchical structures and functions across various length scales through binding and assembly processes. Inspired by nature, we developed hierarchically organized tissue engineering materials through evolutionary screening and self-templating assembly. Leveraging the M13 bacteriophage (phage), we employed an evolutionary selection process against hydroxyapatite (HA) to isolate HA-binding phage (HAPh). The newly discovered phage exhibits a bimodal length, comprising 950 nm and 240 nm, where the synergistic effect of these dual lengths promotes the formation of supramolecular fibrils with periodic banded structures. The assembled HAPh fibrils show the capability of HA mineralization and the directional growth of osteoblast cells. When applied to a dentin surface, it induces the regeneration of dentin-like tissue structures, showcasing its potential applications as a scaffold in tissue engineering. The integration of evolutionary screening and self-templating assembly holds promise for the future development of hierarchically organized tissue engineering materials.

13.
Crit Rev Biochem Mol Biol ; 57(4): 399-411, 2022 08.
Article in English | MEDLINE | ID: mdl-35997712

ABSTRACT

Although first described in the context of disease, cross-ß (amyloid) fibrils have also been found as functional entities in all kingdoms of life. However, what are the specific properties of the cross-ß fibril motif that convey biological function, make them especially suited for their particular purpose, and distinguish them from other fibrils found in biology? This review approaches these questions by arguing that cross-ß fibrils are highly periodic, stable, and self-templating structures whose formation is accompanied by substantial conformational change that leads to a multimerization of their core and framing sequences. A discussion of each of these properties is followed by selected examples of functional cross-ß fibrils that show how function is usually achieved by leveraging many of these properties.


Subject(s)
Amyloid
14.
Traffic ; 23(7): 391-410, 2022 07.
Article in English | MEDLINE | ID: mdl-35604355

ABSTRACT

Alpha-synuclein (α-Syn), an intrinsically disordered protein (IDP), is associated with neurodegenerative disorders, including Parkinson's disease (PD or other α-synucleinopathies. Recent investigations propose the transmission of α-Syn protein fibrils, in a prion-like manner, by entering proximal cells to seed further fibrillization in PD. Despite the recent advances, the mechanisms by which extracellular protein aggregates internalize into the cells remain poorly understood. Using a simple cell-based model of human neuroblastoma-derived differentiated neurons, we present the cellular internalization of α-Syn PFF to check cellular uptake and recycling kinetics along with the standard endocytic markers Transferrin (Tf) marking clathrin-mediated endocytosis (CME) and Galectin3 (Gal3) marking clathrin-independent endocytosis (CIE). Specific inhibition of endocytic pathways using chemical inhibitors reveals no significant involvement of CME, CIE and caveolae-mediated endocytosis (CvME). A substantial reduction in cellular uptake was observed after perturbation of actin polymerization and treatment with macropinosomes inhibitor. Our results show that α-Syn PFF mainly internalizes into the SH-SY5Y cells and differentiated neurons via the macropinocytosis pathway. The elucidation of the molecular and cellular mechanism involved in the α-Syn PFF internalization will help improve the understanding of α-synucleinopathies including PD, and further design specific inhibitors for the same.


Subject(s)
Neuroblastoma , Synucleinopathies , alpha-Synuclein/metabolism , Actins , Clathrin/metabolism , Humans , Neurons/metabolism , alpha-Synuclein/chemistry
15.
J Struct Biol ; 216(2): 108092, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615725

ABSTRACT

Cerebral amyloid angiopathy (CAA) is associated with the accumulation of fibrillar Aß peptides upon and within the cerebral vasculature, which leads to loss of vascular integrity and contributes to disease progression in Alzheimer's disease (AD). We investigate the structure of human-derived Aß40 fibrils obtained from patients diagnosed with sporadic or familial Dutch-type (E22Q) CAA. Using cryo-EM, two primary structures are identified containing elements that have not been observed in in vitro Aß40 fibril structures. One population has an ordered N-terminal fold comprised of two ß-strands stabilized by electrostatic interactions involving D1, E22, D23 and K28. This charged cluster is disrupted in the second population, which exhibits a disordered N-terminus and is favored in fibrils derived from the familial Dutch-type CAA patient. These results illustrate differences between human-derived CAA and AD fibrils, and how familial CAA mutations can guide fibril formation.


Subject(s)
Amyloid beta-Peptides , Cerebral Amyloid Angiopathy , Static Electricity , Humans , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/chemistry , Cerebral Amyloid Angiopathy/pathology , Cerebral Amyloid Angiopathy/genetics , Cerebral Amyloid Angiopathy/metabolism , Cryoelectron Microscopy/methods , Amyloid/metabolism , Amyloid/chemistry , Amyloid/genetics , Peptide Fragments/genetics , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Mutation , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/metabolism
16.
J Biol Chem ; 299(12): 105383, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37890776

ABSTRACT

Progressive degeneration of dopaminergic neurons in the midbrain, hypothalamus, and thalamus is a hallmark of Parkinson's disease (PD). Neuronal death is linked to the abrupt aggregation of α-synuclein (α-syn), a small protein that regulates vesicle trafficking in synaptic clefts. Studies of families with a history of PD revealed several mutations in α-syn including A30P and A53T that are linked to the early onset of this pathology. Numerous pieces of evidence indicate that lipids can alter the rate of protein aggregation, as well as modify the secondary structure and toxicity of amyloid oligomers and fibrils. However, the role of lipids in the stability of α-syn mutants remains unclear. In this study, we investigate the effect of phosphatidylserine (PS), an anionic lipid that plays an important role in the recognition of apoptotic cells by macrophages, in the stability of WT, A30P, and A53T α-syn. We found PS with different lengths and saturation of fatty acids accelerated the rate of WT and A30P aggregation. At the same time, the opposite effect was observed for most PS on A53T. We also found that PS with different lengths and saturation of fatty acids change the secondary structure and toxicities of WT, A30P, and A53T fibrils. These results indicate that lipids can play an important role in the onset and spread of familial PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Fatty Acids/genetics , Mutation , Parkinson Disease/genetics , Parkinson Disease/metabolism , Phosphatidylserines , Animals , Rats
17.
J Biol Chem ; 299(3): 103011, 2023 03.
Article in English | MEDLINE | ID: mdl-36781124

ABSTRACT

Tau protein's reversible assembly and binding of microtubules in brain neurons are regulated by charge-neutralizing phosphorylation, while its hyperphosphorylation drives the irreversible formation of cytotoxic filaments associated with neurodegenerative diseases. However, the structural changes that facilitate these diverse functions are unclear. Here, we analyzed K18, a core peptide of tau, using newly developed spectroelectrochemical instrumentation that enables electroreduction as a surrogate for charge neutralization by phosphorylation, with simultaneous, real-time quantitative analyses of the resulting conformational transitions and assembly. We observed a tipping point between behaviors that paralleled the transition between tau's physiologically required, reversible folding and assembly and the irreversibility of assemblies. The resulting rapidly electroassembled structures represent the first fibrillar tangles of K18 that have been formed in vitro at room temperature without using heparin or other charge-complementary anionic partners. These methods make it possible to (i) trigger and analyze in real time the early stages of conformational transitions and assembly without the need for preformed seeds, heterogenous coacervation, or crowding; (ii) kinetically resolve and potentially isolate never-before-seen early intermediates in these processes; and (iii) develop assays for additional factors and mechanisms that can direct the trajectory of assembly from physiologically benign and reversible to potentially pathological and irreversible structures. We anticipate wide applicability of these methods to other amyloidogenic systems and beyond.


Subject(s)
Alzheimer Disease , tau Proteins , Humans , Alzheimer Disease/metabolism , Microtubules/metabolism , Peptides/metabolism , Phosphorylation , tau Proteins/metabolism , Electrochemical Techniques
18.
J Biol Chem ; 299(8): 105054, 2023 08.
Article in English | MEDLINE | ID: mdl-37454740

ABSTRACT

Neurodegenerative diseases are often characterized by the codeposition of different amyloidogenic proteins, normally defining distinct proteinopathies. An example is represented by prion diseases, where the classical deposition of the aberrant conformational isoform of the prion protein (PrPSc) can be associated with tau insoluble species, which are usually involved in another class of diseases called tauopathies. How this copresence of amyloidogenic proteins can influence the progression of prion diseases is still a matter of debate. Recently, the cellular form of the prion protein, PrPC, has been investigated as a possible receptor of amyloidogenic proteins, since its binding activity with Aß, tau, and α-synuclein has been reported, and it has been linked to several neurotoxic behaviors exerted by these proteins. We have previously shown that the treatment of chronically prion-infected cells with tau K18 fibrils reduced PrPSc levels. In this work, we further explored this mechanism by using another tau construct that includes the sequence that forms the core of Alzheimer's disease tau filaments in vivo to obtain a distinct fibril type. Despite a difference of six amino acids, these two constructs form fibrils characterized by distinct biochemical and biological features. However, their effects on PrPSc reduction were comparable and probably based on the binding to PrPC at the plasma membrane, inhibiting the pathological conversion event. Our results suggest PrPC as receptor for different types of tau fibrils and point out a role of tau amyloid fibrils in preventing the pathological PrPC to PrPSc conformational change.


Subject(s)
Neurodegenerative Diseases , Prion Diseases , Prions , tau Proteins , Humans , Amyloidogenic Proteins , Prion Diseases/metabolism , Prion Proteins , Prions/metabolism , tau Proteins/metabolism
19.
J Biol Chem ; 299(5): 104654, 2023 05.
Article in English | MEDLINE | ID: mdl-36990219

ABSTRACT

Prion-like self-perpetuating conformational conversion of proteins into amyloid aggregates is associated with both transmissible neurodegenerative diseases and non-Mendelian inheritance. The cellular energy currency ATP is known to indirectly regulate the formation, dissolution, or transmission of amyloid-like aggregates by providing energy to the molecular chaperones that maintain protein homeostasis. In this work, we demonstrate that ATP molecules, independent of any chaperones, modulate the formation and dissolution of amyloids from a yeast prion domain (NM domain of Saccharomyces cerevisiae Sup35) and restricts autocatalytic amplification by controlling the amount of fragmentable and seeding-competent aggregates. ATP, at (high) physiological concentrations in the presence of Mg2+, kinetically accelerates NM aggregation. Interestingly, ATP also promotes phase separation-mediated aggregation of a human protein harboring a yeast prion-like domain. We also show that ATP disaggregates preformed NM fibrils in a dose-independent manner. Our results indicate that ATP-mediated disaggregation, unlike the disaggregation by the disaggregase Hsp104, yields no oligomers that are considered one of the critical species for amyloid transmission. Furthermore, high concentrations of ATP delimited the number of seeds by giving rise to compact ATP-bound NM fibrils that exhibited nominal fragmentation by either free ATP or Hsp104 disaggregase to generate lower molecular weight amyloids. In addition, (low) pathologically relevant ATP concentrations restricted autocatalytic amplification by forming structurally distinct amyloids that are found seeding inefficient because of their reduced ß-content. Our results provide key mechanistic underpinnings of concentration-dependent chemical chaperoning by ATP against prion-like transmissions of amyloids.


Subject(s)
Adenosine Triphosphate , Amyloid , Biocatalysis , Prions , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Adenosine Triphosphate/metabolism , Amyloid/chemistry , Amyloid/metabolism , Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/metabolism , Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Peptide Termination Factors/metabolism , Prions/chemistry , Prions/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Magnesium/metabolism , Protein Conformation
20.
J Biol Chem ; 299(10): 105196, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37633335

ABSTRACT

Amyloidogenic deposition of ß-amyloid (Aß) peptides in human brain involves not only the wild-type Aß (wt-Aß) sequences, but also posttranslationally modified Aß (PTM-Aß) variants. Recent studies hypothesizes that the PTM-Aß variants may trigger the deposition of wt-Aß, which underlies the pathology of Sporadic Alzheimer's disease. Among PTM-Aß variants, the pyroglutamate-3-Aß (pyroE3-Aß) has attracted much attention because of their significant abundances and broad distributions in senile plaques and dispersible and soluble oligomers. pyroE3-specific antibodies are being tested as potential anti-Aß drugs in clinical trials. However, evidence that support the triggering effect of pyroE3-Aß on wt-Aß in cells remain lacking, which diminishes its pathological relevance. We show here that cross-seeding with pyroE3-Aß40 leads to accelerated extracellular and intracellular aggregation of wt-Aß40 in different neuronal cells. Cytotoxicity levels are elevated through the cross-seeded aggregation, comparing with the self-seeded aggregation of wt-Aß40 or the static presence of pyroE3-Aß40 seeds. For the extracellular deposition in mouse neuroblastoma Neuro2a (N2a) cells, the cytotoxicity elevation correlates positively with the seeding efficiency. Besides aggregation rates, cross-seeding with pyroE3-Aß40 also modulates the molecular level structural polymorphisms of the resultant wt-Aß40 fibrils. Using solid-state nuclear magnetic resonance (ssNMR) spectroscopy, we identified key structural differences between the parent pyroE3/ΔE3 and wt-Aß40 fibrils within their fibrillar cores. Structural propagation from seeds to daughter fibrils is demonstrated to be more pronounced in the extracellular seeding in N2a cells by comparing the ssNMR spectra from different seeded wt-Aß40 fibrils, but less significant in the intracellular seeding process in human neuroblastoma SH-SY5Y cells.

SELECTION OF CITATIONS
SEARCH DETAIL