Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Nanotechnology ; 35(30)2024 May 09.
Article in English | MEDLINE | ID: mdl-38631308

ABSTRACT

We have experimentally demonstrated spatially selective absorption in Ag-SiO2-Ag based trilayer thin films by tuning the deposition angle of SiO2layer. These structures generate cavity resonance which can be tuned across the substrate locations due to spatially selective thickness and refractive index of silicon oxide (SiO2) film sandwiched between metallic silver (Ag) mirrors. Spatially selective property of SiO2film is obtained by oblique angle deposition technique using an electron beam evaporation system. The resonance wavelength of absorption in this trilayer structure shifts across the substrate locations along the direction of oblique deposition. The extent of shift in resonance increases with increase in angle of deposition of SiO2layer. 4.14 nm mm-1average shift of resonance wavelength is observed when SiO2is deposited at 40° whereas 4.76 nm mm-1average shift is observed when SiO2is deposited at 60°. We observed that the width of resonance increases with angle of deposition of the cavity layer and ultimately the resonant absorption disappears and becomes broadband when SiO2is deposited at glancing angle deposition (GLAD) configuration. Our study reveals that there is a suitable range of oblique angle of deposition from 40° to 60° for higher spatial tunability and resonant absorption whereas the absorption becomes broadband for glancing angle deposition.

2.
Nanotechnology ; 35(15)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38176072

ABSTRACT

Semiconductor photocatalysis holds significant promise in addressing both environmental and energy challenges. However, a major hurdle in photocatalytic processes remains the efficient separation of photoinduced charge carriers. In this study, TiO2nanorod arrays were employed by glancing angle deposition technique, onto which Ti3C2TxMXene was deposited through a spin-coating process. This hybrid approach aims to amplify the photocatalytic efficacy of TiO2nanorod arrays. Through photocurrent efficiency characterization testing, an optimal loading of TiO2/Ti3C2Txcomposites is identified. Remarkably, this composite exhibits a 40% increase in photocurrent density in comparison to pristine TiO2. This enhancement is attributed to the exceptional electrical conductivity and expansive specific surface area inherent to Ti3C2TxMXene. These attributes facilitate swift transport of photoinduced electrons, consequently refining the separation and migration of electron-hole pairs. The synergistic TiO2/Ti3C2Txcomposite showcases its potential across various domains including photoelectrochemical water splitting and diverse photocatalytic devices. As such, this composite material stands as a novel and promising entity for advancing photocatalytic applications. This study can offer an innovative approach for designing simple and efficient photocatalytic materials composed of MXene co-catalysts and TiO2for efficient water electrolysis on semiconductors.

3.
Small ; 18(14): e2107657, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35174949

ABSTRACT

Metallic chiral nanoparticles (CNPs) promisingly function as asymmetric catalysts but lack an important study in thermal stability of optical activity that stems from metastable chiral lattices. In this work, annealing is applied to silver (Ag) CNPs, fabricated by glancing angle deposition (GLAD), and causes elimination of optical activity at 200 °C, mainly ascribed to chiral-to-achiral lattice transformation. The Ag CNPs are remarkedly enhanced in thermal stability through an alloying with aluminum (Al) via layer-by-layer GLAD to generate binary Ag0.5 Al0.5 CNPs composed of solid-state liquids, whose optical activity vanishes at 700 °C. Ease in the diffusion of Al atoms in the host Ag CNPs and thermal insulation from the Al2 O3 layers partially covering the binary CNPs effectively prohibit structural relaxation of the metastable chiral lattices, accounting for the significant enhancement in thermal stability of chiral lattices. This is a pioneering work to investigate the fundamental principles determining the thermal stability of metallic CNPs in terms of chiral structures and optical activity. It paves the way toward applying metallic CNPs to asymmetric catalysis at high temperature to accelerate an asymmetric synthesis of enantiomers with designable chirality, which is one of the most important topics in modern chemistry.

4.
Small ; 18(17): e2200620, 2022 04.
Article in English | MEDLINE | ID: mdl-35319827

ABSTRACT

Liquid metals (such as gallium or Ga) exist in liquid states under ambient conditions and are hardly sculpted in chiral structures. Herein, through electron-beam evaporation of Ga, hemispherical achiral Ga nanoparticles (NPs) are randomly immobilized along helical surfaces of SiO2 nanohelices (NHs), functioning as a chiral template. Helical assembly of Ga NPs shows chiroplasmonic optical activity owing to collective plasmon-plasmon interactions, which can be tuned as a function of a helical SiO2 pitch (P) and the amount of Ga evaporated. At a P of ≈150 nm, the chiroplasmonic optical activity, evaluated with anisotropic g-factor, can be as large as ≈0.1. Because the SiO2 NHs and Ga NPs have high environmental stability of nanostructures, the chiroplasmonic optical activity shows excellent anti-aging stability, despite slight blue shift and chiroplasmonic degradation for the first 2 weeks. Spontaneous oxidation of the Ga NPs enables the formation of dense Ga2 O3 layers covering Ga cores to prevent further oxidation and thus to stabilize the chiroplasmonic optical activity. This work devises an alternative approach to impose optical activity onto Ga NPs, providing an additional degree of freedom (i.e., chirality) for Ga-based flexible electronic devices to develop advanced applications of 3D display, circular polarizers, bio-imaging, and bio-detection.


Subject(s)
Gallium , Metal Nanoparticles , Nanostructures , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Optical Rotation , Silicon Dioxide
5.
Small ; 18(5): e2104168, 2022 02.
Article in English | MEDLINE | ID: mdl-34821034

ABSTRACT

A multifunctional ion-sensitive floating gate Fin field-effect transistor (ISFGFinFET) for hydrogen and sodium detection is demonstrated. The ISFGFinFET comprises a FGFET and a sensing film, both of which are used to detect and improve sensitivity. The sensitivity of the ISFGFinFET can be adjusted by modulating the coupling effect of the FG. A nanoseaweed structure is fabricated via glancing angle deposition (GLAD) technology to obtain a large sensing area to enhance the sensitivity for hydrogen ion detection. A sensitivity of 266 mV per pH can be obtained using a surface area of 3.28 mm2 . In terms of sodium ion detection, a calix[4]arene sensing film to monitor sodium ions, obtaining a Na+ sensitivity of 432.7 mV per pNa, is used. In addition, the ISFGFinFET demonstrates the functionality of multiple ions detection simultaneously. The sensor arrays composed of 3 × 3 pixels are demonstrated, each of which comprise of an FGFET sensor and a transistor. Furthermore, 16 × 16 arrays with a decoder and other peripheral circuits are constructed and simulated. The performance of the proposed ISFGFinFET is competitive with that of other state-of-the-art ion sensors.


Subject(s)
Biosensing Techniques , Transistors, Electronic , Biosensing Techniques/methods , Ions , Technology
6.
Nanotechnology ; 33(34)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35580563

ABSTRACT

In this study, we have investigated the effect of thickness on the structural and optical properties of copper (Cu) helical nanostructures. Thin films with thicknesses of 160 nm, 280 nm, 450 nm, and 780 nm were obtained by e-beam glancing angle deposition. The morphology and the microstructure were studied by field emission scanning electron microscopy, x-ray diffraction and transmission electron microscopy, while for the optical analysis measurements spectroscopic ellipsometry was used. The results show that the deposited structures are porous with nanometer-sized crystallites preferentially oriented along (111) planes, as well as that the diameter of the helices increases with thickness. Detailed analyses of optical properties have demonstrated that the dielectric function of Cu structures is greatly influenced by the films thicknesses. With increasing thickness from 160 nm to 780 nm, the surface plasmon resonance peak was shifted from 1.31 eV to 1.05 eV, which was correlated with the growth mechanism and the size of deposited nanostructures.

7.
Sensors (Basel) ; 22(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35062612

ABSTRACT

In this paper, we describe the device developed to control the deposition parameters to manage the glancing angle deposition (GLAD) process of metal-oxide thin films for gas-sensing applications. The GLAD technique is based on a set of parameters such as the tilt, rotation, and substrate temperature. All parameters are crucial to control the deposition of nanostructured thin films. Therefore, the developed GLAD controller enables the control of all parameters by the scientist during the deposition. Additionally, commercially available vacuum components were used, including a three-axis manipulator. High-precision readings were tested, where the relative errors calculated using the parameters provided by the manufacturer were 1.5% and 1.9% for left and right directions, respectively. However, thanks to the formula developed by our team, the values were decreased to 0.8% and 0.69%, respectively.

8.
Small ; 17(41): e2102694, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34510709

ABSTRACT

Monolithic integration of nanostructured metalenses with broadband light transmission and good charge transport can simultaneously enhance the sensitivity, speed, and efficiency of photodetectors. The realization of built-in broadband metalenses in perovskite photodetectors, however, has been largely challenged by the limited choice of materials and the difficulty in nanofabrication. Here a new type of broadband-transmitting built-in TiO2 metalens (meta-TiO2 ) is devised, which is readily fabricated by one-step and lithograph-free glancing angle deposition. The meta-TiO2 , which comprises of sub-100 nm TiO2 nanopillars randomly spaced with a wide range of sub-wavelength distances in 5-200 nm, shows high transmittance of light in the wavelength range of 400-800 nm. The meta-TiO2 also serves as an efficient electron transporting layer to prevent the exciton recombination and facilitate the photoinduced electron extraction and transport. Replacing the conventional mesoporous TiO2 with the meta-TiO2 comprehensively leads to enhancing the detection speed by three orders of magnitude to a few hundred nanoseconds, improving the responsivity and detectivity by one order of magnitude to 0.5 A W-1 and 1013 Jones, respectively, and extending the linear dynamic range by 50% to 120 dB.

9.
Small ; 17(2): e2004778, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33325649

ABSTRACT

Electron transporting layers (ETLs), required to be optically transparent in perovskite solar cells (PSCs) having regular structures, possess a determinant effect on electron extraction and collection. Metal oxides (e.g., TiO2 ) have overwhelmingly served as ETLs, but usually have low electron mobility (µe  < 10-2  cm2 V-1 s-1 ) not favorable for photovoltaic conversion. Here, metal oxides are replaced with metals (e.g., Ti with µe  ≈ 294 cm2 V-1 s-1 ) that are sculptured via glancing angle deposition to be a close-packed nanopillar array (NaPA), which vertically protrudes on a transparent electrode to obtain sufficient optical transmission for light harvesting in perovskite. Ti NaPAs, whose rough surfaces are passivated with 5 nm thick TiO2 (i.e., Ti NaPAs@TiO2 ) to suppress exciton recombination, lead to the champion power conversion efficiency (PCE) of 18.89% that is superior to that of MAPbI3 PSCs without Ti NaPAs@TiO2 or containing TiO2 NaPAs@TiO2 , owing to high surface wettability, high µe , and relatively low work function of Ti. Furthermore, Ti NaPAs@TiO2 effectively prevents the decomposition of MAPbI3 to achieve long-term shelf stability whereby 50-day aging only causes 15% PCE degradation. This work paves the way toward widening the material spectrum, from semiconductors to metals, to generate a diverse range of ETLs for producing efficient optoelectronic devices with long-term shelf stability.

10.
Nanotechnology ; 32(49)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34428748

ABSTRACT

We report the fabrication of low cost highly structured silver (Ag) capped aluminium (Al) nanorods (NRs) as surface enhanced Raman spectroscopy (SERS) substrate utilising the glancing angle deposition technique. The nano-capping of silver onto the Al NRs can concentrate the local electric field within the minimal volume that can serve as hotspots. The average size of the Ag nanocaps was 50 nm. The newly proposed nanoporous Ag capped Al NRs as SERS substrate could detect the Raman signal of rhodamine 6G (R6G) up to 10-15molar concentration. The significant enhancement in the Raman signal of 107was achieved for Ag capped Al NRs considering R6G as a probe molecule. Using the developed SERS substrate, we recorded Raman spectra forEscherichia colibacteria with its concentration varying from 108colony forming units per ml (CFU ml-1) up to 102CFU ml-1. All the reported Raman spectra were acquired by a portable handheld Raman spectrometer. Hence, this newly proposed low cost, effective SERS substrate can be used commercially for the onsite detection of clinical pathogens. The 3D finite difference time domain simulation model was performed for Ag capped Al nanostructure to understand the generation of hotspots. The simulated results show excellent agreement with the experimental results. We fabricated uncapped Ag nanorods of similar dimensions and performed the experimental measurements and simulations for comparison. We found a significant enhancement in Ag capped Al NRs compared to the long Ag NRs. The description of the Raman signal enhancement has been elaborated.

11.
Molecules ; 26(11)2021 May 24.
Article in English | MEDLINE | ID: mdl-34073697

ABSTRACT

Nanostructured TiO2 films were deposited onto Indium Tin Oxide (ITO) and glass substrates by dc reactive magnetron sputtering at different substrate inclination angles. The structural and optical properties of the deposited films were studied by X-ray diffraction, scanning electron microscopy and UV-Vis spectrophotometer, respectively. Dye-sensitized solar cells (DSSC) were assembled using these TiO2 films as photoelectrodes and the effect of the substrate inclination angle in the preparing process of TiO2 films on the DSSC conversion efficiency was studied.

12.
Small ; 16(24): e2001473, 2020 06.
Article in English | MEDLINE | ID: mdl-32419372

ABSTRACT

Bulk metals lack chirality. Recently, metals have been sculptured with metastable chirality varying from the micro- to nano-scale. The manipulation of molecular chirality could be novelly performed using metals composed of chiral lattices at atomic scales (i.e., chiral nanoparticles or CNPs) if one could fundamentally understand the interactions between molecules and the chiral metal lattices. The incorporation of chiral ligands has been generally adapted to form metal CNPs. However, post-fabrication removal of chiral ligands usually causes relaxation of the metastable chiral lattices to thermodynamically stable achiral structures, and thus the coexisting chiral ligands will unavoidably disturb or screen the interactions of interest. Herein, a concept of metal CNPs that are free of chiral ligands and consist of atomically chiral lattices is introduced. Without chiral ligands, shear forces applied by substrate rotation along with the translation of incident atoms lead to imposing the metastable chiral lattices onto metals. Metal CNPs show not only the chiroptical effect but the enantiospecific interactions of chiral lattices and molecules. These two unique chiral effects have resulted in the applications of enantiodifferentiation and asymmetric synthesis. Prospectively, the extension in composition space and constituent engineering will apply alloy CNPs to enantiodiscrimination, enantioseperation, bio-imaging, bio-sensing, and asymmetric catalysis.

13.
Small ; 16(6): e1906048, 2020 02.
Article in English | MEDLINE | ID: mdl-31961482

ABSTRACT

Metallic chiral nanoparticles (CNPs) with a nominal helical pitch (P) of sub-10 nm contain inherent chirality and are promisingly applied to diverse prominent enantiomer-related applications. However, the sub-wavelength P physically results in weak optical activity (OA) to prohibit the development of these applications. Herein, a facile method to amplify the CNPs' OA by alloying the host CNPs with metals through a three-step layer-by-layer glancing angle deposition (GLAD) method is devised. Promoted by the GLAD-induced heating effect, the solute metallic atoms diffuse into the host CNPs to create binary alloy CNPs. Chiral alloying not only induces the plasmonic OA of the diffused solute and the created alloys but also amplifies that of the host CNPs, generally occurring for alloying Ag CNPs with diverse metals (including Cu, Au, Al, and Fe) and alloying Cu CNPs with Ag. Furthermore, the chiral alloying leads to an enhancement of refractive index sensitivity of the CNPs. The alloy CNPs with amplified plasmonic OA pave the way for potentially developing important chirality-related applications in the fields of heterogeneous asymmetric catalysis, enantiodifferentiation, enantioseparation, biosensing, and bioimaging.

14.
Mikrochim Acta ; 187(4): 196, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32125544

ABSTRACT

Nanostructured nickel (Ni) and nickel oxide (NiO) electrodes were fabricated on Ni foils using the glancing angle deposition (GLAD) technique. Cyclic voltammetry and amperometry showed the electrodes enable non-enzymatic electrochemical determination of glucose in strongly alkaline media. Under optimized conditions of NaOH concentration and working potential (~ 0.50 V vs. Ag/AgCl), the GLAD electrodes performed far better than bare Ni foil electrodes, with the GLAD NiO electrode showing an outstanding sensitivity (4400 µA mM-1 cm-2), superior detection limit (7 nM), and wide dynamic range (0.5 µM-9 mM), with desirable selectivity and reproducibility. Based on their performance at a low concentration, the GLAD NiO electrodes were also used to quantify glucose in artificial urine and sweat samples which have significantly lower glucose levels than blood. The GLAD NiO electrodes showed negligible response to the common interferents in glucose measurement (uric acid, dopamine, serotonin, and ascorbic acid), and they were not poisoned by high amounts of sodium chloride. Graphical abstract The figures depict (A) SEM image of vertical post-GLAD NiO electrodes used for non-enzymatic electrochemical glucose monitoring, and (B) calibration plots of the three different electrodes.


Subject(s)
Biosensing Techniques , Blood Glucose/analysis , Electrochemical Techniques , Nanostructures/chemistry , Nickel/chemistry , Electrodes , Humans , Particle Size , Surface Properties
15.
Mikrochim Acta ; 187(5): 276, 2020 04 19.
Article in English | MEDLINE | ID: mdl-32307592

ABSTRACT

A bimetallic nanostructure of Co/Cu for the non-enzymatic determination of glucose is presented. The heterostructure includes cobalt thin film on a porous array of Cu nanocolumns. Glancing angle deposition (GLAD) method was used to grow Cu nanocolumns directly on a fluorine-doped tin oxide (FTO) substrate. Then a thin film of cobalt was electrodeposited on the Cu nanostructures. Various characterization studies were performed in order to define the optimum nanostructure for the determination of glucose. The results showed remarkable boosting of the electrocatalytic activity of Co/Cu bimetallic structure compare to the responses achieved by the monometallic structures of Co or Cu. The sensor showed two linear response ranges for the determination of glucose at 0.55 V in 0.1 M NaOH, from 5 µM-1 mM and 2-9 mM. The sensitivity was 1741 (µA mM-1 cm-2) and 626 (µA mM-1 cm-2), respectively, while the detection limit for a signal-to-noise ratio of 3 was found to be 0.4 µM. The sensor exhibited excellent selectivity and was successfully applied to the determination of glucose in real human blood serum samples. Graphical Abstract Schematic representation of fabrication process of the glucose sensor of Co (Cobalt)/Cu (Copper) on Fluorine doped Tin Oxide (FTO). The current voltage plots show higher electrooxidation activity of the bimetallic nanostructure of Co/Cu/FTO relative to the bare Co/FTO.


Subject(s)
Alloys/chemistry , Biosensing Techniques , Electrochemical Techniques , Glucose/analysis , Nanostructures/chemistry , Cobalt/chemistry , Copper/chemistry , Electrodes , Fluorine/chemistry , Humans , Particle Size , Surface Properties , Tin Compounds/chemistry
16.
Nano Lett ; 19(10): 7427-7433, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31536361

ABSTRACT

Demand for the transfer of chirality from a pre-engineered nanoparticle to any other metal is of fundamental importance for developing a wide range of chirality-related applications. Herein, we show that binary alloy chiral nanoparticles (CNPs) with an engineerable composition can be formed from metallic CNPs with intrinsic structural chirality serving as sacrificial templates (STs), via a galvanic replacement reaction (GRR). This GRR-mediated chirality transfer is a general phenomenon and results in the formation of Cu-Ag CNPs with solid morphology and mesoporous CNPs made of Ag-Au, Ag-Pt, and Ag-Pd. Our study imposes a new component, i.e., structural chirality, on the GRR. The insights from our study improve our fundamental understanding of the GRR principle and devise a versatile method to generate mesoporous alloy CNPs for developing prominent chirality-related applications in asymmetric catalysis, enantiodifferentiation, enantioseparation, biodetection, and bioimaging.

17.
Nano Lett ; 19(6): 3676-3683, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31035748

ABSTRACT

Semiconductor nanomaterials with controlled morphologies and architectures are of critical importance for high-performance optoelectronic devices. However, the fabrication of such nanomaterials on polymer-based flexible electrodes is particularly challenging due to degradation of the flexible electrodes at a high temperature. Here we report the fabrication of nickel oxide nanopillar arrays (NiO x NaPAs) on a flexible electrode by vapor deposition, which enables highly efficient perovskite solar cells (PSCs). The NiO x NaPAs exhibit an enhanced light transmittance for light harvesting, prohibit exciton recombination, promote irradiation-generated hole transport and collection, and facilitate the formation of large perovskite grains. These advantageous features result in a high efficiency of 20% and 17% for the rigid and flexible PSCs, respectively. Additionally, the NaPAs show no cracking after 500 times of bending, consistent with the mechanic simulation results. This robust fabrication opens a new opportunity for the fabrication of a large area of high-performance flexible optoelectronic devices.

18.
Nano Lett ; 18(11): 7389-7394, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30257094

ABSTRACT

We report a large-area fabrication method to prepare chiral substrates patterned with arrays of multilayer, three-dimensional nanostructures using a combination of nanoimprint lithography and glancing angle deposition. Several structures are successfully fabricated using this method, including L-shaped, twisted arc and trilayer twisted Au nanorod structures, demonstrating its generality. As one typical example, arrays of L-shaped nanostructures, consisting of two layers of orthogonally oriented Au nanorods separated by a Ge dielectric layer in the thickness direction, exhibit giant optical chirality in the infrared region with an experimentally achieved g-factor as high as 0.38. Electromagnetic simulations show that the optical chirality results from plasmon hybridization between the two orthogonal Au segments. To demonstrate scalability, a 1 cm2 chiral substrate is fabricated with uniform chiral optical property. This method combines both high throughput and precise geometrical control and is therefore promising for applications of chiral metamaterials.

19.
Sensors (Basel) ; 18(11)2018 Nov 10.
Article in English | MEDLINE | ID: mdl-30423842

ABSTRACT

The detection of body fluids has been used to identify a suspect and build a criminal case. As the amount of evidence collected at a crime site is limited, a multiplex identification system for body fluids using a small amount of sample is required. In this study, we proposed a multiplex detection platform using an Ag vertical nanorod metal enhanced fluorescence (MEF) substrate for semen and vaginal fluid (VF), which are important evidence in cases of sexual crime. The Ag nanorod MEF substrate with a length of 500 nm was fabricated by glancing angle deposition, and amino functionalization was conducted to improve binding ability. The effect of incubation time was analyzed, and an incubation time of 60 min was selected, at which the fluorescence signal was saturated. To assess the performance of the developed identification chip, the identification of semen and VF was carried out. The developed sensor could selectively identify semen and VF without any cross-reactivity. The limit of detection of the fabricated microarray chip was 10 times better than the commercially available rapid stain identification (RSID) Semen kit.


Subject(s)
Protein Array Analysis/instrumentation , Semen Analysis/methods , Semen/chemistry , Vagina/chemistry , Body Fluids/chemistry , Female , Fluorescence , Humans , Male , Nanotubes/chemistry , Oligonucleotide Array Sequence Analysis
20.
Small ; 13(39)2017 10.
Article in English | MEDLINE | ID: mdl-28783232

ABSTRACT

Ultraviolet (UV)-resonant metals (e.g., aluminum) typically have low melting point to cause a fabrication difficulty in helical sculpture to generate plasmons with chiroptical activity in the UV region. In this work, using glancing angle deposition (GLAD), two new methods are devised to generate crystalline chiral Al nanostructures that have stable chiroptical response in the UV-visible region originating from intrinsic helical structures. One approach involves fast substrate rotation during GLAD to fabricate Al nanoparticles (AlNPs) with hidden helicity; another is to deposit an achiral Al thin film on a host of plasmonic chiral NPs, such that the helical structures are duplicated from the chiral host to the achiral guest of Al nanocappings. The host@guest helicity duplication is a new GLAD methodology to generate chiroptically active plasmons, which can be generally adapted to diverse plasmonic metals for tailoring plasmonic chiroptical activity flexibly in the UV-visible region. More importantly, this work offers those two new methods to generate UV-active plasmonic chiral substrates, which can markedly enhance chiroptical activity of biomolecules. It would open a door to develop surface-enhanced chiroptical spectroscopies for sensitively monitoring stereobiochemical information, which is of prominent interest in understanding a wide range of homochirality-determined biological phenomena.


Subject(s)
Aluminum/chemistry , Nanostructures/chemistry , Ultraviolet Rays , Circular Dichroism , Copper/chemistry , Ferric Compounds/chemistry , Nanostructures/ultrastructure , Nanotechnology , Polymethyl Methacrylate/chemistry , Silver/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL