ABSTRACT
Wild-type (WT) mice maintain viable levels of blood glucose even when adipose stores are depleted by 6 d of 60% calorie restriction followed by a 23-h fast (hereafter designated as "starved" mice). Survival depends on ghrelin, an octanoylated peptide hormone. Mice that lack ghrelin suffer lethal hypoglycemia when subjected to the same starvation regimen. Ghrelin is known to stimulate secretion of growth hormone (GH), which in turn stimulates secretion of IGF-1 (insulin-like growth factor-1). In the current study, we found that starved ghrelin-deficient mice had a 90% reduction in plasma IGF-1 when compared with starved WT mice. Injection of IGF-1 in starved ghrelin-deficient mice caused a twofold increase in glucose production and raised blood glucose to levels seen in starved WT mice. Increased glucose production was accompanied by increases in plasma glycerol, fatty acids and ketone bodies, and hepatic triglycerides. All of these increases were abolished when the mice were treated with atglistatin, an inhibitor of adipose tissue triglyceride lipase. We conclude that IGF-1 stimulates adipose tissue lipolysis in starved mice and that this lipolysis supplies energy and substrates that restore hepatic gluconeogenesis. This action of IGF-1 in starved mice is in contrast to its known action in inhibiting adipose tissue lipase in fed mice. Surprisingly, the ghrelin-dependent maintenance of plasma IGF-1 in starved mice was not mediated by GH. Direct injection of GH into starved ghrelin-deficient mice failed to increase plasma IGF-1. These data call attention to an unsuspected role of IGF-1 in the adaptation to starvation.
Subject(s)
Blood Glucose , Insulin-Like Growth Factor I , Starvation , Adaptation, Physiological , Adipose Tissue/drug effects , Adipose Tissue/enzymology , Adipose Tissue/metabolism , Animals , Blood Glucose/metabolism , Fatty Acids/blood , Ghrelin/metabolism , Gluconeogenesis , Glycerol/blood , Growth Hormone/metabolism , Insulin-Like Growth Factor I/analysis , Insulin-Like Growth Factor I/metabolism , Ketone Bodies/blood , Lipase/antagonists & inhibitors , Lipase/metabolism , Lipolysis , Liver/metabolism , Mice , Phenylurea Compounds/pharmacology , Starvation/blood , Starvation/metabolism , Triglycerides/metabolismABSTRACT
Growth hormone-releasing hormone (GHRH) has been widely shown to stimulate growth hormone (GH) production via binding to GHRH receptor GHRHR in various species of vertebrates, but information regarding the functional roles of GHRH and GHRHR in the protochordate amphioxus remains rather scarce. We showed here that two mature peptides, BjGHRH-1 and BjGHRH-2, encoded by BjGHRH precursor, and a single BjGHRHR protein were identified in the amphioxus Branchiostoma. japonicum. Like the distribution profiles of vertebrate GHRHs and GHRHRs, both the genes Bjghrh and Bjghrhr were widely expressed in the different tissues of amphioxus, including in the cerebral vesicle, Hatschek's pit, neural tube, gill, hepatic caecum, notochord, testis and ovary. Moreover, both BjGHRH-1 and BjGHRH-2 interacted with BjGHRHR, and triggered the cAMP/PKA signal pathway in a dose-dependent manner. Importantly, BjGHRH-1 and BjGHRH-2 were both able to activate the expression of GH-like gene in the cells of Hatschek's pit. These indicate that a functional vertebrate-like GHRH-GHRHR axis had already emerged in amphioxus, which is a seminal innovation making physiological divergence including reproduction, growth, metabolism, stress and osmoregulation possible during the early evolution of vertebrates.
Subject(s)
Growth Hormone-Releasing Hormone , Lancelets , Receptors, Neuropeptide , Receptors, Pituitary Hormone-Regulating Hormone , Animals , Lancelets/metabolism , Lancelets/genetics , Receptors, Neuropeptide/metabolism , Receptors, Neuropeptide/genetics , Growth Hormone-Releasing Hormone/metabolism , Growth Hormone-Releasing Hormone/genetics , Receptors, Pituitary Hormone-Regulating Hormone/metabolism , Receptors, Pituitary Hormone-Regulating Hormone/genetics , Hypothalamo-Hypophyseal System/metabolismABSTRACT
Heart failure (HF) with preserved ejection fraction (HFpEF) represents a major unmet medical need owing to its diverse pathophysiology and lack of effective therapies. Potent synthetic, agonists (MR-356 and MR-409) of growth hormone-releasing hormone (GHRH) improve the phenotype of models of HF with reduced ejection fraction (HFrEF) and in cardiorenal models of HFpEF. Endogenous GHRH exhibits a broad range of regulatory influences in the cardiovascular (CV) system and aging and plays a role in several cardiometabolic conditions including obesity and diabetes. Whether agonists of GHRH can improve the phenotype of cardiometabolic HFpEF remains untested and unknown. Here we tested the hypothesis that MR-356 can mitigate/reverse the cardiometabolic HFpEF phenotype. C57BL6N mice received a high-fat diet (HFD) plus the nitric oxide synthase inhibitor (l-NAME) for 9 wk. After 5 wk of HFD + l-NAME regimen, animals were randomized to receive daily injections of MR-356 or placebo during a 4-wk period. Control animals received no HFD + l-NAME or agonist treatment. Our results showed the unique potential of MR-356 to treat several HFpEF-like features including cardiac hypertrophy, fibrosis, capillary rarefaction, and pulmonary congestion. MR-356 improved cardiac performance by improving diastolic function, global longitudinal strain (GLS), and exercise capacity. Importantly, the increased expression of cardiac pro-brain natriuretic peptide (pro-BNP), inducible nitric oxide synthase (iNOS), and vascular endothelial growth factor-A (VEGF-A) was restored to normal levels suggesting that MR-356 reduced myocardial stress associated with metabolic inflammation in HFpEF. Thus, agonists of GHRH may be an effective therapeutic strategy for the treatment of cardiometabolic HFpEF phenotype.NEW & NOTEWORTHY This randomized study used rigorous hemodynamic tools to test the efficacy of a synthetic GHRH agonist to improve cardiac performance in a cardiometabolic HFpEF. Daily injection of the GHRH agonist, MR-356, reduced the HFpEF-like effects as evidenced by improved diastolic dysfunction, reduced cardiac hypertrophy, fibrosis, and pulmonary congestion. Notably, end-diastolic pressure and end-diastolic pressure-volume relationship were reset to control levels. Moreover, treatment with MR-356 increased exercise capacity and reduced myocardial stress associated with metabolic inflammation in HFpEF.
Subject(s)
Heart Failure , Animals , Mice , Cardiomegaly , Disease Models, Animal , Fibrosis , Growth Hormone-Releasing Hormone , Inflammation , NG-Nitroarginine Methyl Ester , Stroke Volume/physiology , Vascular Endothelial Growth Factor A , Ventricular Function, LeftABSTRACT
Börjeson-Forssman-Lehmann syndrome (BFLS) is an intellectual disability and endocrine disorder caused by plant homeodomain finger 6 (PHF6) mutations. Individuals with BFLS present with short stature. We report a mouse model of BFLS, in which deletion of Phf6 causes a proportional reduction in body size compared with control mice. Growth hormone (GH) levels were reduced in the absence of PHF6. Phf6-/Y animals displayed a reduction in the expression of the genes encoding GH-releasing hormone (GHRH) in the brain, GH in the pituitary gland and insulin-like growth factor 1 (IGF1) in the liver. Phf6 deletion specifically in the nervous system caused a proportional growth defect, indicating a neuroendocrine contribution to the phenotype. Loss of suppressor of cytokine signaling 2 (SOCS2), a negative regulator of growth hormone signaling partially rescued body size, supporting a reversible deficiency in GH signaling. These results demonstrate that PHF6 regulates the GHRH/GH/IGF1 axis.
Subject(s)
Down-Regulation , Epilepsy/metabolism , Face/abnormalities , Fingers/abnormalities , Growth Disorders/metabolism , Growth Hormone-Releasing Hormone/metabolism , Growth Hormone/metabolism , Hypogonadism/metabolism , Insulin-Like Growth Factor I/metabolism , Mental Retardation, X-Linked/metabolism , Obesity/metabolism , Repressor Proteins/metabolism , Signal Transduction , Animals , Animals, Newborn , Disease Models, Animal , Epilepsy/blood , Epilepsy/pathology , Face/pathology , Fingers/pathology , Growth Disorders/blood , Growth Disorders/pathology , Growth Hormone/blood , Hypogonadism/blood , Hypogonadism/pathology , Hypothalamus/metabolism , Insulin-Like Growth Factor I/genetics , Male , Mental Retardation, X-Linked/blood , Mental Retardation, X-Linked/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nervous System/metabolism , Obesity/blood , Obesity/pathology , Organ Specificity , Pituitary Gland/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Suppressor of Cytokine Signaling Proteins/metabolismABSTRACT
The treatment of hard-to-heal chronic wounds is still a major medical problem and an economic and social burden. In this work, we examine the proregenerative potential of two peptides, G11 (a trypsin-resistant analogue of growth hormone-releasing hormone [GHRH]) and biphalin (opioid peptide), and their combination in vitro on human fibroblasts (BJ). G11, biphalin and their combination exhibited no toxicity against BJ cells. On the contrary, these treatments significantly stimulated proliferation and migration of fibroblasts. Under inflammatory conditions (LPS-induced BJ cells), we noticed that the tested peptides decreased the levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and interleukin 1ß (IL-1ß). This was correlated with diminished phosphorylation levels of p38 kinase, but not those of ERK1/2. We found also that G11, biphalin and their combination activated the ERK1/2 signalling pathway, which has been previously implicated in promigratory activity of some regeneration enhancers, including opioids or GHRH analogues. Potential application of their combination requires further work, in particular in vivo experiments, in which the organism-level relevance of the discussed cell-level effects would be proven and, additionally, analgesic action of the opioid ingredient could be quantified.
Subject(s)
Growth Hormone-Releasing Hormone , Opioid Peptides , Humans , Opioid Peptides/pharmacology , Growth Hormone-Releasing Hormone/pharmacology , Wound Healing , FibroblastsABSTRACT
Purpose: Growth hormone-releasing hormone (GHRH) is a 44-amino acid peptide that regulates growth hormone (GH) secretion. We hypothesized that GHRH receptor (GHRH-R) in alveolar type 2 (AT2) cells could modulate pro-inflammatory and possibly subsequent pro-fibrotic effects of lipopolysaccharide (LPS) or cytokines, such that AT2 cells could participate in lung inflammation and fibrosis. Methods: We used human alveolar type 2 (iAT2) epithelial cells derived from induced pluripotent stem cells (iPSC) to investigate how GHRH-R modulates gene and protein expression. We tested iAT2 cells' gene expression in response to LPS or cytokines, seeking whether these mechanisms caused endogenous production of pro-inflammatory molecules or mesenchymal markers. Quantitative real-time PCR (RT-PCR) and Western blotting were used to investigate differential expression of epithelial and mesenchymal markers. Result: Incubation of iAT2 cells with LPS increased expression of IL1-ß and TNF-α in addition to mesenchymal genes, including ACTA2, FN1 and COL1A1. Alveolar epithelial cell gene expression due to LPS was significantly inhibited by GHRH-R peptide antagonist MIA-602. Incubation of iAT2 cells with cytokines like those in fibrotic lungs similarly increased expression of genes for IL1-ß, TNF-α, TGFß-1, Wnt5a, smooth muscle actin, fibronectin and collagen. Expression of mesenchymal proteins, such as N-cadherin and vimentin, were also elevated after prolonged exposure to cytokines, confirming epithelial production of pro-inflammatory molecules as an important mechanism that might lead to subsequent fibrosis. Conclusion: iAT2 cells clearly expressed the GHRH-R. Exposure to LPS or cytokines increased iAT2 cell production of pro-inflammatory factors. GHRH-R antagonist MIA-602 inhibited pro-inflammatory gene expression, implicating iAT2 cell GHRH-R signaling in lung inflammation and potentially in fibrosis.
Subject(s)
Pneumonia , Pulmonary Fibrosis , Humans , Alveolar Epithelial Cells/metabolism , Tumor Necrosis Factor-alpha , Lipopolysaccharides/pharmacology , Growth Hormone-Releasing Hormone/genetics , Growth Hormone-Releasing Hormone/metabolism , Inflammation , CytokinesABSTRACT
AIM: Growth is a multifarious phenomenon that has been studied by nutritionists, economists, paediatric endocrinologists; archaeologists, child psychologists and other experts. Yet, a unifying theory of understanding growth regulation is still lacking. METHOD: Critical review of the literature. RESULTS: We summarise evidence linking social competition and its effect on hierarchies in social structures, with the neuronal networks of the ventromedial hypothalamus and body size. The endocrine signalling system regulating growth hormone, Insulin-like-Growth-Factor1 and skeletal growth, is well conserved in the evolution of vertebrata for some 400 million years. The link between size and status permits adaptive plasticity, competitive growth and strategic growth adjustments also in humans. Humans perceive size as a signal of dominance with tallness being favoured and particularly prevalent in the upper social classes. CONCLUSION: Westernised societies are competitive. People are tall, and "open to change." Social values include striving for status and prestige implying socio-economic domination. We consider the transition of political and social values following revolutions and civil wars, as key elements that interact with the evolutionarily conserved neuroendocrine competence for adaptive developmental plasticity, overstimulate the hypothalamic growth regulation and finally lead to the recent historic increases in average height.
Subject(s)
Body Height , Human Growth Hormone , Social Behavior , Child , Child Development , Humans , Insulin-Like Growth Factor I , NeuronsABSTRACT
Malignant pleural mesothelioma (MPM) is an aggressive malignancy associated with exposure to asbestos, with poor prognosis and no effective therapies. The strong inhibitory activities of growth hormone-releasing hormone (GHRH) antagonists have been demonstrated in different experimental human cancers, including lung cancer; however, their role in MPM remains unknown. We assessed the effects of the GHRH antagonists MIA-602 and MIA-690 in vitro in MPM cell lines and in primary MPM cells, and in vivo in MPM xenografts. GHRH, GHRH receptor, and its main splice variant SV1 were found in all the MPM cell types examined. In vitro, MIA-602 and MIA-690 reduced survival and proliferation in both MPM cell lines and primary cells and showed synergistic inhibitory activity with the chemotherapy drug pemetrexed. In MPM cells, GHRH antagonists also regulated activity and expression of apoptotic molecules, inhibited cell migration, and reduced the expression of matrix metalloproteinases. These effects were accompanied by impairment of mitochondrial activity and increased production of reactive oxygen species. In vivo, s.c. administration of MIA-602 and MIA-690 at the dose of 5 µg/d for 4 wk strongly inhibited the growth of MPM xenografts in mice, along with reduction of tumor insulin-like growth factor-I and vascular endothelial growth factor. Overall, these results suggest that treatment with GHRH antagonists, alone or in association with chemotherapy, may offer an approach for the treatment of MPM.
Subject(s)
Antineoplastic Agents/pharmacology , Growth Hormone-Releasing Hormone/antagonists & inhibitors , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mesothelioma/metabolism , Mesothelioma/pathology , Pleural Neoplasms/metabolism , Pleural Neoplasms/pathology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Gene Expression , Growth Hormone-Releasing Hormone/genetics , Growth Hormone-Releasing Hormone/metabolism , Humans , Lung Neoplasms/drug therapy , Mesothelioma/drug therapy , Mesothelioma, Malignant , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Pleural Neoplasms/drug therapy , Receptors, Neuropeptide/genetics , Receptors, Neuropeptide/metabolism , Receptors, Pituitary Hormone-Regulating Hormone/genetics , Receptors, Pituitary Hormone-Regulating Hormone/metabolism , Xenograft Model Antitumor AssaysABSTRACT
BACKGROUND: The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis modulates critical metabolic pathways; however, little is known regarding effects of augmenting pulsatile GH secretion on immune function in humans. This study used proteomics and gene set enrichment analysis to assess effects of a GH releasing hormone (GHRH) analog, tesamorelin, on circulating immune markers and liver tissue in people with human immunodeficiency virus (HIV) (PWH) and nonalcoholic fatty liver disease (NAFLD). METHODS: 92 biomarkers associated with immunity, chemotaxis, and metabolism were measured in plasma samples from 61 PWH with NAFLD who participated in a double-blind, randomized trial of tesamorelin versus placebo for 12 months. Gene set enrichment analysis was performed on serial liver biopsies targeted to immune pathways. RESULTS: Tesamorelin, compared to placebo, decreased interconnected proteins related to cytotoxic T-cell and monocyte activation. Circulating concentrations of 13 proteins were significantly decreased, and no proteins increased, by tesamorelin. These included 4 chemokines (CCL3, CCL4, CCL13 [MCP4], IL8 [CXCL8]), 2 cytokines (IL-10 and CSF-1), and 4 T-cell associated molecules (CD8A, CRTAM, GZMA, ADGRG1), as well as ARG1, Gal-9, and HGF. Network analysis indicated close interaction among the gene pathways responsible for these proteins, with imputational analyses suggesting down-regulation of a closely related cluster of immune pathways. Targeted transcriptomics using liver tissue confirmed a significant end-organ signal of down-regulated immune activation pathways. CONCLUSIONS: Long-term treatment with a GHRH analog reduced markers of T-cell and monocyte/macrophage activity, suggesting that augmentation of the GH axis may ameliorate immune activation in an HIV population with metabolic dysregulation, systemic and end organ inflammation. Clinical Trials Registration. NCT02196831.
Subject(s)
HIV Infections , Non-alcoholic Fatty Liver Disease , Biomarkers , Double-Blind Method , Growth Hormone-Releasing Hormone , HIV Infections/complications , HIV Infections/drug therapy , Humans , Non-alcoholic Fatty Liver Disease/drug therapyABSTRACT
In adults, growth hormone (GH) deficiency is associated with increased visceral adiposity, decreased lean body mass, bone mineral density and exercise capacity, dyslipidemia, insulin resistance, increased cardiometabolic and fracture risk, and impaired quality of life. The aim of the present article is to review the diagnosis of GH deficiency in adults. To avoid overdiagnosis of GH deficiency, it is critical to evaluate only patients at risk for pituitary dysfunction, including those who have had sellar masses, pituitary surgery, radiation therapy, traumatic brain injury, subarachnoid hemorrhage or childhood onset GH deficiency. Evaluation for GH deficiency should be undertaken after testing and replacement of other pituitary hormone deficits. Since GH secretion is pulsatile, measuring serum GH levels randomly is not helpful in establishing the diagnosis of GH deficiency. Serum insulin-like growth factor I (IGF-I) levels lack substantial diurnal variation but also lack sufficient sensitivity and specificity in the diagnosis of GH deficiency in adults. However, adults with multiple (≥3) additional pituitary hormone deficiencies, risk factors for hypopituitarism and low serum IGF-I levels are very likely to be GH deficient. In most cases, the diagnosis of GH deficiency requires stimulation testing. These tests involve the administration of a pharmacologic agent that normally stimulates GH release from pituitary somatotrophs, including insulin, glucagon, growth hormone releasing hormone-arginine or macimorelin, followed by sampling of serum specimens at regular intervals for GH assay. Patients with a peak GH level that is below a predetermined cutpoint are classified as GH deficient. A systematic approach to the diagnosis of GH deficiency is essential in order to accurately identify adults who may benefit from GH replacement.
Subject(s)
Human Growth Hormone , Quality of Life , Adult , Arginine , Child , Growth Hormone , Humans , Insulin , Insulin-Like Growth Factor I , OverdiagnosisABSTRACT
RATIONALE: Vascular calcification (VC) is a marker of the severity of atherosclerotic disease. Hormones play important roles in regulating calcification; estrogen and parathyroid hormones exert opposing effects, the former alleviating VC and the latter exacerbating it. To date no treatment strategies have been developed to regulate clinical VC. OBJECTIVE: The objective of this study was to investigate the effect of growth hormone-releasing hormone (GHRH) and its agonist (GHRH-A) on the blocking of VC in a mouse model. METHODS AND RESULTS: Young adult osteoprotegerin-deficient mice were given daily subcutaneous injections of GHRH-A (MR409) for 4 weeks. Significant reductions in calcification of the aortas of MR409-treated mice were paralleled by markedly lower alkaline phosphatase activity and a dramatic reduction in the expression of transcription factors, including the osteogenic marker gene Runx2 and its downstream factors, osteonectin and osteocalcin. The mechanism of action of GHRH-A was dissected in smooth muscle cells isolated from human and mouse aortas. Calcification of smooth muscle cells induced by osteogenic medium was inhibited in the presence of GHRH or MR409, as evidenced by reduced alkaline phosphatase activity and Runx2 expression. Inhibition of calcification by MR409 was partially reversed by MIA602, a GHRH antagonist, or a GHRH receptor-selective small interfering RNA. Treatment with MR409 induced elevated cytosolic cAMP and its target, protein kinase A which in turn blocked nicotinamide adenine dinucleotide phosphate oxidase activity and reduced production of reactive oxygen species, thus blocking the phosphorylation of nuclear factor κB (p65), a key intermediate in the ligand of receptor activator for nuclear factor-κ B-Runx2/alkaline phosphatase osteogenesis program. A protein kinase A-selective small interfering RNA or the chemical inhibitor H89 abolished these beneficial effects of MR409. CONCLUSIONS: GHRH-A controls osteogenesis in smooth muscle cells by targeting cross talk between protein kinase A and nuclear factor κB (p65) and through the suppression of reactive oxygen species production that induces the Runx2 gene and alkaline phosphatase. Inflammation-mediated osteogenesis is thereby blocked. GHRH-A may represent a new pharmacological strategy to regulate VC.
Subject(s)
Peptide Fragments/therapeutic use , Vascular Calcification/prevention & control , Alkaline Phosphatase/biosynthesis , Alkaline Phosphatase/genetics , Animals , Aorta/metabolism , Core Binding Factor Alpha 1 Subunit/biosynthesis , Core Binding Factor Alpha 1 Subunit/genetics , Culture Media/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Growth Hormone-Releasing Hormone , Heart Transplantation , Humans , Isoquinolines/pharmacology , Mice , Mice, Inbred C57BL , Osteogenesis , Osteoprotegerin/deficiency , Peptide Fragments/pharmacology , RNA, Small Interfering/genetics , Receptors, Neuropeptide/antagonists & inhibitors , Receptors, Neuropeptide/genetics , Receptors, Pituitary Hormone-Regulating Hormone/antagonists & inhibitors , Receptors, Pituitary Hormone-Regulating Hormone/genetics , Sulfonamides/pharmacology , Transcription Factor RelA/metabolism , Vascular Calcification/physiopathologyABSTRACT
The somatotropic axis, in addition to its well-known metabolic and endocrine effects, plays a pivotal role in modulation of inflammation. Moreover, growth hormone (GH)-releasing hormone (GHRH) has been involved in the development of various human tumors. In this work we aimed to investigate the consequences of GHRH deficiency on the development of inflammation-associated colon carcinogenesis in a mouse model of isolated GH deficiency due to generalized ablation of the GHRH gene [GHRH knock out (GHRHKO)]. Homozygous GHRHKO (-/-) male mice and wild type (C57/BL6, +/+) male mice as control group, were used. After azoxymetane (AOM)/dextran sodium sulfate (DSS) treatment -/- mice displayed higher Disease Activity Index (DAI) score, and more marked weight loss compared to +/+ animals. Additionally, -/- mice showed a significant increase in total tumors, in particular of large size predominantly localized in distal colon. In colonic tissue of AOM/DSS-treated -/- mice we found the presence of invasive adenocarcinomas, dysplasia and colitis with mucosal ulceration. Conversely, AOM/DSS-treated +/+ mice showed only presence of adenomas, without invasion of sub-mucosa. Treatment with AOM/DSS significantly increased prostaglandin (PG)E2 and 8-iso-PGF2α levels along with cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α, nuclear factor kappa B (NF-kB) and inducible nitric oxide synthase (iNOS) gene expression, in colon specimens. The degree of increase of all these parameters was more markedly in -/- than +/+ mice. In conclusion, generalized GHRH ablation increases colon carcinogenesis responsiveness in male mice. Whether this results from lack of GH or GHRH remains to be established.
Subject(s)
Colitis/complications , Growth Hormone-Releasing Hormone/deficiency , Neoplasms/etiology , Adiponectin/blood , Adiponectin/genetics , Animals , Colitis/chemically induced , Colitis/metabolism , Colitis/pathology , Colon/metabolism , Colon/pathology , Cytokines/genetics , Dextran Sulfate , Dinoprost/analogs & derivatives , Dinoprost/metabolism , Dinoprostone/metabolism , Growth Hormone-Releasing Hormone/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathologyABSTRACT
AIMS: Growth hormone (GH) secretion is pulsatile and secretion varies highly between individuals. To understand and ultimately predict GH secretion, it is important to first delineate and quantify the interaction and variability in the biological processes underlying stimulated GH secretion. This study reports on the development of a population nonlinear mixed effects model for GH stimulation, incorporating individual GH kinetics and the stimulation of GH by GH-releasing hormone (GHRH). METHODS: Literature data on the systemic circulation, the median eminence, and the anterior pituitary were included as system parameters in the model. Population parameters were estimated on data from 8 healthy normal weight and 16 obese women who received a 33 µg recombinant human GH dose. The next day, a bolus injection of 100 µg GHRH was given to stimulate GH secretion. RESULTS: The GH kinetics were best described with the addition of 2 distribution compartments with a bodyweight dependent clearance (increasing linearly from 24.7 L/h for a 60-kg subject to 32.1 L/h for a 100-kg subject). The model described the data adequately with high parameter precision and significant interindividual variability on the GH clearance and distribution volume. Additionally, high variability in the amount of secreted GH, driven by GHRH receptor activation, was identified (coefficient of variation = 90%). CONCLUSION: The stimulation of GH by GHRH was quantified and significant interindividual variability was identified on multiple parameters. This model sets the stage for further development of by inclusion of additional physiological components to quantify GH secretion in humans.
Subject(s)
Growth Hormone-Releasing Hormone , Human Growth Hormone , Female , Growth Hormone , Humans , Recombinant ProteinsABSTRACT
PURPOSE: In peripheral artery disease, blockage of the blood supply to the limbs leads to blood flow attenuation and tissue ischemia. We investigated whether growth hormone-releasing hormone (GHRH) could enhance the biological functions and therapeutic effects of endothelial progenitor cells (EPCs) derived from adult human peripheral blood (PB). METHODS: EPCs were isolated from human PB (PB-EPCs) and cord blood and expanded in vitro. PB-EPCs incubated with or without GHRH were evaluated for proliferation, migration, and angiogenesis capacity and apoptosis rates under oxidative stress conditions. Activation of STAT3 and Akt pathways was evaluated using Western blot. A hind-limb ischemia (HLI) mouse model was used to study the efficacy of GHRH in improving EPC therapy in vivo. RESULTS: GHRH enhanced the proliferation, migration, and angiogenesis capacity of PB-EPCs and reduced apoptosis under H2O2 stimulation. These beneficial effects were GHRH receptor-dependent and were paralleled by increased phosphorylation of STAT3 and Akt. Transplantation of GHRH-preconditioned EPCs into HLI model mice enhanced blood flow recovery by increasing vascular formation density and enhanced tissue regeneration at the lesion site. CONCLUSION: Our studies demonstrate a novel role for GHRH in dramatically improving therapeutic angiogenesis in HLI by enhancing the biological functions of EPCs. These findings support additional studies to explore the full potential of GHRH in augmenting cell therapy for the management of ischemia.
Subject(s)
Cell Movement/drug effects , Cell Proliferation/drug effects , Endothelial Progenitor Cells/drug effects , Growth Hormone-Releasing Hormone/pharmacology , Ischemia/drug therapy , Adult , Animals , Apoptosis/drug effects , Endothelial Progenitor Cells/metabolism , Female , Growth Hormone-Releasing Hormone/therapeutic use , Hindlimb/blood supply , Humans , Male , Mice , Middle Aged , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Young AdultABSTRACT
PURPOSE: Obstructive sleep apnea (OSA) is associated with a variety of neuroendocrine disorders and may lead to many complications, including cognitive dysfunction. The aim of this study was to assess the change of somatotropic axis and to detect the relation between somatotropic axis hormone and cognitive dysfunction. METHODS: Sixty-six patients with OSA and 16 healthy controls were enrolled in this cross-sectional study. Cognitive function assessment using the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) and polysomnography were performed on all individuals. Blood samples were taken the next morning following the polysomnography and the level of serum growth hormone-releasing hormone (GHRH) and growth hormone (GH) were analyzed by enzyme-linked immunosorbent assay. RESULTS: Compared with the control group, OSA patients showed significantly lower serum GH level (p < 0.05), whereas no statistical significance of GHRH level was found. In addition, lower MMSE and MoCA scores were found only in the severe OSA patients when compared with the controls. Furthermore, in severe OSA patients with cognitive dysfunction (MMSE score < 27 and MoCA score < 26), serum GHRH and GH levels were significantly lower than those without cognitive dysfunction. Logistic analysis revealed that cognitive dysfunction in severe OSA patients was associated with micro-arousal index and the level of serum GHRH and GH. CONCLUSION: Decreased serum GH and GHRH levels were found among severe OSA patients with cognitive dysfunction who were overweight, which might promote the occurrence of cognitive dysfunction.
Subject(s)
Cognition Disorders/diagnosis , Growth Hormone-Releasing Hormone/blood , Growth Hormone/blood , Sleep Apnea, Obstructive/diagnosis , Adult , Arousal/physiology , Cognition Disorders/blood , Cross-Sectional Studies , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Polysomnography , Reference Values , Sleep Apnea, Obstructive/blood , Snoring/bloodABSTRACT
It has been shown that growth hormone-releasing hormone (GHRH) reduces cardiomyocyte (CM) apoptosis, prevents ischemia/reperfusion injury, and improves cardiac function in ischemic rat hearts. However, it is still not known whether GHRH would be beneficial for life-threatening pathological conditions, like cardiac hypertrophy and heart failure (HF). Thus, we tested the myocardial therapeutic potential of GHRH stimulation in vitro and in vivo, using GHRH or its agonistic analog MR-409. We show that in vitro, GHRH(1-44)NH2 attenuates phenylephrine-induced hypertrophy in H9c2 cardiac cells, adult rat ventricular myocytes, and human induced pluripotent stem cell-derived CMs, decreasing expression of hypertrophic genes and regulating hypertrophic pathways. Underlying mechanisms included blockade of Gq signaling and its downstream components phospholipase Cß, protein kinase Cε, calcineurin, and phospholamban. The receptor-dependent effects of GHRH also involved activation of Gαs and cAMP/PKA, and inhibition of increase in exchange protein directly activated by cAMP1 (Epac1). In vivo, MR-409 mitigated cardiac hypertrophy in mice subjected to transverse aortic constriction and improved cardiac function. Moreover, CMs isolated from transverse aortic constriction mice treated with MR-409 showed improved contractility and reversal of sarcolemmal structure. Overall, these results identify GHRH as an antihypertrophic regulator, underlying its therapeutic potential for HF, and suggest possible beneficial use of its analogs for treatment of pathological cardiac hypertrophy.
Subject(s)
Cardiomegaly/metabolism , Growth Hormone-Releasing Hormone/metabolism , Heart Failure/metabolism , Heart/physiology , Animals , Apoptosis/drug effects , Calcineurin/metabolism , Cardiomegaly/chemically induced , Cell Line , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Phenylephrine/pharmacology , Phospholipase C beta/metabolism , Protein Kinase C/metabolism , Rats , Signal Transduction/drug effectsABSTRACT
BACKGROUND/AIMS: The growth promoting effect of lysine and betaine as well as the expression of candidate genes reflecting their efficacy, such as ghrelin, leptin, Growth Hormone Secretagogue Receptor (GHS-R), Insulin like Growth Factor (IGF- 1) and Growth Hormone Releasing Hormone (GHRH) was examined in Labeo rohita fingerlings. METHODS: One hundred eighty healthy juveniles from a homologous population were randomly distributed to 15 rectangular tanks of 150 litres capacity. The experiment was carried out for 60 days with five treatment groups consisting T1 (0.25% Betaine), T2 (0.5% Betaine), T3 (0.75% Lysine) and T4 (1.5% Lysine) and control group. The experiment was carried out for 60 days with five treatment groups consisting T1 (0.25% Betaine), T2 (0.5% Betaine), T3 (0.75% Lysine) and T4 (1.5% Lysine) and control group. At the end of trial, the growth parameters such as weight gain, SGR, PER were estimated from the weight of the triplicate groups. The digestive, metabolic and antioxidant enzymes were analysed using spectrophotometric methods. The intestine, brain and liver were sampled from the treatments and expression of different genes ghrelin, leptin, GHSR, IGF-1 and GHRH was also performed by realtime PCR. RESULTS: A significant (P<0.05) increase in weight gain, SGR, PER and lowest FCR was found in T4 group which was significantly (p < 0.05) different from other experimental groups. The highest mRNA expression levels of expression were found in T4 group which was similar to that of ghrelin gene mRNA of T2 group. The significantly (p<0.05) highest GHSR, GHRH and IGF-1 gene expression levels were found in T4 treatment group compared to other groups. CONCLUSION: The present study reveals that the lysine and betaine stimulate growth and expression of ghrelin GHRH, GHS-R and IGF-1 genes. The increase of IGF-I mRNA expression with lysine and betaine supplementation revealed that these compounds act as growth modulators. However, lysine was found to be a more potent modulator of growth compared to betaine.
Subject(s)
Betaine/pharmacology , Cyprinidae/metabolism , Gene Expression Regulation/drug effects , Lysine/pharmacology , Animal Feed , Animals , Catalase/metabolism , Cyprinidae/growth & development , Ghrelin/genetics , Ghrelin/metabolism , Growth Hormone-Releasing Hormone/genetics , Growth Hormone-Releasing Hormone/metabolism , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Leptin/genetics , Leptin/metabolism , Liver/enzymology , Liver/metabolism , Receptors, Ghrelin/genetics , Receptors, Ghrelin/metabolism , Superoxide Dismutase/metabolismABSTRACT
Previous research suggested substantial interactions of growth hormone (GH) and sympathetic nervous activity. This cross talk can be presumed both during physiological (e.g., slow-wave sleep) and pathological conditions of GH release. However, microneurographic studies of muscle sympathetic nerve activity (MSNA) and assessment of baroreflex function during acute GH-releasing hormone (GHRH)-mediated GH release were not conducted so far. In a balanced, double-blind crossover design, GHRH or placebo (normal saline) were intravenously administered to 11 healthy male volunteers. MSNA was assessed microneurographically and correlated with blood pressure (BP) and heart rate (HR) at rest before (pre-) and 30-45 (post-I) and 105-120 min (post-II) after respective injections. Additionally, baroreflex function was assessed via graded infusion of vasoactive drugs. GHRH increased GH serum levels as intended. Resting MSNA showed significant net increases of both burst rate and total activity from pre- to post-I and post-II following GHRH injections compared with placebo (ANOVA for treatment and time, burst rate: P = 0.028; total activity: P = 0.045), whereas BP and HR were not altered. ANCOVA revealed that the dependent variable MSNA was not affected by the independent variables mean arterial BP (MAP) or HR (MAP: P = 0.006; HR: P = 0.003). Baroreflex sensitivity at baroreflex challenge was not altered. GHRH-mediated GH release is associated with a significant sympathoactivation at central nervous sites superordinate to the simple baroreflex feedback loop because GH induced a baroreflex resetting without altering baroreflex sensitivity.
Subject(s)
Growth Hormone-Releasing Hormone/pharmacology , Growth Hormone/metabolism , Sympathetic Nervous System/drug effects , Adult , Baroreflex , Blood Pressure , Dose-Response Relationship, Drug , Double-Blind Method , Humans , Male , Nitroglycerin/administration & dosage , Nitroglycerin/pharmacology , Phenylephrine/administration & dosage , Phenylephrine/pharmacology , Sympathomimetics/administration & dosage , Sympathomimetics/pharmacology , Vasodilator Agents/administration & dosage , Vasodilator Agents/pharmacology , Young AdultABSTRACT
OBJECTIVE: Some features of subjects with Prader-Willi syndrome (PWS) resemble those seen in growth hormone deficiency (GHD). Children with PWS are treated with growth hormone (GH), which has substantially changed their phenotype. Currently, young adults with PWS must discontinue GH after attainment of adult height when they do not fulfil the criteria of adult GHD. Limited information is available about the prevalence of GHD in adults with PWS. This study aimed to investigate the GH/insulin-like growth factor (IGF-I) axis and the prevalence of GHD in previously GH-treated young adults with PWS. DESIGN: Cross-sectional study in 60 young adults with PWS. MEASUREMENTS: Serum IGF-I and IGFBP-3 levels, GH peak during combined growth hormone-releasing hormone (GHRH)-arginine stimulation test. RESULTS: Serum IGF-I was <-2 standard deviation scores (SDS) in 2 (3%) patients, and IGFBP-3 was within the normal range in all but one patient. Median (IQR) GH peak was 17.8 µg/L (12.2; 29.7) [~53.4 mU/L] and below 9 µg/L in 9 (15%) patients. Not one patient fulfilled the criteria for adult GHD (GH peak < 9 µg/L and IGF-I < -2 SDS), also when BMI-dependent criteria were used. A higher BMI and a higher fat mass percentage were significantly associated with a lower GH peak. There was no significant difference in GH peak between patients with a deletion or a maternal uniparental disomy (mUPD). CONCLUSIONS: In a large group of previously GH-treated young adults with PWS, approximately 1 in 7 exhibited a GH peak <9 µg/L during a GHRH-arginine test. However, none of the patients fulfilled the consensus criteria for adult GHD.
Subject(s)
Dwarfism, Pituitary/blood , Dwarfism, Pituitary/epidemiology , Growth Hormone/therapeutic use , Prader-Willi Syndrome/blood , Prader-Willi Syndrome/drug therapy , Adult , Body Mass Index , Cross-Sectional Studies , Dwarfism, Pituitary/etiology , Female , Growth Hormone/adverse effects , Human Growth Hormone/blood , Humans , Insulin-Like Growth Factor Binding Protein 3/blood , Insulin-Like Growth Factor I/metabolism , Male , Prevalence , Young AdultABSTRACT
Growth hormone (GH) and GH-releasing hormone (GHRH), in addition to metabolic and endocrine effects, play a role in the modulation of pain and inflammation. We aimed to elucidate the consequences of GHRH deficiency on acute nociceptive stimulation and on both acute and chronic inflammatory stimuli in a mouse model of GH deficiency. Mice with generalized ablation of the GHRH gene (GHRH knock out, GHRHKO, -/-) were compared to wild type (GHRH +/+) mice. Responsiveness to acute nociceptive stimulation and to acute inflammatory stimulation was evaluated by conventional hot plate apparatus and formalin test, respectively. We also evaluated responsiveness to colonic inflammation induced both in vivo, after dextran sodium sulfate (DSS) treatment, or ex vivo, by incubating colon segments with bacterial lipopolysaccaride (LPS). Macroscopical and histological examinations were performed, prostaglandin (PG) E2 and 8-iso-PGF2α levels and cyclooxigenase (COX)-2 and tumor necrosis factor (TNF)-α gene expression were measured. Compared to controls, -/- mice showed decreased response latency during the hot plate test, and increased licking/biting time in formalin test, particularly in the second phase of inflammation. DSS treated -/- mice showed a significant increase of colonic inflammation compared to controls. Moreover DSS treatment increased PGE2 and 8-iso-PGF2α levels, along with COX-2 and TNF-α gene expression more markedly in colon specimens of -/- mice compared to controls. LPS-induced PGE2 and 8-iso-PGF2α production from colonic segments incubated ex vivo was also increased in -/- mice. Generalized GHRH gene ablation increases sensitivity to thermal pain and both acute and persistent inflammatory stimuli in male mice.