Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 283
Filter
Add more filters

Publication year range
1.
J Virol ; : e0068024, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158347

ABSTRACT

Betacoronaviruses encode a conserved accessory gene within the +1 open reading frame (ORF) of nucleocapsid called the internal N gene. This gene is referred to as "I" for mouse hepatitis virus (MHV), ORF9b for severe acute respiratory CoV (SARS-CoV) and SARS-CoV-2, and ORF8b for Middle East respiratory syndrome CoV (MERS-CoV). Previous studies have shown ORF8b and ORF9b have immunoevasive properties, while the only known information for MHV I is its localization within the virion of the hepatotropic/neurotropic A59 strain of MHV. Whether MHV I is an innate immune antagonist or has other functions has not been evaluated. In this report, we show that the I protein of the neurotropic JHM strain of MHV (JHMV) lacks a N terminal domain present in other MHV strains, has immunoevasive properties, and is a component of the virion. Genetic deletion of JHMV I (rJHMVIΔ57-137) resulted in a highly attenuated virus both in vitro and in vivo that displayed a post RNA replication/transcription defect that ultimately resulted in fewer infectious virions packaged compared with wild-type virus. This phenotype was only seen for rJHMVIΔ57-137, suggesting the structural changes predicted for A59 I altered its function, as genetic deletion of A59 I did not change viral replication or pathogenicity. Together, these data show that JHMV I both acts as a mild innate immune antagonist and aids in viral assembly and infectious virus production, and suggest that the internal N proteins from different betacoronaviruses have both common and virus strain-specific properties.IMPORTANCECoV accessory genes are largely studied in overexpression assays and have been identified as innate immune antagonists. However, functions identified after overexpression are often not confirmed in the infected animal host. Furthermore, some accessory proteins are components of the CoV virion, but their role in viral replication and release remains unclear. Here, we utilized reverse genetics to abrogate expression of a conserved CoV accessory gene, the internal N ("I") gene, of the neurotropic JHMV strain of MHV and found that loss of the I gene resulted in a post replication defect that reduced virion assembly and ultimately infectious virus production, while also increasing some inflammatory molecule expression. Thus, the JHMV I protein has roles in virion assembly that were previously underappreciated and in immunoevasion.

2.
Am J Physiol Lung Cell Mol Physiol ; 327(2): L232-L249, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38860845

ABSTRACT

COVID-19 syndrome is characterized by acute lung injury, hypoxemic respiratory failure, and high mortality. Alveolar type 2 (AT2) cells are essential for gas exchange, repair, and regeneration of distal lung epithelium. We have shown that the causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and other members of the ß-coronavirus genus induce an endoplasmic reticulum (ER) stress response in vitro; however, the consequences for host AT2 cell function in vivo are less understood. To study this, two murine models of coronavirus infection were used-mouse hepatitis virus-1 (MHV-1) in A/J mice and a mouse-adapted SARS-CoV-2 strain. MHV-1-infected mice exhibited dose-dependent weight loss with histological evidence of distal lung injury accompanied by elevated bronchoalveolar lavage fluid (BALF) cell counts and total protein. AT2 cells showed evidence of both viral infection and increased BIP/GRP78 expression, consistent with activation of the unfolded protein response (UPR). The AT2 UPR included increased inositol-requiring enzyme 1α (IRE1α) signaling and a biphasic response in PKR-like ER kinase (PERK) signaling accompanied by marked reductions in AT2 and BALF surfactant protein (SP-B and SP-C) content, increases in surfactant surface tension, and emergence of a reprogrammed epithelial cell population (Krt8+ and Cldn4+). The loss of a homeostatic AT2 cell state was attenuated by treatment with the IRE1α inhibitor OPK-711. As a proof-of-concept, C57BL6 mice infected with mouse-adapted SARS-CoV-2 demonstrated similar lung injury and evidence of disrupted surfactant homeostasis. We conclude that lung injury from ß-coronavirus infection results from an aberrant host response, activating multiple AT2 UPR stress pathways, altering surfactant metabolism/function, and changing AT2 cell state, offering a mechanistic link between SARS-CoV-2 infection, AT2 cell biology, and acute respiratory failure.NEW & NOTEWORTHY COVID-19 syndrome is characterized by hypoxemic respiratory failure and high mortality. In this report, we use two murine models to show that ß-coronavirus infection produces acute lung injury, which results from an aberrant host response, activating multiple epithelial endoplasmic reticular stress pathways, disrupting pulmonary surfactant metabolism and function, and forcing emergence of an aberrant epithelial transition state. Our results offer a mechanistic link between SARS-CoV-2 infection, AT2 cell biology, and respiratory failure.


Subject(s)
COVID-19 , Endoplasmic Reticulum Stress , Endoribonucleases , Homeostasis , Murine hepatitis virus , SARS-CoV-2 , Animals , Mice , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , COVID-19/complications , Murine hepatitis virus/pathogenicity , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Alveolar Epithelial Cells/pathology , Endoplasmic Reticulum Chaperone BiP , Coronavirus Infections/metabolism , Coronavirus Infections/pathology , Coronavirus Infections/virology , Coronavirus Infections/complications , Pulmonary Surfactants/metabolism , Unfolded Protein Response , Betacoronavirus , Respiratory Insufficiency/metabolism , Respiratory Insufficiency/virology , Respiratory Insufficiency/pathology , Disease Models, Animal , eIF-2 Kinase/metabolism , Humans
3.
J Med Virol ; 96(4): e29587, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38587204

ABSTRACT

Obesity has been identified as an independent risk factor for severe outcomes in humans with coronavirus disease 2019 (COVID-19) and other infectious diseases. Here, we established a mouse model of COVID-19 using the murine betacoronavirus, mouse hepatitis virus 1 (MHV-1). C57BL/6 and C3H/HeJ mice exposed to MHV-1 developed mild and severe disease, respectively. Obese C57BL/6 mice developed clinical manifestations similar to those of lean controls. In contrast, all obese C3H/HeJ mice succumbed by 8 days postinfection, compared to a 50% mortality rate in lean controls. Notably, both lean and obese C3H/HeJ mice exposed to MHV-1 developed lung lesions consistent with severe human COVID-19, with marked evidence of diffuse alveolar damage (DAD). To identify early predictive biomarkers of worsened disease outcomes in obese C3H/HeJ mice, we sequenced RNA from whole blood 2 days postinfection and assessed changes in gene and pathway expression. Many pathways uniquely altered in obese C3H/HeJ mice postinfection aligned with those found in humans with severe COVID-19. Furthermore, we observed altered gene expression related to the unfolded protein response and lipid metabolism in infected obese mice compared to their lean counterparts, suggesting a role in the severity of disease outcomes. This study presents a novel model for studying COVID-19 and elucidating the mechanisms underlying severe disease outcomes in obese and other hosts.


Subject(s)
COVID-19 , Murine hepatitis virus , Humans , Mice , Animals , Mice, Inbred C57BL , Mice, Inbred C3H , Murine hepatitis virus/genetics , COVID-19/complications , Obesity/complications , Gene Expression Profiling
4.
J Neurovirol ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922550

ABSTRACT

The cellular prion protein (PrPC) is an extracellular cell membrane protein. Due to its diversified roles, a definite role of PrPC has been difficult to establish. During viral infection, PrPC has been reported to play a pleiotropic role. Here, we have attempted to envision the function of PrPC in the neurotropic m-CoV-MHV-RSA59-induced model of neuroinflammation in C57BL/6 mice. A significant upregulation of PrPC at protein and mRNA levels was evident in infected mouse brains during the acute phase of neuroinflammation. Furthermore, investigation of the effect of MHV-RSA59 infection on PrPC expression in specific neuronal, microglial, and astrocytoma cell lines, revealed a differential expression of prion protein during neuroinflammation. Additionally, siRNA-mediated downregulation of prnp transcripts reduced the expression of viral antigen and viral infectivity in these cell lines. Cumulatively, our results suggest that PrPC expression significantly increases during acute MHV-RSA59 infection and that PrPC also assists in viral infectivity and viral replication.

5.
Microb Pathog ; 193: 106776, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960214

ABSTRACT

Murine hepatitis virus (MHV) infection is one of the most prevalent types of mice infection in laboratory. MHV could cause death in mice and even interfere with the results in animal experiments. Herein, we developed two isothermal approaches based on the Multienzyme Isothermal Rapid Amplification (MIRA), for rapid detection of MHV in conserved M gene. We designed and screened several pairs of primers and probes and the isothermal fluorescence detector was applied for the exonuclease Ⅲ reverse transcription MIRA (exo-RT-MIRA) assay. To further simplify the workflow, the portable fluorescence visualization instrument, also as a palm-sized handheld system, was used for the naked-eye exo-RT-MIRA assay. The amplification temperature and time were optimized. The assay could be processed well at 42 °C 20 min for the exo-RT-MIRA and the naked-eye exo-RT-MIRA assay. The limit of detection (LoD) of the exo-RT-MIRA assay was 43.4 copies/µL. The LoD of the naked-eye exo-RT-MIRA assay was 68.2 copies/µL. No nonspecific amplifications were observed in the two assays. A total of 107 specimens were examined by qPCR and two assays developed. The experimental results statistical analysis demonstrated that the exo-RT-MIRA assay with the qPCR yielded sufficient agreement with a kappa value of 1.000 (p < 0.0001). The results also exhibited a good agreement (kappa value, 0.961) (p < 0.0001) between the naked-eye exo-RT-MIRA assay and the qPCR assay. In our study, the exo-RT-MIRA assay and the naked-eye exo-RT-MIRA assay presented the possibility of new methods in MHV point-of-testing diagnosis.


Subject(s)
Limit of Detection , Molecular Diagnostic Techniques , Murine hepatitis virus , Nucleic Acid Amplification Techniques , Sensitivity and Specificity , Animals , Nucleic Acid Amplification Techniques/methods , Mice , Murine hepatitis virus/genetics , Murine hepatitis virus/isolation & purification , Molecular Diagnostic Techniques/methods , DNA Primers/genetics , Temperature , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Hepatitis, Viral, Animal/diagnosis , Hepatitis, Viral, Animal/virology , Fluorescence , RNA, Viral/genetics
6.
Public Health ; 226: 114-121, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056398

ABSTRACT

OBJECTIVES: Periodontitis and hepatitis virus infection significantly impact individuals' well-being and are prevalent public health concerns globally. Given the current scarcity of large-scale cross-sectional epidemiological studies, this study seeks to enrich the evidence base by examining the link between these two conditions. STUDY DESIGN AND METHODS: A cross-sectional study was conducted using data from the National Health and Nutrition Examination Survey (NHANES) spanning the years 2003-2018. A multivariate logistic regression analysis was performed to assess the association between periodontitis and hepatitis virus infection, adjusting for the potential confounding factors. Subsequently, a stratified analysis was conducted to explore the relationship between periodontitis and hepatitis virus infection based on age, gender, race, marital status, alcohol consumption, smoking status, and the presence of chronic diseases. RESULTS: In this study, which included 5755 participants, there was a positive association between hepatitis virus infection and periodontitis (odds ratio [OR]: 2.609 [95% confidence interval (CI): 1.513, 4.499]). Furthermore, a significant association was observed between moderate periodontitis and hepatitis virus infection (OR: 2.136 [95% CI: 1.194, 3.822]), and this association was even stronger for severe periodontitis (OR: 3.583 [95% CI: 1.779, 7.217]). Importantly, this positive association between hepatitis virus infection and periodontitis was consistent across different subgroups. CONCLUSIONS: This study presents evidence of a significant association between periodontitis and hepatitis virus infection. These findings highlight the crucial importance of integrating periodontal health and liver health considerations into public health interventions. Further research is necessary to elucidate the underlying mechanisms and develop targeted interventions for effectively managing periodontitis and hepatitis virus infection.


Subject(s)
Hepatitis , Periodontitis , Virus Diseases , Humans , Cross-Sectional Studies , Nutrition Surveys , Periodontitis/epidemiology , Periodontitis/complications , Hepatitis/complications
7.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(1): 64-72, 2024 Jan 19.
Article in English, Zh | MEDLINE | ID: mdl-38426692

ABSTRACT

Hepatocellular carcinoma (HCC) is a serious neoplastic disease with increasing incidence and mortality, accounting for 90% of all liver cancers. Hepatitis viruses are the major causative agents in the development of HCC. Hepatitis A virus (HAV) primarily causes acute infections, which is associated with HCC to a certain extent, as shown by clinicopathological studies. Chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infections lead to persistent liver inflammation and cirrhosis, disrupt multiple pathways associated with cellular apoptosis and proliferation, and are the most common viral precursors of HCC. Mutations in the HBV X protein (HBx) gene are closely associated with the incidence of HCC, while the expression of HCV core proteins contributes to hepatocellular lipid accumulation, thereby promoting tumorigenesis. In the clinical setting, hepatitis D virus (HDV) frequently co-infects with HBV, increasing the risk of chronic hepatitis. Hepatitis E virus (HEV) usually causes acute infections. However, chronic infections of HEV have been increasing recently, particularly in immuno-compromised patients and organ transplant recipients, which may increase the risk of progression to cirrhosis and the occurrence of HCC. Early detection, effective intervention and vaccination against these viruses may significantly reduce the incidence of liver cancer, while mechanistic insights into the interplay between hepatitis viruses and HCC may facilitate the development of more effective intervention strategies. This article provides a comprehensive overview of hepatitis viruses and reviews recent advances in research on aberrant hepatic immune responses and the pathogenesis of HCC due to viral infection.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B, Chronic , Hepatitis B , Hepatitis C , Hepatitis, Viral, Human , Liver Neoplasms , Humans , Liver Neoplasms/genetics , Hepatitis B, Chronic/complications , Hepatitis B/complications , Hepatitis, Viral, Human/complications , Hepatitis C/complications , Liver Cirrhosis/complications
8.
J Med Virol ; 95(7): e28943, 2023 07.
Article in English | MEDLINE | ID: mdl-37436779

ABSTRACT

A proportion of chronic hepatitis B virus (HBV) carriers with normal alanine transaminase (ALT) present with significant liver histological changes (SLHC). To construct a noninvasive nomogram model to identify SLHC in chronic HBV carriers with different upper limits of normal (ULNs) for ALT. The training cohort consisted of 732 chronic HBV carriers who were stratified into four sets according to different ULNs for ALT: chronic HBV carriers I, II, III, and IV. The external validation cohort comprised 277 chronic HBV carriers. Logistic regression and least absolute shrinkage and selection operator analyses were applied to develop a nomogram model to predict SLHC. A nomogram model-HBGP (based on hepatitis B surface antigen, gamma-glutamyl transpeptidase, and platelet count) demonstrated good performance in diagnosing SLHC with area under the curve (AUCs) of 0.866 (95% confidence interval [CI]: 0.839-0.892) and 0.885 (95% CI: 0.845-0.925) in the training and validation cohorts, respectively. Furthermore, HBGP displayed high diagnostic values for SLHC with AUCs of 0.866 (95% CI: 0.839-0.892), 0.868 (95% CI: 0.838-0.898), 0.865 (95% CI: 0.828-0.901), and 0.853 (95% CI: 0.798-0.908) in chronic HBV carriers I, II, III, and IV, respectively. Additionally, HBGP showed greater ability in predicting SLHC compared with the existing predictors. HBGP has shown high predictive performance for SLHC, and thus may lead to an informed decision on the initiation of antiviral treatment.


Subject(s)
Hepatitis B, Chronic , Humans , Hepatitis B, Chronic/diagnosis , Hepatitis B, Chronic/pathology , Nomograms , Hepatitis B virus/genetics , Liver Cirrhosis/diagnosis , Alanine Transaminase , DNA, Viral , Hepatitis B e Antigens
9.
J Med Virol ; 95(9): e29084, 2023 09.
Article in English | MEDLINE | ID: mdl-37721443

ABSTRACT

Hepatocellular carcinoma (HCC) accounts for 80% of liver cancers, while 70%-80% of HCC developed from chronic liver disease with hepatitis B virus (HBV) and hepatitis C virus (HCV) infection as the major etiology. Immunotherapy is assuming a role as a pillar of HCC treatment, but the remarkable immune-mediated responses are restricted in a minority of patients. Nucleic acid sensing (NAS) pathways are the central pathway of the innate immune system and antiviral immune response to viral infection, but their role in hepatitis virus-related HCC remains undetermined. In our study, we performed a comprehensive bioinformatics analysis based on transcriptomic data of hepatitis virus related-HCC tissues collected from multiple public data sets. Two subgroups were validated based on NAS-related genes in virus-related HCC patients, which were defined as NAS-activated subgroups and NAS-suppressed subgroups based on the expression of NAS-related genes. On this basis, a NAS-related risk score (NASRS) predictive model was established for risk stratification and prognosis prediction in the hepatitis virus-related HCC (TCGA-LIHC and ICGC cohorts). The predictive values of the NASRS in prognosis and immunotherapy were also verified in multiple data sets. A nomogram was also established to facilitate the clinical use of NASRS and demonstrate its effectiveness through different approaches. Additionally, six potential drugs binding to the core target of the NAS signature were predicted via molecular docking strategy. We subsequently evaluated the cytotoxic capabilities of potential drug in vitro and in vivo. Based on these results, we conclude that the NASRS model could serve as a power prognostic biomarker and predict responses to immunotherapy, which is meaningful in clinical decision-making of hepatitis virus-related HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis A , Hepatitis C , Liver Neoplasms , Virus Diseases , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Molecular Docking Simulation , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Immunotherapy , Hepacivirus
10.
Virol J ; 20(1): 51, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36966345

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is characterized by neuroinflammation and demyelination orchestrated by activated neuroglial cells, CNS infiltrating leukocytes, and their reciprocal interactions through inflammatory signals. An inflammatory stimulus triggers inducible nitric oxide synthase (NOS2), a pro-inflammatory marker of microglia/macrophages (MG/Mφ) to catalyze sustained nitric oxide production. NOS2 during neuroinflammation, has been associated with MS disease pathology; however, studies dissecting its role in demyelination are limited. We studied the role of NOS2 in a recombinant ß-coronavirus-MHV-RSA59 induced neuroinflammation, an experimental animal model mimicking the pathological hallmarks of MS: neuroinflammatory demyelination and axonal degeneration. OBJECTIVE: Understanding the role of NOS2 in murine-ß-coronavirus-MHV-RSA59 demyelination. METHODS: Brain and spinal cords from mock and RSA59 infected 4-5-week-old MHV-free C57BL/6 mice (WT) and NOS2-/- mice were harvested at different disease phases post infection (p.i.) (day 5/6-acute, day 9/10-acute-adaptive and day 30-chronic phase) and compared for pathological outcomes. RESULTS: NOS2 was upregulated at the acute phase of RSA59-induced disease in WT mice and its deficiency resulted in severe disease and reduced survival at the acute-adaptive transition phase. Low survival in NOS2-/- mice was attributed to (i) high neuroinflammation resulting from increased accumulation of macrophages and neutrophils and (ii) Iba1 + phagocytic MG/Mφ mediated-early demyelination as observed at this phase. The phagocytic phenotype of CNS MG/Mφ was confirmed by significantly higher mRNA transcripts of phagocyte markers-CD206, TREM2, and Arg1 and double immunolabelling of Iba1 with MBP and PLP. Further, NOS2 deficiency led to exacerbated demyelination at the chronic phase as well. CONCLUSION: Taken together the results imply that the immune system failed to control the disease progression in the absence of NOS2. Thus, our observations highlight a protective role of NOS2 in murine-ß-coronavirus induced demyelination.


Subject(s)
Coronavirus Infections , Demyelinating Diseases , Murine hepatitis virus , Nitric Oxide Synthase Type II , Animals , Mice , Demyelinating Diseases/pathology , Demyelinating Diseases/virology , Membrane Glycoproteins , Mice, Inbred C57BL , Murine hepatitis virus/metabolism , Neuroinflammatory Diseases , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Receptors, Immunologic , Coronavirus Infections/pathology
11.
Cell Commun Signal ; 21(1): 318, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37946175

ABSTRACT

According to a paper released and submitted to WHO by IARC scientists, there would be 905,700 new cases of liver cancer diagnosed globally in 2020, with 830,200 deaths expected as a direct result. Hepatitis B virus (HBV) hepatitis C virus (HCV), and hepatitis D virus (HDV) all play critical roles in the pathogenesis of hepatocellular carcinoma (HCC), despite the rising prevalence of HCC due to non-infectious causes. Liver cirrhosis and HCC are devastating consequences of HBV and HCV infections, which are widespread worldwide. Associated with a high mortality rate, these infections cause about 1.3 million deaths annually and are the primary cause of HCC globally. In addition to causing insertional mutations due to viral gene integration, epigenetic alterations and inducing chronic immunological dysfunction are all methods by which these viruses turn hepatocytes into cancerous ones. While expanding our knowledge of the illness, identifying these pathways also give possibilities for novel diagnostic and treatment methods. Nuclear factor erythroid 2-related factor 2 (NRF2) activation is gaining popularity as a treatment option for oxidative stress (OS), inflammation, and metabolic abnormalities. Numerous studies have shown that elevated Nrf2 expression is linked to HCC, providing more evidence that Nrf2 is a critical factor in HCC. This aberrant Nrf2 signaling drives cell proliferation, initiates angiogenesis and invasion, and imparts drug resistance. As a result, this master regulator may be a promising treatment target for HCC. In addition, the activation of Nrf2 is a common viral effect that contributes to the pathogenesis, development, and chronicity of virus infection. However, certain viruses suppress Nrf2 activity, which is helpful to the virus in maintaining cellular homeostasis. In this paper, we discussed the influence of Nrf2 deregulation on the viral life cycle and the pathogenesis associated with HBV and HCV. We summed up the mechanisms for the modulation of Nrf2 that are deregulated by these viruses. Moreover, we describe the molecular mechanism by which Nrf2 is modulated in liver cancer, liver cancer stem cells (LCSCs), and liver cancer caused by HBV and HCV. Video Abstract.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C , Liver Neoplasms , Humans , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/pathology , NF-E2-Related Factor 2 , Hepatitis C/complications , Hepatitis C/pathology , Hepatitis Viruses
12.
BMC Infect Dis ; 23(1): 404, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37312028

ABSTRACT

BACKGROUND: Sanitation or sanitary workers are exposed to hepatitis virus infections because of filthy and dangerous working conditions. The current global systematic review and meta-analysis aimed to estimate the pooled sero-prevalence of occupationally associated hepatitis virus infection among them. METHODS: Preferred Reporting Items for Systematic Reviews (PRISMA), and Population, Intervention, Comparison, Outcome and study design (PICOS) were used for flow diagram, and review questions, respectively. Four databases other methods were used published articles from 2000 to 2022. Boolean logic (AND, OR), MeSH, and keywords were used: (Occupation *OR Job *OR Work) AND (Hepatitis A *OR Hepatitis B virus *OR Hepatitis C virus *OR Hepatitis E virus) AND (Solid waste collectors [SWCs] *OR Street sweepers [SS] *OR Sewage workers [STWs] *OR health care facilities cleaners [HCFCs)) AND (Countries). Stata MP/17 software was used for pooled prevalence analysis, meta-regression analysis (Hedges) at a 95% confidence interval (CI:95%). RESULTS: A total of 182 studies were identified studies, a total of 28 studies were included from twelve countries. Of these, from developed (n = 7) and developing countries (n = 5). From total a of 9049 sanitary workers, 5951(66%), 2280 (25%) and 818 (9%) were STWs, SWCs and SS, respectively. Globally, the pooled sero-prevalence of occupational-related hepatitis viral infections among sanitary workers was 38.06% (95% CI: 30-0.46.12). Of this, it was 42.96% (95% CI: 32.63-53.29) and 29.81% (95% CI: 17.59-42.02) for high-income and low-income countries, respectively. Meanwhile, by sub-analysis, the highest pooled sero-prevalence of hepatitis viral infections by categories, type and year were 47.66% (95%CI: 37.42-57.90), 48.45% (95% CI: 37.95-58.96), and 48.30% (95% CI: 36.13-60.47) for SWTs, HAV, and 2000 to 2010 year, respectively. CONCLUSION: The consistency of the evidence suggests that sanitation workers, particularly sewage workers, are susceptible to occupationally acquired hepatitis regardless of their working conditions, necessitating significant changes to occupational health and safety regulations from governmental policies and other initiatives to reduce risks among sanitary workers.


Subject(s)
Hepatitis A , Sewage , Humans , Prevalence , Hepatitis Viruses , Hepacivirus
13.
Environ Sci Technol ; 57(50): 21395-21404, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38062652

ABSTRACT

Enveloped virus fate in the environment is not well understood; there are no quantitative data on sunlight inactivation of enveloped viruses in water. Herein, we measured the sunlight inactivation of two enveloped viruses (Phi6 and murine hepatitis virus, MHV) and a nonenveloped virus (MS2) over time in clear water with simulated sunlight exposure. We attenuated UV sunlight wavelengths using long-pass 50% cutoff filters at 280, 305, and 320 nm. With the lowest UV attenuation tested, all decay rate constants (corrected for UV light screening, k̂) were significantly different from dark controls; the MS2 k̂ was equal to 4.5 m2/MJ, compared to 16 m2/MJ for Phi6 and 52 m2/MJ for MHV. With the highest UV attenuation tested, only k̂ for MHV (6.1 m2/MJ) was different from the dark control. Results indicate that the two enveloped viruses decay faster than the nonenveloped virus studied, and k̂ are significantly impacted by UV attenuation. Differences in k̂ may be due to the presence of viral envelopes but may also be related to other differing intrinsic properties of the viruses, including genome length and composition. Reported k̂ values can inform strategies to reduce the risk from exposure to enveloped viruses in the environment.


Subject(s)
Viruses , Water , Mice , Animals , Sunlight , Ultraviolet Rays , Water Microbiology , Virus Inactivation
14.
Int J Mol Sci ; 24(19)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37834296

ABSTRACT

Hepatitis B virus (HBV) remains a dominant cause of hepatocellular carcinoma (HCC). Recently, it was shown that HBV and woodchuck hepatitis virus (WHV) integrate into the hepatocyte genome minutes after invasion. Retrotransposons and transposable sequences were frequent sites of the initial insertions, suggesting a mechanism for spontaneous HBV DNA dispersal throughout the hepatocyte genome. Several somatic genes were also identified as early insertional targets in infected hepatocytes and woodchuck livers. Head-to-tail joints (HTJs) dominated amongst fusions, indicating their creation by non-homologous end-joining (NHEJ). Their formation coincided with the robust oxidative damage of hepatocyte DNA. This was associated with the activation of poly(ADP-ribose) polymerase 1 (PARP1)-mediated dsDNA repair, as reflected by the augmented transcription of PARP1 and XRCC1; the PARP1 binding partner OGG1, a responder to oxidative DNA damage; and increased activity of NAD+, a marker of PARP1 activation, and HO1, an indicator of cell oxidative stress. The engagement of the PARP1-mediated NHEJ repair pathway explains the HTJ format of the initial merges. The findings show that HBV and WHV are immediate inducers of oxidative DNA damage and hijack dsDNA repair to integrate into the hepatocyte genome, and through this mechanism, they may initiate pro-oncogenic processes. Tracking initial integrations may uncover early markers of HCC and help to explain HBV-associated oncogenesis.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B , Liver Neoplasms , Humans , Hepatitis B virus/genetics , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Hepatocytes , Cell Transformation, Neoplastic , Carcinogenesis/genetics , Genomics , DNA, Viral/genetics , Hepatitis B/complications , Hepatitis B/genetics , X-ray Repair Cross Complementing Protein 1
15.
Molecules ; 28(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36770747

ABSTRACT

Theacrine and strictinin of Yunnan Kucha tea prepared from a mutant variety of wild Pu'er tea plants were two major ingredients responsible for the anti-influenza activity. As the COVID-19 outbreak is still lurking, developing safe and cost-effective therapeutics is an urgent need. This study aimed to evaluate the effects of these tea compounds on the infection of mouse hepatitis virus (MHV), a ß-coronavirus serving as a surrogate for SARS-CoV. Treatment with strictinin (100 µM), but not theacrine, completely eliminated MHV infection, as indicated by a pronounced reduction in plaque formation, nucleocapsid protein expression, and progeny production of MHV. Subsequently, a time-of-drug addition protocol, including pre-, co-, or post-treatment, was exploited to further evaluate the possible mechanism of antiviral activity mediated by strictinin, and remdesivir, a potential drug for the treatment of SARS-CoV-2, was used as a positive control against MHV infection. The results showed that all three treatments of remdesivir (20 µM) completely blocked MHV infection. In contrast, no significant effect on MHV infection was observed when cells were pre-treated with strictinin (100 µM) prior to infection, while significant inhibition of MHV infection was observed when strictinin was introduced upon viral adsorption (co-treatment) and after viral entry (post-treatment). Of note, as compared with the co-treatment group, the inhibitory effect of strictinin was more striking in the post-treatment group. These results indicate that strictinin suppresses MHV infection by multiple mechanisms; it possibly interferes with viral entry and also critical step(s) of viral infection. Evidently, strictinin significantly inhibited MHV infection and might be a suitable ingredient for protection against coronavirus infection.


Subject(s)
COVID-19 , Murine hepatitis virus , Mice , Animals , Murine hepatitis virus/metabolism , L Cells , SARS-CoV-2 , China , Tea/metabolism
16.
Compr Rev Food Sci Food Saf ; 22(4): 3395-3421, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37288815

ABSTRACT

Various foodborne viruses have been associated with human health during the last decade, causing gastroenteritis and a huge economic burden worldwide. Furthermore, the emergence of new variants of infectious viruses is growing continuously. Inactivation of foodborne viruses in the food industry is a formidable task because although viruses cannot grow in foods, they can survive in the food matrix during food processing and storage environments. Conventional inactivation methods pose various drawbacks, necessitating more effective and environmentally friendly techniques for controlling foodborne viruses during food production and processing. Various inactivation approaches for controlling foodborne viruses have been attempted in the food industry. However, some traditionally used techniques, such as disinfectant-based or heat treatment, are not always efficient. Nonthermal techniques are considered a new platform for effective and safe treatment to inactivate foodborne viruses. This review focuses on foodborne viruses commonly associated with human gastroenteritis, including newly emerged viruses, such as sapovirus and Aichi virus. It also investigates the use of chemical and nonthermal physical treatments as effective technologies to inactivate foodborne viruses.


Subject(s)
Gastroenteritis , Viruses , Humans , Food Contamination/analysis , Food Microbiology , Food
17.
Zhonghua Gan Zang Bing Za Zhi ; 31(5): 545-550, 2023 May 20.
Article in Zh | MEDLINE | ID: mdl-37365034

ABSTRACT

The resolution of the hepatitis C issue has raised expectations for a chronic hepatitis B cure, driving the industry to expand investment in research and development efforts to strengthen functional cure strategies. These strategies have a wide variety of types, and the published research findings are heterogeneous. The theoretical analysis of these strategies is of great significance for determining prioritized research orientations as well as sensibly allocating research and development resources. However, due to a paucity of necessary conceptual models, current theoretical analysis has not been able to unify various therapeutic strategies into a proper theoretical framework. In view of the fact that the decrease in the quantity of cccDNA is an inevitable core event accompanied by the process of functional cure, this paper intends to analyze several chronic hepatitis B cure strategies using cccDNA dynamics as a framework. Furthermore, there are currently few studies on the dynamics of the cccDNA field, hoping that this article can promote recognition and research in this field.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Humans , Hepatitis B virus/genetics , Hepatitis B, Chronic/drug therapy , Antiviral Agents/therapeutic use , Virus Replication , DNA, Circular/therapeutic use , DNA, Viral/genetics , Hepatitis B/drug therapy
18.
Int J Cancer ; 151(4): 510-517, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35429352

ABSTRACT

We analyzed long-term incidence trends in liver cancer (including hepatocellular carcinoma and intrahepatic cholangiocarcinoma) with an aim to interpret the changes in terms of known risk factors and hypothesize that historical exposure to Thorotrast, a radiographic contrast medium emitting alpha particles, has changed population rates. The NORDCAN database was used to collect cancer registry data from Denmark (DK), Finland (FI), Norway (NO) and Sweden (SE), which we used from 1953 (DK, FI and NO) and 1960 (SE) through 2019. Thorotrast, which caused a 100-fold risk of liver cancer was used in DK and SE, and probably also in FI between 1930 and 1950, but not in NO. The incidence trend for liver cancer showed a broad maximum at around 1980, most prominent and statistically significant in SE and DK men and women, and in all countries, a steadily increasing trend towards the end of follow-up. Incidence for NO was lower than for the other countries and the rates showed no peaking at around 1980. Birth cohort analysis identified a transient risk which could be dated to a period between 1930 and 1950 in countries other than NO. Considering a lag time between Thorotrast use and liver cancer appearance, the large incidence peak around 1980 in DK and DE was probably contributed by Thorotrast but considering the ecological nature of the findings, the association should be considered cautiously as hypothesis generating. The late increase in liver cancer risk is most likely lifestyle related and largely preventable.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Liver Neoplasms , Thorium Dioxide , Bile Duct Neoplasms/epidemiology , Bile Ducts, Intrahepatic , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/epidemiology , Denmark/epidemiology , Female , Finland/epidemiology , Humans , Incidence , Liver Neoplasms/chemically induced , Liver Neoplasms/epidemiology , Male , Norway/epidemiology , Sweden/epidemiology , Thorium Dioxide/adverse effects
19.
Eur J Immunol ; 51(5): 1062-1070, 2021 05.
Article in English | MEDLINE | ID: mdl-33687066

ABSTRACT

Coronaviruses (CoVs) represent enveloped, ss RNA viruses with the ability to infect a range of vertebrates causing mainly lung, CNS, enteric, and hepatic disease. While the infection with human CoV is commonly associated with mild respiratory symptoms, the emergence of SARS-CoV, MERS-CoV, and SARS-CoV-2 highlights the potential for CoVs to cause severe respiratory and systemic disease. The devastating global health burden caused by SARS-CoV-2 has spawned countless studies seeking clinical correlates of disease severity and host susceptibility factors, revealing a complex network of antiviral immune circuits. The mouse hepatitis virus (MHV) is, like SARS-CoV-2, a beta-CoV and is endemic in wild mice. Laboratory MHV strains have been extensively studied to reveal coronavirus virulence factors and elucidate host mechanisms of antiviral immunity. These are reviewed here with the aim to identify translational insights for SARS-CoV-2 learned from murine CoVs.


Subject(s)
Adaptive Immunity/immunology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Murine hepatitis virus/immunology , Murine hepatitis virus/pathogenicity , Animals , Disease Models, Animal , Humans , Mice , Middle East Respiratory Syndrome Coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/immunology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/metabolism , Viral Tropism/physiology
20.
RNA ; 26(12): 1976-1999, 2020 12.
Article in English | MEDLINE | ID: mdl-32989044

ABSTRACT

Coronavirus EndoU inhibits dsRNA-activated antiviral responses; however, the physiologic RNA substrates of EndoU are unknown. In this study, we used mouse hepatitis virus (MHV)-infected bone marrow-derived macrophage (BMM) and cyclic phosphate cDNA sequencing to identify the RNA targets of EndoU. EndoU targeted viral RNA, cleaving the 3' side of pyrimidines with a strong preference for U ↓ A and C ↓ A sequences (endoY ↓ A). EndoU-dependent cleavage was detected in every region of MHV RNA, from the 5' NTR to the 3' NTR, including transcriptional regulatory sequences (TRS). Cleavage at two CA dinucleotides immediately adjacent to the MHV poly(A) tail suggests a mechanism to suppress negative-strand RNA synthesis and the accumulation of viral dsRNA. MHV with EndoU (EndoUmut) or 2'-5' phosphodiesterase (PDEmut) mutations provoked the activation of RNase L in BMM, with corresponding cleavage of RNAs by RNase L. The physiologic targets of EndoU are viral RNA templates required for negative-strand RNA synthesis and dsRNA accumulation. Coronavirus EndoU cleaves U ↓ A and C ↓ A sequences (endoY ↓ A) within viral (+) strand RNA to evade dsRNA-activated host responses.


Subject(s)
Murine hepatitis virus/enzymology , RNA/chemistry , Uridylate-Specific Endoribonucleases/metabolism , Viral Nonstructural Proteins/metabolism , Animals , Cells, Cultured , Macrophages/virology , Mice , Mice, Inbred C57BL , Mutation , Nucleotide Motifs , Protein Binding , RNA/metabolism , Uridylate-Specific Endoribonucleases/genetics , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL