Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
Add more filters

Publication year range
1.
Annu Rev Cell Dev Biol ; 38: 155-178, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35905769

ABSTRACT

Eukaryotic cells across the tree of life organize their subcellular components via intracellular transport mechanisms. In canonical transport, myosin, kinesin, and dynein motor proteins interact with cargos via adaptor proteins and move along filamentous actin or microtubule tracks. In contrast to this canonical mode, hitchhiking is a newly discovered mode of intracellular transport in which a cargo attaches itself to an already-motile cargo rather than directly associating with a motor protein itself. Many cargos including messenger RNAs, protein complexes, and organelles hitchhike on membrane-bound cargos. Hitchhiking-like behaviors have been shown to impact cellular processes including local protein translation, long-distance signaling, and organelle network reorganization. Here, we review instances of cargo hitchhiking in fungal, animal, and plant cells and discuss the potential cellular and evolutionary importance of hitchhiking in these different contexts.


Subject(s)
Dyneins , Kinesins , Actins/metabolism , Animals , Dyneins/genetics , Dyneins/metabolism , Kinesins/genetics , Microtubules/genetics , Microtubules/metabolism , Myosins/genetics , Myosins/metabolism , Plant Cells/metabolism
2.
Cell ; 175(5): 1430-1442.e17, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30454650

ABSTRACT

In eukaryotic cells, organelles and the cytoskeleton undergo highly dynamic yet organized interactions capable of orchestrating complex cellular functions. Visualizing these interactions requires noninvasive, long-duration imaging of the intracellular environment at high spatiotemporal resolution and low background. To achieve these normally opposing goals, we developed grazing incidence structured illumination microscopy (GI-SIM) that is capable of imaging dynamic events near the basal cell cortex at 97-nm resolution and 266 frames/s over thousands of time points. We employed multi-color GI-SIM to characterize the fast dynamic interactions of diverse organelles and the cytoskeleton, shedding new light on the complex behaviors of these structures. Precise measurements of microtubule growth or shrinkage events helped distinguish among models of microtubule dynamic instability. Analysis of endoplasmic reticulum (ER) interactions with other organelles or microtubules uncovered new ER remodeling mechanisms, such as hitchhiking of the ER on motile organelles. Finally, ER-mitochondria contact sites were found to promote both mitochondrial fission and fusion.


Subject(s)
Endoplasmic Reticulum/metabolism , Microtubules/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics , Animals , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , Humans , Microscopy, Fluorescence
3.
Small ; 20(13): e2304253, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37963821

ABSTRACT

Due to its tumor homing and long serum half-life, albumin is an ideal drug carrier for chemotherapy. For endogenous albumin hitchhiking with high cargo loading, a trimeric albumin-binding domain (ABD), i.e., ABD-Tri is designed by fusing an ABD with high specificity and affinity for albumin to a self-trimerizing domain (Tri) with an additional cysteine residue. ABD-Tri is highly (40 mg L-1) expressed as soluble and trimeric proteins in Escherichia coli (E. coli). Once mixed together, ABD-Tri rapidly and specifically forms a stable complex with albumin under physiological conditions without obviously changing its receptor- and cell-binding and tumor-homing properties. Maleimide-modified prodrugs are highly effectively conjugated to ABD-Tri to produce homogenous ABD-Tri-prodrugs with triple cargo loading under physiological conditions by thiol-maleimide click chemistry. Unlike the maleimide moiety, which can only mediate time- and concentration-dependent albumin binding, ABD-Tri mediated fast (within several minutes) albumin binding of drugs even at extremely low concentrations (µg mL-1). Compared to maleimide-modified prodrugs, ABD-Tri-prodrugs exhibit better tumor homing and greater in vivo antitumor effect, indicating that conjugation of chemical drug to ABD-Tri outperforms maleimide modification for endogenous albumin hitchhiking. The results demonstrate that ABD-Tri may serve as a novel platform to produce albumin-binding prodrugs with high cargo-loading capacity for tumor-targeted chemotherapy.


Subject(s)
Neoplasms , Prodrugs , Sulfhydryl Compounds , Humans , Prodrugs/chemistry , Serum Albumin , Escherichia coli/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Maleimides/chemistry
4.
J Evol Biol ; 37(3): 346-352, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38367184

ABSTRACT

Mutator alleles, which confer increased mutation rates, are known to spontaneously emerge and "hitchhike" to fixation in evolving asexual populations. Theory predicts that in an evolving asexual mutator population, a second mutator allele may spontaneously arise and hitchhike to fixation. Here, we describe an empirical test of the hypothesis of repeated hitchhiking. The starting population was a clonal strain of mutL-Escherichia coli whose mutation rate was 100-fold higher than wild type. We exposed the mutL- strain to a series of three antibiotics in increasing order of selective strength: fosfomycin, rifampicin, and streptomycin. Two independent replicates of the experiment were performed. As predicted, elevated mutation rates and enrichment for multilocus mutators (which bear more than one mutator allele) were observed in the end point populations of both experiments. DNA sequencing revealed an identical spontaneous 1-bp insertion in the mutator gene mutT in both end point populations. In the multilocus mutators, the causal relationship between the mutT- mutations and the increase in mutation rate was supported with mutT+ plasmid complementation tests. Surprisingly, when the experiment was repeated with the antibiotics deployed in decreasing order of selective strength, enrichment for multilocus mutators was not observed. Our data support the likelihood that the mutT- mutations rose to fixation in both populations, consistent with the hypothesis of repeated mutator hitchhiking. The escalation of mutation rates in asexual populations is relevant to multiple biological scenarios, including antibiotic resistance, host-pathogen interactions, and carcinogenesis.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Proteins , Genotype , Anti-Bacterial Agents/pharmacology , Mutation , Mutation Rate , Escherichia coli/genetics , Pyrophosphatases
5.
Drug Dev Res ; 85(2): e22169, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38477422

ABSTRACT

Neutrophils are a crucial component of the innate immune system and play a pivotal role in various physiological processes. From a physical perspective, hitchhiking is considered a phenomenon of efficient transportation. The combination of neutrophils and hitchhikers has given rise to effective delivery systems both in vivo and in vitro, thus neutrophils hitchhiking become a novel approach to disease treatment. This article provides an overview of the innovative and feasible application of neutrophils as drug carriers. It explores the mechanisms underlying neutrophil function, elucidates the mechanism of drug delivery mediated by neutrophil-hitchhiking, and discusses the potential applications of this strategy in the treatment of cancer, immune diseases, inflammatory diseases, and other medical conditions.


Subject(s)
Nanoparticles , Neoplasms , Humans , Neutrophils , Drug Delivery Systems , Drug Carriers , Nanoparticles/therapeutic use
6.
Nano Lett ; 23(12): 5731-5737, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37283563

ABSTRACT

Tumor metastasis remains the primary cause of treatment failure in cancer patients, and the high-sensitivity preoperative and intraoperative detection of occult micrometastases continues to pose a notorious challenge. Therefore, we have designed an in situ albumin-hitchhiking near-infrared window II (NIR-II) fluorescence probe, IR1080, for the precise detection of micrometastases and subsequent fluorescence image-guided surgery. IR1080 rapidly covalently conjugates with albumin in plasma, resulting in a stronger fluorescence brightness upon binding. Moreover, the albumin-hitchhiked IR1080 has a high affinity for secreted protein acidic and rich in cysteine (SPARC), an albumin-binding protein that is overexpressed in micrometastases. The interaction between SPARC and IR1080-hitchhiked albumin enhances IR1080's capacity to track and anchor micrometastases, leading to a high detection rate and margin delineation ability, as well as a high tumor-to-normal tissue ratio. Therefore, IR1080 represents a highly efficient strategy for the diagnosis and image-guided resection surgery of micrometastases.


Subject(s)
Neoplasm Micrometastasis , Surgery, Computer-Assisted , Humans , Neoplasm Micrometastasis/diagnosis , Osteonectin , Fluorescent Dyes , Albumins , Surgery, Computer-Assisted/methods , Optical Imaging/methods
7.
Mol Biol Evol ; 39(9)2022 09 01.
Article in English | MEDLINE | ID: mdl-35934827

ABSTRACT

One of the unique features of SARS-CoV-2 is its apparent neutral evolution during the early pandemic (before February 2020). This contrasts with the preceding SARS-CoV epidemics, where viruses evolved adaptively. SARS-CoV-2 may exhibit a unique or adaptive feature which deviates from other coronaviruses. Alternatively, the virus may have been cryptically circulating in humans for a sufficient time to have acquired adaptive changes before the onset of the current pandemic. To test the scenarios above, we analyzed the SARS-CoV-2 sequences from minks (Neovision vision) and parental humans. In the early phase of the mink epidemic (April to May 2020), nonsynonymous to synonymous mutation ratio per site in the spike protein is 2.93, indicating a selection process favoring adaptive amino acid changes. Mutations in the spike protein were concentrated within its receptor-binding domain and receptor-binding motif. An excess of high-frequency derived variants produced by genetic hitchhiking was found during the middle (June to July 2020) and late phase I (August to September 2020) of the mink epidemic. In contrast, the site frequency spectra of early SARS-CoV-2 in humans only show an excess of low-frequency mutations, consistent with the recent outbreak of the virus. Strong positive selection in the mink SARS-CoV-2 implies that the virus may not be preadapted to a wide range of hosts and illustrates how a virus evolves to establish a continuous infection in a new host. Therefore, the lack of positive selection signal during the early pandemic in humans deserves further investigation.


Subject(s)
COVID-19 , Evolution, Molecular , SARS-CoV-2 , Animals , COVID-19/virology , Humans , Mink/virology , Mutation , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry
8.
New Phytol ; 238(3): 1263-1277, 2023 05.
Article in English | MEDLINE | ID: mdl-36721257

ABSTRACT

The adaptation of weeds to herbicide is both a significant problem in agriculture and a model of rapid adaptation. However, significant gaps remain in our knowledge of resistance controlled by many loci and the evolutionary factors that influence the maintenance of resistance. Here, using herbicide-resistant populations of the common morning glory (Ipomoea purpurea), we perform a multilevel analysis of the genome and transcriptome to uncover putative loci involved in nontarget-site herbicide resistance (NTSR) and to examine evolutionary forces underlying the maintenance of resistance in natural populations. We found loci involved in herbicide detoxification and stress sensing to be under selection and confirmed that detoxification is responsible for glyphosate (RoundUp) resistance using a functional assay. We identified interchromosomal linkage disequilibrium (ILD) among loci under selection reflecting either historical processes or additive effects leading to the resistance phenotype. We further identified potential fitness cost loci that were strongly linked to resistance alleles, indicating the role of genetic hitchhiking in maintaining the cost. Overall, our work suggests that NTSR glyphosate resistance in I. purpurea is conferred by multiple genes which are potentially maintained through generations via ILD, and that the fitness cost associated with resistance in this species is likely a by-product of genetic hitchhiking.


Subject(s)
Herbicides , Ipomoea , Herbicide Resistance/genetics , Linkage Disequilibrium/genetics , Biological Evolution , Herbicides/pharmacology , Ipomoea/genetics
9.
Plasmid ; 127: 102694, 2023 07.
Article in English | MEDLINE | ID: mdl-37301314

ABSTRACT

Plasmid families harbor different maintenances functions, depending on their size and copy number. Low copy number plasmids rely on active partition systems, organizing a partition complex at specific centromere sites that is actively positioned using NTPase proteins. Some low copy number plasmids lack an active partition system, but carry atypical intracellular positioning systems using a single protein that binds to the centromere site but without an associated NTPase. These systems have been studied in the case of the Escherichia coli R388 and of the Staphylococcus aureus pSK1 plasmids. Here we review these two systems, which appear to be unrelated but share common features, such as their distribution on plasmids of medium size and copy number, certain activities of their centromere-binding proteins, StbA and Par, respectively, as well as their mode of action, which may involve dynamic interactions with the nucleoid-packed chromosome of their hosts.


Subject(s)
DNA Copy Number Variations , Nucleoside-Triphosphatase , Humans , Plasmids/genetics , Nucleoside-Triphosphatase/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Bacterial Proteins/genetics , Chromosome Segregation
10.
EMBO Rep ; 22(3): e50815, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33554435

ABSTRACT

The endoplasmic reticulum (ER) is the largest organelle contacting virtually every other organelle for information exchange and control of processes such as transport, fusion, and fission. Here, we studied the role of the other organelles on ER network architecture in the cell periphery. We show that the co-migration of the ER with other organelles, called ER hitchhiking facilitated by late endosomes and lysosomes is a major mechanism controlling ER network architecture. When hitchhiking occurs, emerging ER structures may fuse with the existing ER tubules to alter the local ER architecture. This couples late endosomal/lysosomal positioning and mobility to ER network architecture. Conditions restricting late endosomal movement-including cell starvation-or the depletion of tether proteins that link the ER to late endosomes reduce ER dynamics and limit the complexity of the peripheral ER network architecture. This indicates that among many factors, the ER is controlled by late endosomal movement resulting in an alteration of the ER network architecture.


Subject(s)
Endoplasmic Reticulum , Endosomes , Biological Transport , Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Lysosomes/metabolism
11.
Cell Biochem Funct ; 41(8): 1031-1043, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37933222

ABSTRACT

Opsonization plays a pivotal role in hindering controlled drug release from nanoformulations due to macrophage-mediated nanoparticle destruction. While first and second-generation delivery systems, such as lipoplexes (50-150 nm) and quantum dots, hold immense potential in revolutionizing disease treatment through spatiotemporal controlled drug delivery, their therapeutic efficacy is restricted by the selective labeling of nanoparticles for uptake by reticuloendothelial system and mononuclear phagocyte system via various molecular forces, such as electrostatic, hydrophobic, and van der Waals bonds. This review article presents novel insights into surface-modification techniques utilizing macromolecule-mediated approaches, including PEGylation, di-block copolymerization, and multi-block polymerization. These techniques induce stealth properties by generating steric forces to repel micromolecular-opsonins, such as fibrinogen, thereby mitigating opsonization effects. Moreover, advanced biological methods, like cellular hitchhiking and dysopsonic protein adsorption, are highlighted for their potential to induce biological camouflage by adsorbing onto the nanoparticulate surface, leading to immune escape. These significant findings pave the way for the development of long-circulating next-generation nanoplatforms capable of delivering superior therapy to patients. Future integration of artificial intelligence-based algorithms, integrated with nanoparticle properties such as shape, size, and surface chemistry, can aid in elucidating nanoparticulate-surface morphology and predicting interactions with the immune system, providing valuable insights into the probable path of opsonization.


Subject(s)
Nanoparticles , Polyethylene Glycols , Humans , Polyethylene Glycols/chemistry , Opsonization , Artificial Intelligence , Drug Delivery Systems , Opsonin Proteins/chemistry , Opsonin Proteins/metabolism , Nanoparticles/chemistry
12.
J Nanobiotechnology ; 21(1): 492, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38115145

ABSTRACT

Effective diagnosis and therapy for bacterial infections, especially those caused by multidrug-resistant (MDR) species, greatly challenge current antimicrobial stewardship. Monocytes, which can chemotactically migrate from the blood to infection site and elicit a robust infection infiltration, provide a golden opportunity for bacterial theranostics. Here, a nano-Trojan Horse was facilely engineered using mannose-functionalized manganese-eumelanin coordination nanoparticles (denoted as MP-MENP) for precise two-step localization and potent photothermal-immunotherapy of MDR bacterial infection. Taking advantage of the selective recognition between mannose and inflammation-associated monocytes, the MP-MENP could be passively piggybacked to infection site by circulating monocytes, and also actively target infiltrated monocytes that are already accumulated in infection microenvironment. Such dual-pronged targeting enabled an efficient imaging diagnosis of bacterial infection. Upon laser irradiation, the MP-MENP robustly produced local hyperemia to ablate bacteria, both extracellularly and intracellularly. Further combined with photothermal therapy-induced immunogenic cell death and MP-MENP-mediated macrophage reprogramming, the immunosuppressive infection microenvironment was significantly relieved, allowing an enhanced antibacterial immunity. Collectively, the proposed nanotheranostic Trojan Horse, which integrates dual-pronged targeting, precise imaging diagnosis, and high-performance photothermal immunotherapy, promises a new way for complete eradication of MDR bacterial infection.


Subject(s)
Bacterial Infections , Nanoparticles , Humans , Theranostic Nanomedicine , Mannose , Drug Resistance, Multiple, Bacterial , Bacterial Infections/drug therapy , Nanoparticles/therapeutic use , Bacteria , Immunotherapy/methods
13.
Proc Natl Acad Sci U S A ; 117(30): 17727-17736, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32665441

ABSTRACT

Erythrocytes naturally capture certain bacterial pathogens in circulation, kill them through oxidative stress, and present them to the antigen-presenting cells (APCs) in the spleen. By leveraging this innate immune function of erythrocytes, we developed erythrocyte-driven immune targeting (EDIT), which presents nanoparticles from the surface of erythrocytes to the APCs in the spleen. Antigenic nanoparticles were adsorbed on the erythrocyte surface. By engineering the number density of adsorbed nanoparticles, (i.e., the number of nanoparticles loaded per erythrocyte), they were predominantly delivered to the spleen rather than lungs, which is conventionally the target of erythrocyte-mediated delivery systems. Presentation of erythrocyte-delivered nanoparticles to the spleen led to improved antibody response against the antigen, higher central memory T cell response, and lower regulatory T cell response, compared with controls. Enhanced immune response slowed down tumor progression in a prophylaxis model. These findings suggest that EDIT is an effective strategy to enhance systemic immunity.


Subject(s)
Antigen Presentation/immunology , Antigens/immunology , Erythrocytes/immunology , Immunization , Animals , Antibody Formation/immunology , Antigens/chemistry , Biomimetics , Cell Line, Tumor , Dendritic Cells/immunology , Female , Humans , Mice , Nanoparticles , Spleen/immunology , Vaccination , Vaccines , Xenograft Model Antitumor Assays
14.
BMC Biol ; 20(1): 203, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36104696

ABSTRACT

BACKGROUND: To disperse in water-unsaturated environments, such as the soil, bacteria rely on the availability and structure of water films forming on biotic and abiotic surfaces, and, especially, along fungal mycelia. Dispersal along such "fungal highways" may be driven both by mycelial physical properties and by interactions between bacteria and fungi. However, we still do not have a way to disentangle the biotic and abiotic elements. RESULTS: We designed and 3D printed two devices establishing stable liquid films that support bacteria dispersal in the absence of biotic interactions. The thickness of the liquid film determined the presence of hydraulic flow capable of transporting non-motile cells. In the absence of flow, only motile cells can disperse in the presence of an energy source. Non-motile cells could not disperse autonomously without flow but dispersed as "hitchhikers" when co-inoculated with motile cells. CONCLUSIONS: The 3D printed devices can be used as an abiotic control to study bacterial dispersal on hydrated surfaces, such as plant roots and fungal hyphae networks in the soil. By teasing apart the abiotic and biotic dimensions, these 3D printed devices will stimulate further research on microbial dispersal in soil and other water-unsaturated environments.


Subject(s)
Bacteria , Soil Microbiology , Printing, Three-Dimensional , Soil , Water
15.
Am Nat ; 199(3): 313-329, 2022 03.
Article in English | MEDLINE | ID: mdl-35175901

ABSTRACT

AbstractWith the twofold cost of sex, derived asexual organisms have an immediate reproductive advantage over their sexual sisters. Yet the "twiggy" phylogenetic distribution of asexual lineages implies that they become extinct relatively quickly over evolutionary time. Meanwhile, bacteria and archaea have persisted for billions of years without requiring sexual reproduction. A simple explanation for this difference is that prokaryotes have very large population sizes that are not subject to the accumulation of deleterious mutations, but this implies that drift and mutational meltdown dominate derived asexual populations. Here, we explore a different hazard, quantifying the degree to which genetic variation is lost in asexual populations experiencing selective sweeps. Even though large populations generate diversity by mutation during sweeps, we find that populations that are safe from mutational meltdown may still be reduced to dangerous effective population sizes by sweeps. Thus, ironically, adaptation itself reduces further adaptive potential and may predispose asexual populations to extinction. We derive a simple approximation for the effective population size after a hard sweep and explore the impact of recent sweeps on evolutionary rescue. These factors may help to explain the phylogenetic twigginess of asexuals, the maintenance of sex and recombination, and the evolutionary persistence of prokaryotes.


Subject(s)
Biological Evolution , Reproduction, Asexual , Models, Genetic , Mutation , Phylogeny , Reproduction/genetics , Reproduction, Asexual/genetics
16.
Annu Rev Ecol Evol Syst ; 52: 177-197, 2021 Nov.
Article in English | MEDLINE | ID: mdl-37089401

ABSTRACT

Patterns of variation and evolution at a given site in a genome can be strongly influenced by the effects of selection at genetically linked sites. In particular, the recombination rates of genomic regions correlate with their amount of within-population genetic variability, the degree to which the frequency distributions of DNA sequence variants differ from their neutral expectations, and the levels of adaptation of their functional components. We review the major population genetic processes that are thought to lead to these patterns, focusing on their effects on patterns of variability: selective sweeps, background selection, associative overdominance, and Hill-Robertson interference among deleterious mutations. We emphasize the difficulties in distinguishing among the footprints of these processes and disentangling them from the effects of purely demographic factors such as population size changes. We also discuss how interactions between selective and demographic processes can significantly affect patterns of variability within genomes.

17.
Annu Rev Biomed Eng ; 23: 225-248, 2021 07 13.
Article in English | MEDLINE | ID: mdl-33788581

ABSTRACT

Red blood cell (RBC) hitchhiking is a method of drug delivery that can increase drug concentration in target organs by orders of magnitude. In RBC hitchhiking, drug-loaded nanoparticles (NPs) are adsorbed onto red blood cells and then injected intravascularly, which causes the NPs to transfer to cells of the capillaries in the downstream organ. RBC hitchhiking has been demonstrated in multiple species and multiple organs. For example, RBC-hitchhiking NPs localized at unprecedented levels in the brain when using intra-arterial catheters, such as those in place immediately after mechanical thrombectomy for acute ischemic stroke. RBC hitchhiking has been successfully employed in numerous preclinical models of disease, ranging from pulmonary embolism to cancer metastasis. In addition to summarizing the versatility of RBC hitchhiking, we also describe studies into the surprisingly complex mechanisms of RBC hitchhiking as well as outline future studies to further improve RBC hitchhiking's clinical utility.


Subject(s)
Brain Ischemia , Nanoparticles , Stroke , Drug Delivery Systems , Erythrocytes , Humans
18.
Mol Ecol ; 31(17): 4444-4450, 2022 09.
Article in English | MEDLINE | ID: mdl-35909250

ABSTRACT

We recently published a paper quantifying the genome-wide consequences of natural selection, including the effects of indirect selection due to the correlation of genetic regions (neutral or selected) with directly selected regions (Gompert et al., 2022). In their critique of our paper, Charlesworth and Jensen (2022) make two main points: (i) indirect selection is equivalent to hitchhiking and thus well documented (i.e., our results are not novel) and (ii) that we do not demonstrate the source of linkage disequilibrium (LD) between SNPs and the Mel-Stripe locus in the Timema cristinae experiment we analyse. As we discuss in detail below, neither of these are substantial criticisms of our work.


Subject(s)
Genome , Selection, Genetic , Linkage Disequilibrium , Polymorphism, Single Nucleotide/genetics
19.
Mol Ecol ; 31(17): 4440-4443, 2022 09.
Article in English | MEDLINE | ID: mdl-35778972

ABSTRACT

We write to address recent claims by regarding the potentially important and underappreciated phenomena of "indirect selection," the observation that neutral regions may be affected by natural selection. We argue both that this phenomenon-generally known as genetic hitchhiking-is neither new nor poorly studied, and that the patterns described by the authors have multiple alternative explanations.


Subject(s)
Models, Genetic , Selection, Genetic
20.
Pharm Res ; 39(11): 2673-2698, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35794397

ABSTRACT

In the past five decades, red blood cells (RBCs) have been extensively explored as drug delivery systems due to their distinguishing potential in modulating the pharmacokinetic, pharmacodynamics, and biological activity of carried payloads. The extensive interests in RBC-mediated drug delivery technologies are in part derived from RBCs' unique biological features such as long circulation time, wide access to many tissues in the body, and low immunogenicity. Owing to these outstanding properties, a large body of efforts have led to the development of various RBC-inspired strategies to enable precise drug delivery with enhanced therapeutic efficacy and reduced off-target toxicity. In this review, we discuss emerging concepts and new advances in such RBC-inspired strategies, including native RBCs, ghost RBCs, RBC-mimetic nanoparticles, and RBC-derived extracellular vesicles, for drug delivery.


Subject(s)
Drug Delivery Systems , Nanoparticles , Erythrocytes , Nanoparticles/therapeutic use , Pharmaceutical Preparations
SELECTION OF CITATIONS
SEARCH DETAIL