Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Environ Sci Technol ; 56(18): 13499-13509, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36084299

ABSTRACT

Land use regression (LUR) models are widely applied to estimate intra-urban air pollution concentrations. National-scale LURs typically employ predictors from multiple curated geodatabases at neighborhood scales. In this study, we instead developed national NO2 models relying on innovative street-level predictors extracted from Google Street View [GSV] imagery. Using machine learning (random forest), we developed two types of models: (1) GSV-only models, which use only GSV features, and (2) GSV + OMI models, which also include satellite observations of NO2. Our results suggest that street view imagery alone may provide sufficient information to explain NO2 variation. Satellite observations can improve model performance, but the contribution decreases as more images are available. Random 10-fold cross-validation R2 of our best models were 0.88 (GSV-only) and 0.91 (GSV + OMI)─a performance that is comparable to traditional LUR approaches. Importantly, our models show that street-level features might have the potential to better capture intra-urban variation of NO2 pollution than traditional LUR. Collectively, our findings indicate that street view image-based modeling has great potential for building large-scale air quality models under a unified framework. Toward that goal, we describe a cost-effective image sampling strategy for future studies based on a systematic evaluation of image availability and model performance.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Nitrogen Dioxide/analysis , Particulate Matter/analysis
2.
Sensors (Basel) ; 22(13)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35808310

ABSTRACT

Block compressed sensing (BCS) is suitable for image sampling and compression in resource-constrained applications. Adaptive sampling methods can effectively improve the rate-distortion performance of BCS. However, adaptive sampling methods bring high computational complexity to the encoder, which loses the superiority of BCS. In this paper, we focus on improving the adaptive sampling performance at the cost of low computational complexity. Firstly, we analyze the additional computational complexity of the existing adaptive sampling methods for BCS. Secondly, the adaptive sampling problem of BCS is modeled as a distortion minimization problem. We present three distortion models to reveal the relationship between block sampling rate and block distortion and use a simple neural network to predict the model parameters from several measurements. Finally, a fast estimation method is proposed to allocate block sampling rates based on distortion minimization. The results demonstrate that the proposed estimation method of block sampling rates is effective. Two of the three proposed distortion models can make the proposed estimation method have better performance than the existing adaptive sampling methods of BCS. Compared with the calculation of BCS at the sampling rate of 0.1, the additional calculation of the proposed adaptive sampling method is less than 1.9%.


Subject(s)
Data Compression , Neural Networks, Computer , Image Processing, Computer-Assisted
3.
Sensors (Basel) ; 21(4)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670225

ABSTRACT

The regular monitoring of erythema, one of the most important skin lesions in atopic (allergic) dogs, is essential for successful anti-allergic therapy. The smartphone-based dermatoscopy enables a convenient way to acquire quality images of erythematous skin. However, the image sampling to evaluate erythema severity is still done manually, introducing result variability. In this study, we investigated the correlation between the most popular erythema indices (EIs) and dermatologists' erythema perception, and we measured intra- and inter-rater variability of the currently-used manual image-sampling methods (ISMs). We showed that the EIBRG, based on all three RGB (red, green, and blue) channels, performed the best with an average Spearman coefficient of 0.75 and a typical absolute disagreement of less than 14% with the erythema assessed by clinicians. On the other hand, two image-sampling methods, based on either selecting specific pixels or small skin areas, performed similarly well. They achieved high intra- and inter-rater reliability with the intraclass correlation coefficient (ICC) and Krippendorff's alpha well above 0.90. These results indicated that smartphone-based dermatoscopy could be a convenient and precise way to evaluate skin erythema severity. However, better outlined, or even automated ISMs, are likely to improve the intra- and inter-rater reliability in severe erythematous cases.


Subject(s)
Dog Diseases/diagnostic imaging , Erythema/veterinary , Image Interpretation, Computer-Assisted , Skin/diagnostic imaging , Animals , Dogs , Erythema/diagnostic imaging , Reproducibility of Results , Severity of Illness Index , Specimen Handling
4.
Sensors (Basel) ; 18(10)2018 Oct 14.
Article in English | MEDLINE | ID: mdl-30322185

ABSTRACT

We demonstrate a single-photon compressed imaging system based on single photon counting technology and compressed sensing theory. In order to cut down the measurement times and shorten the imaging time, a fast and efficient adaptive sampling method, suited for single-photon compressed imaging, is proposed. First, the pre-measured rough images are transformed into sparse bases as a priori information. Then a smart threshold matrix is designed by using large sparse coefficients of the rough image in sparse bases. The adaptive measurement matrix is obtained by modifying the original Gaussian random matrix with the specially designed threshold matrix. Building the adaptive measurement matrix requires only one level of sparse representation, which means that adaptive imaging can be achieved quickly with very little computation. The experimental results show that the reconstruction effect of the image measured using the adaptive measurement matrix is obviously superior than that of the Gaussian random matrix under different measurement times and different reconstruction algorithms.

5.
Biomimetics (Basel) ; 8(3)2023 Jul 02.
Article in English | MEDLINE | ID: mdl-37504173

ABSTRACT

Visual signals are the upmost important source for robots, vehicles or machines to achieve human-like intelligence. Human beings heavily depend on binocular vision to understand the dynamically changing world. Similarly, intelligent robots or machines must also have the innate capabilities of perceiving knowledge from visual signals. Until today, one of the biggest challenges faced by intelligent robots or machines is the matching in stereovision. In this paper, we present the details of a new principle toward achieving a robust matching solution which leverages on the use and integration of top-down image sampling strategy, hybrid feature extraction, and Restricted Coulomb Energy (RCE) neural network for incremental learning (i.e., cognition) as well as robust match-maker (i.e., recognition). A preliminary version of the proposed solution has been implemented and tested with data from Maritime RobotX Challenge. The contribution of this paper is to attract more research interest and effort toward this new direction which may eventually lead to the development of robust solutions expected by future stereovision systems in intelligent robots, vehicles, and machines.

6.
Healthc Technol Lett ; 6(4): 115-120, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31531226

ABSTRACT

Accurate extraction of vessels plays an important role in assisting diagnosis, treatment, and surgical planning. The Otsu method has been used for extracting vessels in medical images. However, blood vessels in magnetic resonance angiography (MRA) image are considered as a sparse distribution. Pixels on vessels in MRA image are considered as an imbalanced data in classification of vessels and non-vessel tissues. To extract vessels accurately, a novel method using resampling technique and ensemble learning is proposed for solving the imbalanced classification problem. Each pixel is sampled multiple times through multiple local patches within the image. Then, vessel or non-vessel tissue is determined by the ensemble voting mechanism via a p-tile algorithm. Experimental results show that the proposed method is able to outperform the traditional Otsu method by extracting vessels in MRA images more accurately.

SELECTION OF CITATIONS
SEARCH DETAIL