ABSTRACT
In recent years, lactate has been recognized as an important circulating energy substrate rather than only a dead-end metabolic waste product generated during glucose oxidation at low levels of oxygen. The term "aerobic glycolysis" has been coined to denote increased glucose uptake and lactate production despite normal oxygen levels and functional mitochondria. Hence, in "aerobic glycolysis," lactate production is a metabolic choice, whereas in "anaerobic glycolysis," it is a metabolic necessity based on inadequate levels of oxygen. Interestingly, lactate can be taken up by cells and oxidized to pyruvate and thus constitutes a source of pyruvate that is independent of insulin. Here, we show that the transcription factor Foxp1 regulates glucose uptake and lactate production in adipocytes and myocytes. Overexpression of Foxp1 leads to increased glucose uptake and lactate production. In addition, protein levels of several enzymes in the glycolytic pathway are upregulated, such as hexokinase 2, phosphofructokinase, aldolase, and lactate dehydrogenase. Using chromatin immunoprecipitation and real-time quantitative PCR assays, we demonstrate that Foxp1 directly interacts with promoter consensus cis-elements that regulate expression of several of these target genes. Conversely, knockdown of Foxp1 suppresses these enzyme levels and lowers glucose uptake and lactate production. Moreover, mice with a targeted deletion of Foxp1 in muscle display systemic glucose intolerance with decreased muscle glucose uptake. In primary human adipocytes with induced expression of Foxp1, we find increased glycolysis and glycolytic capacity. Our results indicate Foxp1 may play an important role as a regulator of aerobic glycolysis in adipose tissue and muscle.
Subject(s)
Adipocytes , Forkhead Transcription Factors , Glycolysis , Muscle Cells , Transcription Factors , Animals , Mice , Adipocytes/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Glucose/metabolism , Glycolysis/genetics , Lactic Acid/metabolism , Muscle Cells/metabolism , Pyruvates , Transcription Factors/metabolism , Rats , Cell Line , TranscriptomeABSTRACT
Ageing is a key factor in the development of cognitive decline and dementia, an increasing and challenging problem of the modern world. The most commonly diagnosed cognitive decline is related to Alzheimer's disease (AD), the pathophysiology of which is poorly understood. Several hypotheses have been proposed. The cholinergic hypothesis is the oldest, however, recently the noradrenergic system has been considered to have a role as well. The aim of this review is to provide evidence that supports the view that an impaired noradrenergic system is causally linked to AD. Although dementia is associated with neurodegeneration and loss of neurons, this likely develops due to a primary failure of homeostatic cells, astrocytes, abundant and heterogeneous neuroglial cells in the central nervous system (CNS). The many functions that astrocytes provide to maintain the viability of neural networks include the control of ionic balance, neurotransmitter turnover, synaptic connectivity and energy balance. This latter function is regulated by noradrenaline, released from the axon varicosities of neurons arising from the locus coeruleus (LC), the primary site of noradrenaline release in the CNS. The demise of the LC is linked to AD, whereby a hypometabolic CNS state is observed clinically. This is likely due to impaired release of noradrenaline in the AD brain during states of arousal, attention and awareness. These functions controlled by the LC are needed for learning and memory formation and require activation of the energy metabolism. In this review, we address first the process of neurodegeneration and cognitive decline, highlighting the function of astrocytes. Cholinergic and/or noradrenergic deficits lead to impaired astroglial function. Then, we focus on adrenergic control of astroglial aerobic glycolysis and lipid droplet metabolism, which play a protective role but also promote neurodegeneration under some circumstances, supporting the noradrenergic hypothesis of cognitive decline. We conclude that targeting astroglial metabolism, glycolysis and/or mitochondrial processes may lead to important new developments in the future when searching for medicines to prevent or even halt cognitive decline.
Subject(s)
Adrenergic Agents , Alzheimer Disease , Humans , Astrocytes/metabolism , Lipid Metabolism , Norepinephrine/metabolism , Alzheimer Disease/metabolism , Locus Coeruleus/metabolism , Glycolysis/physiologyABSTRACT
The design of alternative biodegradable polymers has the potential of severely reducing the environmental impact, cost and production time currently associated with the petrochemical industry. In fact, growing demand for renewable feedstock has recently brought to the fore synthetic biology and metabolic engineering. These two interdependent research areas focus on the study of microbial conversion of organic acids, with the aim of replacing their petrochemical-derived equivalents with more sustainable and efficient processes. The particular case of Lactic acid (LA) production has been the subject of extensive research because of its role as an essential component for developing an eco-friendly biodegradable plastic-widely used in industrial biotechnological applications. Because of its resistance to acidic environments, among the many LA-producing microbes, Saccharomyces cerevisiae has been the main focus of research into related biocatalysts. In this study, we present an extensive in silico investigation of S. cerevisiae cell metabolism (modeled with Flux Balance Analysis) with the overall aim of maximizing its LA production yield. We focus on the yeast 8.3 steady-state metabolic model and analyze it under the impact of different engineering strategies including: gene knock-in, gene knock-out, gene regulation and medium optimization; as well as a comparison between results in aerobic and anaerobic conditions. We designed ad-hoc constrained multiobjective evolutionary algorithms to automate the engineering process and developed a specific postprocessing methodology to analyze the genetic manipulation results obtained. The in silico results reported in this paper empirically show that our method is able to automatically select a small number of promising genetic and metabolic manipulations, deriving competitive strains that promise to impact microorganisms design in the production of sustainable chemicals.
Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Metabolic Engineering/methods , Biotechnology , Lactic Acid/metabolismABSTRACT
Cyanobacteria are considered promising hosts for product synthesis directly from CO2 via photosynthetic carbon assimilation. The introduction of heterologous carbon sinks in terms of product synthesis has been reported to induce the so-called "carbon sink effect," described as the release of unused photosynthetic capacity by the introduction of additional carbon. This effect is thought to arise from a limitation of carbon metabolism that represents a bottleneck in carbon and electron flow, thus enforcing a downregulation of photosynthetic efficiency. It is not known so far how the cellular source/sink balance under different growth conditions influences the extent of the carbon sink effect and in turn product formation from CO2, constituting a heterologous carbon sink. We compared the Synechocystis sp. strain PCC 6803 wild type (WT) with an engineered lactate-producing strain (SAA023) in defined metabolic states. Unexpectedly, high-light conditions combined with carbon limitation enabled additional carbon assimilation for lactate production without affecting biomass formation. Thus, a strong carbon sink effect only was observed under carbon and thus sink limitation, but not under high-sink conditions. We show that the carbon sink effect was accompanied by an increased rate of alternative electron flow (AEF). Thus, AEF plays a crucial role in the equilibration of source/sink imbalances, presumably via ATP/NADPH balancing. This study emphasizes that the evaluation of the biotechnological potential of cyanobacteria profits from cultivation approaches enabling the establishment of defined metabolic states and respective quantitative analytics. Factors stimulating photosynthesis and carbon fixation are discussed. IMPORTANCE Previous studies reported various and differing effects of the heterologous production of carbon-based molecules on photosynthetic and growth efficiency of cyanobacteria. The typically applied cultivation in batch mode, with continuously changing growth conditions, however, precludes a clear differentiation between the impact of cultivation conditions on cell physiology and effects related to the specific nature of the product and its synthesis pathway. In this study, we employed a continuous cultivation system to maintain defined source/sink conditions and thus metabolic states. This allowed a systematic and quantitative analysis of the effect of NADPH-consuming lactate production on photosynthetic and growth efficiency. This approach enables a realistic evaluation of the biotechnological potential of engineered cyanobacterial strains. For example, the quantum requirement for carbon production was found to constitute an excellent indicator of the source/sink balance and thus a key parameter for photobioprocess optimization. Such knowledge is fundamental for rational and efficient strain and process development.
Subject(s)
Synechocystis , Carbon/metabolism , Carbon Dioxide/metabolism , Carbon Sequestration , Lactates/metabolism , NADP/metabolism , Synechocystis/metabolismABSTRACT
BACKGROUND: Seaweed polysaccharides have been recommended as anticancer supplements and for boosting human health; however, their benefits in the treatment of triple-negative breast cancers (TNBCs) and improving immune surveillance remain unclear. Olaparib is a first-in-class poly (ADP-ribose) polymerase inhibitor. Oligo-Fucoidan, a low-molecular-weight sulfated polysaccharide purified from brown seaweed (Laminaria japonica), exhibits significant bioactivities that may aid in disease management. METHODS: Macrophage polarity, clonogenic assays, cancer stemness properties, cancer cell trajectory, glucose metabolism, the TNBC 4T1 cells and a 4T1 syngeneic mouse model were used to inspect the therapeutic effects of olaparib and Oligo-Fucoidan supplementation on TNBC aggressiveness and microenvironment. RESULTS: Olaparib treatment increased sub-G1 cell death and G2/M arrest in TNBC cells, and these effects were enhanced when Oligo-Fucoidan was added to treat the TNBC cells. The levels of Rad51 and programmed death-ligand 1 (PD-L1) and the activation of epidermal growth factor receptor (EGFR) and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) facilitate drug resistance and TNBC metastasis. However, the combination of olaparib and Oligo-Fucoidan synergistically reduced Rad51 and PD-L1 levels, as well as the activity of EGFR and AMPK; consistently, TNBC cytotoxicity and stemness were inhibited. Oligo-Fucoidan plus olaparib better inhibited the formation of TNBC stem cell mammospheroids with decreased subpopulations of CD44high/CD24low and EpCAMhigh cells than monotherapy. Importantly, Oligo-Fucoidan plus olaparib repressed the oncogenic interleukin-6 (IL-6)/p-EGFR/PD-L1 pathway, glucose uptake and lactate production. Oligo-Fucoidan induced immunoactive and antitumoral M1 macrophages and attenuated the side effects of olaparib, such as the promotion on immunosuppressive and protumoral M2 macrophages. Furthermore, olaparib plus Oligo-Fucoidan dramatically suppressed M2 macrophage invasiveness and repolarized M2 to the M0-like (F4/80high) and M1-like (CD80high and CD86high) phenotypes. In addition, olaparib- and Oligo-Fucoidan-pretreated TNBC cells resulted in the polarization of M0 macrophages into CD80(+) M1 but not CD163(+) M2 macrophages. Importantly, olaparib supplemented with oral administration of Oligo-Fucoidan in mice inhibited postsurgical TNBC recurrence and metastasis with increased cytotoxic T cells in the lymphatic system and decreased regulatory T cells and M2 macrophages in tumors. CONCLUSION: Olaparib supplemented with natural compound Oligo-Fucoidan is a novel therapeutic strategy for reprogramming cancer stemness, metabolism and the microenvironment to prevent local postsurgical recurrence and distant metastasis. The combination therapy may advance therapeutic efficacy that prevent metastasis, chemoresistance and mortality in TNBC patients.
Subject(s)
Antineoplastic Agents , Triple Negative Breast Neoplasms , AMP-Activated Protein Kinases , Adenosine/pharmacology , Adenosine Diphosphate/pharmacology , Adenosine Diphosphate/therapeutic use , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , B7-H1 Antigen , Cell Line, Tumor , Dietary Supplements , Epithelial Cell Adhesion Molecule , ErbB Receptors , G2 Phase Cell Cycle Checkpoints , Glucose , Humans , Interleukin-6 , Lactates/pharmacology , Lactates/therapeutic use , Mice , Phthalazines , Piperazines , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Polysaccharides/therapeutic use , Ribose/pharmacology , Ribose/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathologyABSTRACT
Backhousia citriodora (lemon myrtle) extract has been found to inhibit glucansucrase activity, which plays an important role in biofilm formation by Streptococcus mutans. In addition to glucansucrase, various virulence factors in S. mutans are involved in the initiation of caries. Lactate produced by S. mutans demineralizes the tooth enamel. This study investigated whether lemon myrtle extract can inhibit S. mutans lactate production. Lemon myrtle extract reduced the glycolytic pH drop in S. mutans culture and inhibited lactate production by at least 46%. Ellagic acid, quercetin, hesperetin, and myricetin, major polyphenols in lemon myrtle, reduced the glycolytic pH drop and lactate production, but not lactate dehydrogenase activity. Furthermore, these polyphenols reduced the viable S. mutans cell count. Thus, lemon myrtle extracts may inhibit S. mutans-mediated acidification of the oral cavity, thereby preventing dental caries and tooth decay.
Subject(s)
Streptococcus mutans , Biofilms , Lactic Acid , Mouth , MyrtusABSTRACT
The Warburg effect, representing enhanced glycolysis and lactate production in adequately oxygenated cancer cells, has been widely regarded to cause increased extracellular acidification. Converting pyruvate to lactate by lactate dehydrogenase A (LDHA) is the last step of glycolysis. Here, we report an interesting counterintuitive observation that inhibition of LDHA resulted in enhanced glycolysis in MDA-MB-231 breast cancer cells. The cells were treated with FX11 (7-benzyl-2,3-dihydroxy-6-methyl-4-propylnaphthalene-1-carboxylic acid), a specific LDHA inhibitor. Seahorse assay reported dose-dependent increases in both oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Independent biochemical measurements also confirmed the increase of lactate production under FX11 treatment. The reasons and mechanism of these observations of elevated ECAR and lactate production in the MDA-MB-231 breast cancer cells under FX11 treatment remain to be investigated.
Subject(s)
Isoenzymes , Lactic Acid , Cell Line, Tumor , Glycolysis , Hydrogen-Ion Concentration , Isoenzymes/genetics , L-Lactate Dehydrogenase/metabolism , Lactate Dehydrogenase 5ABSTRACT
In vitro embryo production (IVP) efficiency is reduced when compared to in vivo. The basic knowledge of bovine in vitro oocyte maturation (IVM) mechanisms provides support to improve in vitro embryo production yields. The present study assessed the effects of bone morphogenetic protein 15 (BMP15), fibroblast growth factor 16 (FGF16) and their combined action on cumulus cells (CC) expansion, oocyte and CC DNA fragmentation, oocyte nuclear maturation, energetic metabolism and progesterone production in bovine IVM. Cumulus-oocyte complexes (COC) were matured in control or supplemented media containing BMP15 (100 ng/ml), FGF16 (10 ng/ml) or BMP15 combined with FGF16; and assessed at 0 and 22 hr of IVM. BMP15 alone or its association with FGF16 enhanced cumulus expansion. BMP15 decreased DNA fragmentation in both CC and oocytes, and improved oocyte nuclear maturation rate. In addition, BMP15 increased CC progesterone production, an effect not previously reported. The present study reinforces previous data pointing to a beneficial influence of BMP15 during IVM, while providing novel evidence that the underlying mechanisms involve increased progesterone production.
Subject(s)
Bone Morphogenetic Protein 15/pharmacology , Fibroblast Growth Factors/pharmacology , In Vitro Oocyte Maturation Techniques/veterinary , Animals , Cattle , Cumulus Cells/drug effects , DNA Fragmentation , Female , In Vitro Oocyte Maturation Techniques/methods , Oocytes/drug effects , Progesterone/metabolismABSTRACT
Background and Objectives: This study aimed to compare the calculated running velocity at the anaerobic lactate threshold (cLTAn), determined by a mathematical model for metabolic simulation, with two established threshold concepts (onset of blood lactate accumulation (OBLA; 4 mmolâL-1) and modified maximal deviation method (mDmax)). Additionally, all threshold concepts were correlated with performance in different endurance running events. Materials and Methods: Ten sub-elite runners performed a 30 s sprint test on a cycle ergometer adjusted to an isokinetic mode set to a cadence of 120 rpm to determine maximal lactate production rate (VLamax), and a graded exercise test on a treadmill to determine maximal oxygen uptake (VO2max). Running velocities at OBLA, mDmax, and cLTAn were then compared with each other, and further correlated with running performance over various distances (3000 m, 5000 m, and 10,000 m). Results: The mean difference in cLTAn was -0.13 ± 0.43 mâs-1 and -0.32 ± 0.39 mâs-1 compared to mDmax (p = 0.49) and OBLA (p < 0.01), respectively. cLTAn indicated moderate to good concordance with the established threshold concepts (mDmax: ICC = 0.87, OBLA: ICC = 0.74). In comparison with other threshold concepts, cLTAn exhibited comparable correlations with the assessed running performances (cLTAn: r = 0.61-0.76, mDmax: r = 0.69-0.79, OBLA: r = 0.56-0.69). Conclusion: Our data show that cLTAn can be applied for determining endurance performance during running. Due to the consideration of individual physiological profiles, cLTAn offers a physiologically justified approach to assess an athlete's endurance performance.
Subject(s)
Lactic Acid , Running , Anaerobic Threshold , Anaerobiosis , Exercise Test , Humans , Physical EnduranceABSTRACT
Recent studies have shown that lactate coupled water flux is the underlying mechanism of the corneal endothelial pump, which is highly dependent on the presence of bicarbonate. In this study we test the hypothesis that the increased intracellular pH (pHi) caused by bicarbonate stimulates glycolytic activity and the production of lactate by endothelial cells. Primary cultures of bovine corneal endothelial cells (BCEC) were incubated in bicarbonate-free (BF) ringer, a high [HEPES] ringer, and bicarbonate-rich (BR) ringer all at pH 7.5. Lactate production and glucose consumption were greatest in BR>HEPES >BF. Similarly, pHi was greatest in BR>HEPES>BF. Increasing pHi with NH4Cl also increased lactate production in BF or BR, indicating that the increased lactate production in BR is not due to HCO3- itself. Glucose transport capacity, as measured by 2-N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino-2-Deoxyglucose (2-NBDG) uptake was unaffected by the three incubation conditions. Using Laconic, a FRET sensor for lactate, we found that intracellular [lactate] increased immediately and transiently when cells were switched from BF to BR perfusion indicating increased lactate production with subsequent matching of efflux. Moreover, induction of acute lactate influx by perfusion pulses of 10 mM lactate increased intracellular [lactate] significantly faster in BF than in BR, consistent with higher lactate production and efflux in BR. In summary, our results indicate that glycolytic flux and lactate production increase in BR due to increased pHi, consistent with the well-known pH sensitivity of phosphofructokinase, the rate limiting enzyme in glycolysis.
Subject(s)
Bicarbonates/metabolism , Lactic Acid/biosynthesis , Animals , Biological Transport, Active , Cattle , Cells, Cultured , Endothelium, Corneal/cytology , Endothelium, Corneal/metabolism , Hydrogen-Ion Concentration , Models, AnimalABSTRACT
BACKGROUND: Metabolic reprogramming, in which energetic metabolism changes from oxidative phosphorylation to glycolysis, is well-accepted as a hallmark of cancers including hepatocellular carcinoma (HCC). A growing body of evidence suggests the involvement of oncogenes and tumor suppressor genes in the control of metabolic reprogramming. In this study, we attempt to investigate whether loss of PTEN, a recognized tumor suppressor, drives metabolic reprogramming of HCC. METHODS: Cancerous liver tissues were surgically resected from 128 HCC patients, with 43 adjacent noncancerous liver tissues as control. Aerobic glycolysis (Warburg effect) was reflected by measurements of glucose uptake and lactate production, mitochondrial membrane potential collapse was observed by JC-1 staining, glycolytic rate and mitochondrial respiration were evaluated by determining glycolytic proton efflux rate (glycoPER) and oxygen consumption rate (OCR) in cultured human HHCC cells. RESULTS: Reciprocal expression of PTEN and PI3K was determined in cancer liver tissues. Overexpression of PTEN suppressed the Warburg effect, as evidenced by reductions in glucose uptake and lactate production, maintenance of mitochondrial function, and transformation of energetic metabolism from glycolysis to oxidative phosphorylation in cultured PTEN-negative HHCC cells. Importantly, 740 Y-P, a PI3K agonist that leads to activation of the PI3K pathway, partially abrogated the function of PTEN and reprogramed glucose metabolism in cultured HHCC cells. CONCLUSIONS: The discovery that loss of PTEN allows the tumor metabolic program has been a major advance in understanding the carcinogenesis of HCC. Video abstract Graphic abstract showing that loss of PTEN regulates the tumor metabolic program in hepatocellular carcinoma. Loss of PTEN leads to activation of the PI3K pathway enhances the Warburg effect, thereby promoting the development of hepatocellular carcinoma.
Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Acids/metabolism , Animals , Apoptosis , Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Respiration , Down-Regulation , Extracellular Space/metabolism , Female , Humans , Liver Neoplasms/pathology , Male , Mice, Nude , Middle Aged , Mitochondria/metabolism , Neoplasm Invasiveness , Phenotype , Prognosis , Proportional Hazards Models , Warburg Effect, OncologicABSTRACT
Fructose metabolism is generally held to occur essentially in cells of the small bowel, the liver, and the kidneys expressing fructolytic enzymes (fructokinase, aldolase B and a triokinase). In these cells, fructose uptake and fructolysis are unregulated processes, resulting in the generation of intracellular triose phosphates proportionate to fructose intake. Triose phosphates are then processed into lactate, glucose and fatty acids to serve as metabolic substrates in other cells of the body. With small oral loads, fructose is mainly metabolized in the small bowel, while with larger loads fructose reaches the portal circulation and is largely extracted by the liver. A small portion, however, escapes liver extraction and is metabolized either in the kidneys or in other tissues through yet unspecified pathways. In sedentary subjects, consumption of a fructose-rich diet for several days stimulates hepatic de novo lipogenesis, increases intrahepatic fat and blood triglyceride concentrations, and impairs insulin effects on hepatic glucose production. All these effects can be prevented when high fructose intake is associated with increased levels of physical activity. There is also evidence that, during exercise, fructose carbons are efficiently transferred to skeletal muscle as glucose and lactate to be used for energy production. Glucose and lactate formed from fructose can also contribute to the re-synthesis of muscle glycogen after exercise. We therefore propose that the deleterious health effects of fructose are tightly related to an imbalance between fructose energy intake on one hand, and whole-body energy output related to a low physical activity on the other hand.
Subject(s)
Energy Intake/physiology , Energy Metabolism/physiology , Exercise/physiology , Fructose/metabolism , Animals , Glucose/metabolism , Glycogen/metabolism , Humans , Lactic Acid/metabolism , Lipogenesis/physiology , Liver/metabolism , Muscle, Skeletal/metabolismABSTRACT
PURPOSE: Fluorescence lifetime imaging microscopy (FLIM) of endogenous fluorescent metabolites permits the measurement of cellular metabolism in cell, tissue and animal models. In parallel, magnetic resonance spectroscopy (MRS) of dynamic nuclear (hyper)polarized (DNP) 13 C-pyruvate enables measurement of metabolism at larger in vivo scales. Presented here are the design and initial application of a bioreactor that connects these 2 metabolic imaging modalities in vitro, using 3D cell cultures. METHODS: The model fitting for FLIM data analysis and the theory behind a model for the diffusion of pyruvate into a collagen gel are detailed. The device is MRI-compatible, including an optical window, a temperature control system and an injection port for the introduction of contrast agents. Three-dimensional printing, computer numerical control machining and laser cutting were used to fabricate custom parts. RESULTS: Performance of the bioreactor is demonstrated for 4 T1 murine breast cancer cells under glucose deprivation. Mean nicotinamide adenine dinucleotide (NADH) fluorescence lifetimes were 10% longer and hyperpolarized 13 C lactate:pyruvate (Lac:Pyr) ratios were 60% lower for glucose-deprived 4 T1 cells compared to 4 T1 cells in normal medium. Looking at the individual components of the NADH fluorescent lifetime, τ1 (free NADH) showed no significant change, while τ2 (bound NADH) showed a significant increase, suggesting that the increase in mean lifetime was due to a change in bound NADH. CONCLUSION: A novel bioreactor that is compatible with, and can exploit the benefits of, both FLIM and 13 C MRS in 3D cell cultures for studies of cell metabolism has been designed and applied.
Subject(s)
Bioreactors , Magnetic Resonance Spectroscopy , Optical Imaging , Animals , Cell Line, Tumor , Cell Survival , Collagen/chemistry , Contrast Media , Diffusion , Disease Progression , Equipment Design , Female , Gels , Glucose/metabolism , Lactic Acid/metabolism , Mammary Neoplasms, Animal/diagnostic imaging , Mammary Neoplasms, Experimental/diagnostic imaging , Mice , NAD/pharmacology , Printing, Three-Dimensional , Pyruvic Acid/chemistry , TemperatureABSTRACT
The purpose of the study was to evaluate and compare the influence of sprint interval training (SIT) and endurance training (ET) on calculated power in maximal lactate steady state (PMLSS) (influenced by the maximal lactate production rate (â©Lamax) and maximal oxygen uptake (â©O2max)). Thirty participants were randomly assigned to the a) SIT, b) ET, or c) control group (n = 10 each). Each session consisted of four to six repetitions of 30 s all-out effort Wingate anaerobic tests (SIT) or 60 min cycling at 1.5 to 2.5 mmolâL-1 blood lactate (analysed every 10 min). Both groups performed training on three days per week, over a period of six weeks. To measure â©Lamax and â©O2max, and to calculate PMLSS, sprint and ramp tests were performed at baseline and after two, four and six weeks of intervention. While SIT resulted in a significant reduction of â©Lamax (-0.08 ± 0.05 mmolâL-1âs-1, p=0.003) after two weeks and remained subsequently stable, â©O2max (+2.6 ± 2.4 mlâmin-1âkg-1, p = 0.044) and PMLSS (+25 ± 14 W, p=0.002) increased, but not before six weeks of SIT. After two weeks of ET, â©Lamax remained unchanged, but â©O2max increased by increased by +2.9 ± 2.4 mlâmin-1âkg-1, p=0.03, and after six weeks by 5.6 ± 3.5 mlâmin-1âkg-1. The increase of PMLSS was significant after four weeks of ET (+16 ± 14 W, p=0.036) and increased to +32 ± 17 W after six weeks. Comparison of SIT and ET revealed no significant differences for â©Lamax, â©O2max or PMLSS after six weeks. The control group remained stable in all parameters. In both exercising groups there was a significant improvement of the calculated PMLSS due to different influences of â©Lamax and â©O2max.
ABSTRACT
Lanthanum (La) can impair learning memory and induce behavioral abnormalities in animals. However, the mechanism underlying these adverse effects of La is still elusive. It has been demonstrated that lactate derived from astrocytes is the major energy source for neurons during long-term memory (LTM) formation and the deficiency of lactate supply can result in LTM damage. However, little work has been done with respect to the impact of La on the lactate production in astrocytes and astrocyte-neuron lactate transport (ANLT). Herein, experiments were undertaken to explore if there was such an adverse effect of La. Primary culture rat cortical astrocytes and primary co-culture rat cortical astrocyte-neuron were treated with (0.125, 0.25 and 0.5 mM) lanthanum chloride (LaCl3) for 24 h. The results showed that LaCl3 treatment significantly downregulated the mRNA and protein expression of glucose transporter 1 (GLUT1), glycogen synthase (GS), glycogen phosphorylase (GP), lactate dehydrogenase A (LDHA), and monocarboxylate transporter 1, 2 and 4 (MCT 1 2 and 4); upregulated the mRNA and protein expression of lactate dehydrogenase B (LDHB); and decreased the glycogen level, total LDH and GP activity, GS/p-GS ratio and lactate contents. Moreover, rolipram (20, 40 µM) or forskolin (20, 40 µM) could increase the lactate content by upregulating GP expression and the GS/p-GS ratio, as well as antagonize the effects of La. These results suggested that La-induced learning-memory damage was probably related to its suppression of lactate production in astrocytes and ANLT. This study provides some novel clues for clarifying the mechanism underlying the neurotoxicity of La.
Subject(s)
Astrocytes/metabolism , Glycogen/metabolism , Lactic Acid/metabolism , Lanthanum/toxicity , Animals , Biological Transport/drug effects , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Coculture Techniques , Lanthanum/administration & dosage , Memory, Long-Term/drug effects , Primary Cell Culture , RatsABSTRACT
There is a wide interspecific range in plasma glucose levels in teleosts from less than 0.5 to greater than 10â mmolâ l-1 Here we assessed how glucose availability influences glucose metabolism in hearts of Atlantic cod (Gadus morhua), rainbow trout (Oncorhynchus mykiss), lumpfish (Cyclopterus lumpus) and short-horned sculpin (Myoxocephalus scorpius) under normoxic and hypoxic conditions. These species had plasma glucose levels of 5.1, 4.8, 0.9 and 0.5â mmolâ l-1, respectively. Rates of glucose metabolism and lactate production were determined in isolated hearts perfused with medium containing physiological levels of glucose. Under normoxic conditions there was no significant difference in rates of either glucose metabolism (average 15â nmolâ g-1 min-1) or lactate production (average 30â nmolâ g-1 min-1) across species. Under hypoxia (12% of air saturation) there were significant increases in rates of glucose metabolism and lactate production in hearts from Atlantic cod (glucose-130; lactate-663â nmolâ g-1â min-1) and rainbow trout (glucose-103; lactate-774â nmolâ g-1â min-1); however, there was no change in rate of glucose metabolism in hearts from either lumpfish or short-horned sculpin and only increases in lactate production to rates much lower than the other species. Furthermore, Atlantic cod hearts perfused with medium containing low non-physiological levels of glucose (0.5â mmolâ l-1) had the same rates of glucose metabolism under normoxic and hypoxic treatments. Anaerobic metabolism supported by extracellular glucose is compromised in fish with low levels of plasma glucose, which in turn may decrease performance under oxygen-limiting conditions at the whole-animal level.
Subject(s)
Blood Glucose/metabolism , Fishes/metabolism , Lactic Acid/metabolism , Myocardium/metabolism , Anaerobiosis , Animals , Gadus morhua/metabolism , Oncorhynchus mykiss/metabolismABSTRACT
Fish exhibit a wide range of species-specific blood glucose levels. How this relates to glucose utilization is yet to be fully realized. Here, we assessed glucose transport and metabolism in myocytes isolated from Atlantic cod (Gadus morhua) and short-horned sculpin (Myoxocephalus scorpius), species with blood glucose levels of 3.7 and 0.57â mmolâ l(-1), respectively. Glucose metabolism was assessed by the production of (3)H2O from [2-(3)H]glucose. Glucose metabolism was 3.5- to 6-fold higher by myocytes from Atlantic cod than by those from short-horned sculpin at the same level of extracellular glucose. In Atlantic cod myocytes, glucose metabolism displayed what appears to be a saturable component with respect to extracellular glucose, and cytochalasin B inhibited glucose metabolism. These features revealed a facilitated glucose diffusion mechanism that accounts for between 30% and 55% of glucose entry at physiological levels of extracellular glucose. Facilitated glucose diffusion appears to be minimal in myocytes for short-horned sculpin. Glucose entry by simple diffusion occurs in both cell types with the same linear relationship between glucose metabolism and extracellular glucose concentration, presumably due to similarities in membrane composition. Oxygen consumption by myocytes incubated in medium containing physiological levels of extracellular glucose (Atlantic cod 5â mmolâ l(-1), short-horned sculpin 0.5â mmolâ l(-1)) was similar in the two species and was not decreased by cytochalasin B, suggesting that these cells have the capability of oxidizing alternative on-board metabolic fuels. Cells produced lactate at low rates but glycogen levels did not change during the incubation period. In cells from both species, glucose utilization assessed by both simple chemical analysis of glucose disappearance from the medium and (3)H2O production was half the rate of lactate production and as such extracellular glucose was not available for oxidative metabolism. Overall, extracellular glucose makes only a minor contribution to ATP production but a sustained glycolysis may be necessary to support Ca(2+) transport mechanisms at either the sarcoplasmic reticulum or the sarcolemmal membrane.
Subject(s)
Gadus morhua/physiology , Glucose/metabolism , Lactic Acid/metabolism , Perciformes/physiology , Aerobiosis , Animals , Biological Transport , Blood Glucose/analysis , Blood Glucose/metabolism , Gadus morhua/blood , Myocytes, Cardiac/metabolism , Oxygen Consumption , Perciformes/bloodABSTRACT
Complex performance diagnostics in sports medicine should contain maximal aerobic and maximal anaerobic performance. The requirements on appropriate stress protocols are high. To validate a test protocol quality criteria like objectivity and reliability are necessary. Therefore, the present study was performed in intention to analyze the reliability of maximal lactate production rate ([Formula: see text]Lamax) by using a sprint test, maximum oxygen consumption ([Formula: see text]O2max) by using a ramp test and, based on these data, resulting power in calculated maximum lactate-steady-state (PMLSS) especially for amateur cyclists. All subjects (n = 23, age 26 ± 4 years) were leisure cyclists. At three different days they completed first a sprint test to approximate [Formula: see text]Lamax. After 60 min of recreation time a ramp test to assess [Formula: see text]O2max was performed. The results of [Formula: see text]Lamax-test and [Formula: see text]O2max-test and the body weight were used to calculate PMLSS for all subjects. The intra class correlation (ICC) for [Formula: see text]Lamax and [Formula: see text]O2max was 0.904 and 0.987, respectively, coefficient of variation (CV) was 6.3% and 2.1%, respectively. Between the measurements the reliable change index of 0.11 mmol·l (-1)s (-1) for [Formula: see text]Lamax and 3.3 mlkg (-1)min (-1) for [Formula: see text]O2max achieved significance. The mean of the calculated PMLSS was 237 ± 72 W with an RCI of 9 W and reached with ICC = 0.985 a very high reliability. Both metabolic performance tests and the calculated PMLSS are reliable for leisure cyclists.
ABSTRACT
Hypothalamic appetite regulators neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) are modulated by glucose. This study investigated how maternal obesity disturbs glucose regulation of NPY and POMC, and whether this deregulation is linked to abnormal hypothalamic glucose uptake-lactate conversion. As post-natal high-fat diet (HFD) can exaggerate the effects of maternal obesity, its additional impact was also investigated. Female Sprague Dawley rats were fed a HFD (20 kJ/g) to model maternal obesity. At weaning, male pups were fed chow or HFD. At 9 weeks, in vivo hypothalamic NPY and POMC mRNA responses to acute hyperglycemia were measured; while hypothalami were glucose challenged in vitro to assess glucose uptake-lactate release and related gene expression. Maternal obesity dampened in vivo hypothalamic NPY response to acute hyperglycemia, and lowered in vitro hypothalamic glucose uptake and lactate release. When challenged with 20 mM glucose, hypothalamic glucose transporter 1, monocarboxylate transporters, lactate dehydrogenase-b, NPY and POMC mRNA expression were down-regulated in offspring exposed to maternal obesity. Post-natal HFD consumption reduced in vitro lactate release and monocarboxylate transporter 2 mRNA, but increased POMC mRNA levels when challenged with 20 mM glucose. Overall, maternal obesity produced stronger effects than post-natal HFD consumption to impair hypothalamic glucose metabolism. However, they both disturbed NPY response to hyperglycemia, potentially leading to hyperphagia.
Subject(s)
Brain Chemistry/physiology , Glucose/metabolism , Hyperglycemia/physiopathology , Obesity/metabolism , Prenatal Exposure Delayed Effects/metabolism , Adiposity/physiology , Animals , Cohort Studies , Female , Glucose/pharmacology , Glucose Transporter Type 1/metabolism , Growth/physiology , Hypothalamus/drug effects , Hypothalamus/metabolism , Male , Neuropeptide Y/biosynthesis , Pregnancy , Pro-Opiomelanocortin/biosynthesis , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , TOR Serine-Threonine Kinases/metabolism , Triglycerides/bloodABSTRACT
Titanium dioxide nanoparticles (TiO2 NPs) can reduce sperm number, but the mechanisms of defective spermatogenesis induced by TiO2 NPs have not been studied through cell-cell interactions at present. A kind of biomimetic three-dimensional blood-testis barrier microfluidic chip capable of intercellular communication was constructed with soft lithography techniques, including Sertoli cell (TM4), spermatogonia (GC-1) and vascular endothelial cell units, to study the mechanisms of TiO2 NPs-induced defective spermatogenesis. TM4 and GC-1 cells cultured in TiO2 NPs exposure and control chips were collected for transcriptomics and metabonomics analysis, and key proteins and metabolites in changed biological processes were validated. In TM4 cells, TiO2 NPs suppressed glucose metabolism, especially lactate production, which reduced energy substrate supply for spermatogenesis. TiO2 NPs also decreased the levels of key proteins and metabolites of lactate production. In GC-1 cells, TiO2 NPs disturbed chemokine signaling pathways regulating cell proliferation and interfered with glutathione metabolism. The Cxcl13, Stat3 and p-Stat3 levels and cell proliferation rate were decreased, and the GSR, GPX4 and GSH contents were increased in GC-1 cells in chips under TiO2 NPs treatment. The decrease in energy substrate supply for spermatogenesis and inhibition of spermatogonia proliferation could be the main mechanisms of defective spermatogenesis induced by TiO2 NPs.