Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.105
Filter
Add more filters

Publication year range
1.
Cell ; 187(13): 3319-3337.e18, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38810645

ABSTRACT

The development of perennial crops holds great promise for sustainable agriculture and food security. However, the evolution of the transition between perenniality and annuality is poorly understood. Here, using two Brassicaceae species, Crucihimalaya himalaica and Erysimum nevadense, as polycarpic perennial models, we reveal that the transition from polycarpic perennial to biennial and annual flowering behavior is a continuum determined by the dosage of three closely related MADS-box genes. Diversification of the expression patterns, functional strengths, and combinations of these genes endows species with the potential to adopt various life-history strategies. Remarkably, we find that a single gene among these three is sufficient to convert winter-annual or annual Brassicaceae plants into polycarpic perennial flowering plants. Our work delineates a genetic basis for the evolution of diverse life-history strategies in plants and lays the groundwork for the generation of diverse perennial Brassicaceae crops in the future.


Subject(s)
Brassicaceae , Flowers , Gene Expression Regulation, Plant , Brassicaceae/genetics , Brassicaceae/physiology , Crops, Agricultural/genetics , Flowers/genetics , Flowers/physiology , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Plant Physiological Phenomena , Chromosome Mapping , Mutation
2.
Cell ; 178(2): 385-399.e20, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31257025

ABSTRACT

To uncover the selective forces shaping life-history trait evolution across species, we investigate the genomic basis underlying adaptations to seasonal habitat desiccation in African killifishes, identifying the genetic variants associated with positive and relaxed purifying selection in 45 killifish species and 231 wild individuals distributed throughout sub-Saharan Africa. In annual species, genetic drift led to the expansion of nuclear and mitochondrial genomes and caused the accumulation of deleterious genetic variants in key life-history modulating genes such as mtor, insr, ampk, foxo3, and polg. Relaxation of purifying selection is also significantly associated with mitochondrial function and aging in human populations. We find that relaxation of purifying selection prominently shapes genomes and is a prime candidate force molding the evolution of lifespan and the distribution of genetic variants associated with late-onset diseases in different species. VIDEO ABSTRACT.


Subject(s)
Longevity , Selection, Genetic , Aging , Animals , DNA Replication , Evolution, Molecular , Gene Frequency , Genome, Mitochondrial , Killifishes/classification , Killifishes/genetics , Mitochondria/genetics , Mitochondria/metabolism , Mutation , Phylogeny , Phylogeography
3.
Annu Rev Cell Dev Biol ; 33: 555-575, 2017 10 06.
Article in English | MEDLINE | ID: mdl-28693387

ABSTRACT

Our understanding of the detailed molecular mechanisms underpinning adaptation is still poor. One example for which mechanistic understanding of regulation has converged with studies of life history variation is Arabidopsis thaliana FLOWERING LOCUS C (FLC). FLC determines the need for plants to overwinter and their ability to respond to prolonged cold in a process termed vernalization. This review highlights how molecular analysis of vernalization pathways has revealed important insight into antisense-mediated chromatin silencing mechanisms that regulate FLC. In turn, such insight has enabled molecular dissection of the diversity in vernalization across natural populations of A. thaliana. Changes in both cotranscriptional regulation and epigenetic silencing of FLC are caused by noncoding polymorphisms at FLC. The FLC locus is therefore providing important concepts for how noncoding transcription and chromatin regulation influence gene expression and how these mechanisms can vary to underpin adaptation in natural populations.


Subject(s)
Adaptation, Physiological/genetics , Epigenesis, Genetic , Genetic Loci , Plant Proteins/genetics , Biological Evolution , Flowers/physiology
4.
Proc Natl Acad Sci U S A ; 121(25): e2403491121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38875146

ABSTRACT

Animals, and mammals in particular, vary widely in their "pace of life," with some species living long lives and reproducing infrequently (slow life histories) and others living short lives and reproducing often (fast life histories). These species also vary in the importance of maternal care in offspring fitness: In some species, offspring are fully independent of their mothers following a brief period of nutritional input, while others display a long period of continued dependence on mothers well after nutritional dependence. Here, we hypothesize that these two axes of variation are causally related to each other, such that extended dependence of offspring on maternal presence leads to the evolution of longer lives at the expense of reproduction. We use a combination of deterministic modeling and stochastic agent-based modeling to explore how empirically observed links between maternal survival and offspring fitness are likely to shape the evolution of mortality and fertility. Each of our modeling approaches leads to the same conclusion: When maternal survival has a strong impact on the survival of offspring and grandoffspring, populations evolve longer lives with less frequent reproduction. Our results suggest that the slow life histories of humans and other primates as well as other long-lived, highly social animals such as hyenas, whales, and elephants are partially the result of the strong maternal care that these animals display. We have designed our models to be readily parameterized with demographic data that are routinely collected by long-term researchers, which will facilitate more thorough testing of our hypothesis.


Subject(s)
Biological Evolution , Longevity , Maternal Behavior , Reproduction , Animals , Female , Maternal Behavior/physiology , Reproduction/physiology , Longevity/physiology , Humans , Models, Biological , Fertility
5.
Bioessays ; 46(1): e2300098, 2024 01.
Article in English | MEDLINE | ID: mdl-38018264

ABSTRACT

The evolution and biodiversity of ageing have long fascinated scientists and the public alike. While mammals, including long-lived species such as humans, show a marked ageing process, some species of reptiles and amphibians exhibit very slow and even the absence of ageing phenotypes. How can reptiles and other vertebrates age slower than mammals? Herein, I propose that evolving during the rule of the dinosaurs left a lasting legacy in mammals. For over 100 million years when dinosaurs were the dominant predators, mammals were generally small, nocturnal, and short-lived. My hypothesis is that such a long evolutionary pressure on early mammals for rapid reproduction led to the loss or inactivation of genes and pathways associated with long life. I call this the 'longevity bottleneck hypothesis', which is further supported by the absence in mammals of regenerative traits. Although mammals, such as humans, can evolve long lifespans, they do so under constraints dating to the dinosaur era.


Subject(s)
Dinosaurs , Longevity , Animals , Aging/physiology , Dinosaurs/physiology , Mammals/physiology , Reptiles , Biological Evolution
6.
Proc Natl Acad Sci U S A ; 120(14): e2214244120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36972440

ABSTRACT

Seasonal tropical environments are among those regions that are the most affected by shifts in temperature and rainfall regimes under climate change, with potentially severe consequences for wildlife population persistence. This persistence is ultimately determined by complex demographic responses to multiple climatic drivers, yet these complexities have been little explored in tropical mammals. We use long-term, individual-based demographic data (1994 to 2020) from a short-lived primate in western Madagascar, the gray mouse lemur (Microcebus murinus), to investigate the demographic drivers of population persistence under observed shifts in seasonal temperature and rainfall. While rainfall during the wet season has been declining over the years, dry season temperatures have been increasing, with these trends projected to continue. These environmental changes resulted in lower survival and higher recruitment rates over time for gray mouse lemurs. Although the contrasting changes have prevented the study population from collapsing, the resulting increase in life-history speed has destabilized an otherwise stable population. Population projections under more recent rainfall and temperature levels predict an increase in population fluctuations and a corresponding increase in the extinction risk over the next five decades. Our analyses show that a relatively short-lived mammal with high reproductive output, representing a life history that is expected to closely track changes in its environment, can nonetheless be threatened by climate change.


Subject(s)
Cheirogaleidae , Climate Change , Animals , Humans , Population Dynamics , Animals, Wild , Temperature , Mammals , Seasons , Cheirogaleidae/physiology
7.
Proc Natl Acad Sci U S A ; 119(33): e2201371119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939680

ABSTRACT

Aging is the price to pay for acquiring and processing energy through cellular activity and life history productivity. Climate warming can exacerbate the inherent pace of aging, as illustrated by a faster erosion of protective telomere DNA sequences. This biomarker integrates individual pace of life and parental effects through the germline, but whether intra- and intergenerational telomere dynamics underlies population trends remains an open question. Here, we investigated the covariation between life history, telomere length (TL), and extinction risk among three age classes in a cold-adapted ectotherm (Zootoca vivipara) facing warming-induced extirpations in its distribution limits. TL followed the same threshold relationships with population extinction risk at birth, maturity, and adulthood, suggesting intergenerational accumulation of accelerated aging rate in declining populations. In dwindling populations, most neonates inherited already short telomeres, suggesting they were born physiologically old and unlikely to reach recruitment. At adulthood, TL further explained females' reproductive performance, switching from an index of individual quality in stable populations to a biomarker of reproductive costs in those close to extirpation. We compiled these results to propose the aging loop hypothesis and conceptualize how climate-driven telomere shortening in ectotherms may accumulate across generations and generate tipping points before local extirpation.


Subject(s)
Aging , Extinction, Biological , Global Warming , Lizards , Telomere Shortening , Telomere , Aging/genetics , Animals , Female , Lizards/genetics , Population Dynamics , Reproduction , Risk , Telomere/genetics
8.
Proc Natl Acad Sci U S A ; 119(10): e2114674119, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35238685

ABSTRACT

SignificanceHere, we demonstrate that a naturally evolving behavior (allonursing) has greater effect on reproductive power (mass per unit of time) and output (litter mass at birth) than does artificial selection (domestication). Additionally, we demonstrate the importance of resource optimization afforded by sociality (rather than resource abundance per se) in shaping a species' life history profile and its ability to overcome its own physiological constraints.


Subject(s)
Lactation , Litter Size , Milk , Animals , Female , Male , Mice
9.
Proc Natl Acad Sci U S A ; 119(18): e2122052119, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35476523

ABSTRACT

A substantial body of literature reports that ctenophores exhibit an apparently unique life history characterized by biphasic sexual reproduction, the first phase of which is called larval reproduction or dissogeny. Whether this strategy is plastically deployed or a typical part of these species' life history was unknown. In contrast to previous reports, we show that the ctenophore Mnemiopsis leidyi does not have separate phases of early and adult reproduction, regardless of the morphological transition to what has been considered the adult form. Rather, these ctenophores begin to reproduce at a small body size and spawn continuously from this point onward under adequate environmental conditions. They do not display a gap in productivity for metamorphosis or other physiological transition at a certain body size. Furthermore, nutritional and environmental constraints on fecundity are similar in both small and large animals. Our results provide critical parameters for understanding resource partitioning between growth and reproduction in this taxon, with implications for management of this species in its invaded range. Finally, we report an observation of similarly small-size spawning in a beroid ctenophore, which is morphologically, ecologically, and phylogenetically distinct from other ctenophores reported to spawn at small sizes. We conclude that spawning at small body size should be considered as the default, on-time developmental trajectory rather than as precocious, stress-induced, or otherwise unusual for ctenophores. The ancestral ctenophore was likely a direct developer, consistent with the hypothesis that multiphasic life cycles were introduced after the divergence of the ctenophore lineage.


Subject(s)
Ctenophora , Animals , Female , Larva , Life Cycle Stages , Parturition , Pregnancy , Reproduction
10.
Proc Natl Acad Sci U S A ; 119(33): e2205564119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35943983

ABSTRACT

Male-female coevolution has taken different paths among closely related species, but our understanding of the factors that govern its direction is limited. While it is clear that ecological factors, life history, and the economics of reproduction are connected, the divergent links are often obscure. We propose that a complete understanding requires the conceptual integration of metabolic phenotypes. Metabolic rate, a nexus of life history evolution, is constrained by ecological factors and may exert important direct and indirect effects on the evolution of sexual dimorphism. We performed standardized experiments in 12 seed beetle species to gain a rich set of sex-specific measures of metabolic phenotypes, life history traits, and the economics of mating and analyzed our multivariate data using phylogenetic comparative methods. Resting metabolic rate (RMR) showed extensive evolution and evolved more rapidly in males than in females. The evolution of RMR was tightly coupled with a suite of life history traits, describing a pace-of-life syndrome (POLS), with indirect effects on the economics of mating. As predicted, high resource competition was associated with a low RMR and a slow POLS. The cost of mating showed sexually antagonistic coevolution, a hallmark of sexual conflict. The sex-specific costs and benefits of mating were predictably related to ecology, primarily through the evolution of male ejaculate size. Overall, our results support the tenet that resource competition affects metabolic processes that, in turn, have predictable effects on both life history evolution and reproduction, such that ecology shows both direct and indirect effects on male-female coevolution.


Subject(s)
Basal Metabolism , Biological Evolution , Coleoptera , Sexual Behavior, Animal , Animals , Coleoptera/metabolism , Female , Male , Phylogeny , Reproduction
11.
Proc Natl Acad Sci U S A ; 119(28): e2200073119, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35867741

ABSTRACT

In classical evolutionary models, the force of natural selection diminishes with age toward zero by last reproduction. However, intergenerational resource transfers and other late-life contributions in social species may select for postreproductive longevity. We present a formal framework for estimating indirect fitness contributions via production transfers in a skills-intensive foraging niche, reflecting kinship and cooperation among group members. Among contemporary human hunter-gatherers and horticulturalists, indirect fitness contributions from transfers exceed direct reproductive contributions from before menopause until ages when surpluses end, around the modal age of adult death (∼70 y). Under reasonable assumptions, these benefits are the equivalent to having up to several more offspring after age 50. Despite early independence, minimal production surplus, and a shorter lifespan, chimpanzees could theoretically make indirect contributions if they adopted reliable food-sharing practices. Our results for chimpanzees hypothetically adopting hunter-gatherer subsistence suggest that a skills-intensive foraging ecology with late independence and late peak production could select for human-like life histories via positive feedback between longevity and late-life transfers. In contrast, life history changes preceding subsistence shifts would not favor further life extension or subsistence shifts. Our results formalize the theory that longevity can be favored under socioecological conditions characterized by parental and alloparental care funded through transfers of mid- to late-life production surpluses. We also extend our analysis beyond food transfers to illustrate the potential for indirect fitness contributions from pedagogy, or information transfers. While we focus mostly on humans, our approach is adaptable to any context or species where transfers can affect fitness.


Subject(s)
Biological Evolution , Life Expectancy , Longevity , Selection, Genetic , Adult , Aged , Female , Humans , Middle Aged , Reproduction
12.
Annu Rev Entomol ; 69: 99-116, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-37585607

ABSTRACT

Among the ground-nesting bees are several proven crop pollinators, but only the alkali bee (Nomia melanderi) has been successfully managed. In <80 years, it has become the world's most intensely studied ground-nesting solitary bee. In many ways, the bee seems paradoxical. It nests during the torrid, parched midsummer amid arid valleys and basins of the western United States, yet it wants damp nesting soil. In these basins, extensive monocultures of an irrigated Eurasian crop plant, alfalfa (lucerne), subsidize millions of alkali bees. Elsewhere, its polylectic habits and long foraging range allow it to stray into neighboring crops contaminated with insecticides. Primary wild floral hosts are either non-native or poorly known. Kleptoparasitic bees plague most ground nesters, but not alkali bees, which do, however, host other well-studied parasitoids. Building effective nesting beds requires understanding the hydraulic conductivity of silty nesting soils and its important interplay with specific soil mineral salts. Surprisingly, some isolated populations endure inhospitably cold climates by nesting amid hot springs. Despite the peculiarities and challenges associated with its management, the alkali bee remains the second most valuable managed solitary bee for US agriculture and perhaps the world.


Subject(s)
Agriculture , Crops, Agricultural , Bees , Animals , Environment , Soil , Pollination
13.
Annu Rev Entomol ; 69: 219-237, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-37708416

ABSTRACT

Throughout the past century, the global spread of Bactrocera pests has continued to pose a significant threat to the commercial fruit and vegetable industry, resulting in substantial costs associated with both control measures and quarantine restrictions. The increasing volume of transcontinental trade has contributed to an escalating rate of Bactrocera pest introductions to new regions. To address the worldwide threat posed by this group of pests, we first provide an overview of Bactrocera. We then describe the global epidemic, including border interceptions, species diagnosis, population genetics, geographical expansion, and invasion tracing of Bactrocera pests. We further consider the literature concerning the invasion co-occurrences, life-history flexibility, risk assessment, bridgehead effects, and ongoing implications of invasion recurrences, as well as a case study of Bactrocera invasions of California. Finally, we call for global collaboration to effectively monitor, prevent, and control the ongoing spread of Bactrocera pests and to share experience and knowledge to combat it.


Subject(s)
Tephritidae , Animals , Geography , Risk Assessment
14.
Plant J ; 116(3): 921-941, 2023 11.
Article in English | MEDLINE | ID: mdl-37609706

ABSTRACT

Schrenkiella parvula, a leading extremophyte model in Brassicaceae, can grow and complete its lifecycle under multiple environmental stresses, including high salinity. Yet, the key physiological and structural traits underlying its stress-adapted lifestyle are unknown along with trade-offs when surviving salt stress at the expense of growth and reproduction. We aimed to identify the influential adaptive trait responses that lead to stress-resilient and uncompromised growth across developmental stages when treated with salt at levels known to inhibit growth in Arabidopsis and most crops. Its resilient growth was promoted by traits that synergistically allowed primary root growth in seedlings, the expansion of xylem vessels across the root-shoot continuum, and a high capacity to maintain tissue water levels by developing thicker succulent leaves while enabling photosynthesis during salt stress. A successful transition from vegetative to reproductive phase was initiated by salt-induced early flowering, resulting in viable seeds. Self-fertilization in salt-induced early flowering was dependent upon filament elongation in flowers otherwise aborted in the absence of salt during comparable plant ages. The maintenance of leaf water status promoting growth, and early flowering to ensure reproductive success in a changing environment, were among the most influential traits that contributed to the extremophytic lifestyle of S. parvula.


Subject(s)
Arabidopsis , Brassicaceae , Brassicaceae/physiology , Arabidopsis/physiology , Flowers , Salt Stress , Stress, Physiological , Water
15.
Physiology (Bethesda) ; 38(6): 0, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37698354

ABSTRACT

Most explanations for the relationship between body size and metabolism invoke physical constraints; such explanations are evolutionarily inert, limiting their predictive capacity. Contemporary approaches to metabolic rate and life history lack the pluralism of foundational work. Here, we call for reforging of the lost links between optimization approaches and physiology.


Subject(s)
Energy Metabolism , Models, Biological , Humans , Body Size/physiology , Energy Metabolism/physiology
16.
Ecol Lett ; 27(5): e14445, 2024 May.
Article in English | MEDLINE | ID: mdl-38783648

ABSTRACT

Mammalian life history strategies can be characterised by a few axes of variation, conforming a space where species are positioned based on the life history strategies favoured in the environment they exploit. Yet, we still lack global descriptions of the diversity of realised mammalian life history and how this diversity is shaped by the environment. We used six life history traits to build a life history space covering worldwide mammalian adaptation, and we explored how environmental realms (land, air, water) influence mammalian life history strategies. We demonstrate that realms are tightly linked to distinct life history strategies. Aquatic and aerial species predominantly adhere to slower life history strategies, while terrestrial species exhibit faster life histories. Highly encephalised terrestrial species are a notable exception to these patterns. Furthermore, we show that different mode of life may play a significant role in expanding the set of strategies exploitable in the terrestrial realm. Additionally, species transitioning between terrestrial and aquatic realms, such as seals, exhibit intermediate life history strategies. Our results provide compelling evidence of the link between environmental realms and the life history diversity of mammals, highlighting the importance of differences in mode of life to expand life history diversity.


Subject(s)
Adaptation, Physiological , Biodiversity , Biological Evolution , Life History Traits , Mammals , Animals , Environment
17.
Ecol Lett ; 27(2): e14392, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38400796

ABSTRACT

Trade-offs between current and future reproduction manifest as a set of co-varying life history and metabolic traits, collectively referred to as 'pace of life' (POL). Seasonal migration modulates environmental dynamics and putatively affects POL, however, the mechanisms by which migratory behaviour shapes POL remain unclear. We explored how migratory behaviour interacts with environmental and metabolic dynamics to shape POL. Using an individual-based model of movement and metabolism, we compared fitness-optimized trade-offs among migration strategies. We found annual experienced seasonality modulated by migratory movements and distance between end-points primarily drove POL differentiation through developmental and migration phenology trade-offs. Similarly, our analysis of empirically estimated metabolic data from 265 bird species suggested seasonal niche tracking and migration distance interact to drive POL. We show multiple viable life-history strategies are conducive to a migratory lifestyle. Overall, our findings suggest metabolism mediates complex interactions between behaviour, environment and life history.


Subject(s)
Life History Traits , Animals , Seasons , Reproduction , Birds , Phenotype , Animal Migration
18.
Ecol Lett ; 27(5): e14438, 2024 May.
Article in English | MEDLINE | ID: mdl-38783567

ABSTRACT

Species' persistence in increasingly variable climates will depend on resilience against the fitness costs of environmental stochasticity. Most organisms host microbiota that shield against stressors. Here, we test the hypothesis that, by limiting exposure to temporally variable stressors, microbial symbionts reduce hosts' demographic variance. We parameterized stochastic population models using data from a 14-year symbiont-removal experiment including seven grass species that host Epichloë fungal endophytes. Results provide novel evidence that symbiotic benefits arise not only through improved mean fitness, but also through dampened inter-annual variance. Hosts with "fast" life-history traits benefited most from symbiont-mediated demographic buffering. Under current climate conditions, contributions of demographic buffering were modest compared to benefits to mean fitness. However, simulations of increased stochasticity amplified benefits of demographic buffering and made it the more important pathway of host-symbiont mutualism. Microbial-mediated variance buffering is likely an important, yet cryptic, mechanism of resilience in an increasingly variable world.


Subject(s)
Epichloe , Stochastic Processes , Symbiosis , Epichloe/physiology , Poaceae/microbiology , Poaceae/physiology , Endophytes/physiology , Models, Biological , Microbiota
19.
Ecol Lett ; 27(5): e14434, 2024 May.
Article in English | MEDLINE | ID: mdl-38716556

ABSTRACT

Anthropogenic habitat modification can indirectly effect reproduction and survival in social species by changing the group structure and social interactions. We assessed the impact of habitat modification on the fitness and life history traits of a cooperative breeder, the Arabian babbler (Argya squamiceps). We collected spatial, reproductive and social data on 572 individuals belonging to 21 social groups over 6 years and combined it with remote sensing to characterize group territories in an arid landscape. In modified resource-rich habitats, groups bred more and had greater productivity, but individuals lived shorter lives than in natural habitats. Habitat modification favoured a faster pace-of-life with lower dispersal and dominance acquisition ages, which might be driven by higher mortality providing opportunities for the dominant breeding positions. Thus, habitat modification might indirectly impact fitness through changes in social structures. This study shows that trade-offs in novel anthropogenic opportunities might offset survival costs by increased productivity.


Subject(s)
Ecosystem , Life History Traits , Animals , Male , Female , Reproduction , Passeriformes/physiology , Genetic Fitness , Anthropogenic Effects
20.
Ecol Lett ; 27(3): e14417, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38549264

ABSTRACT

Life table response experiments (LTREs) decompose differences in population growth rate between environments into separate contributions from each underlying demographic rate. However, most LTRE analyses make the unrealistic assumption that the relationships between demographic rates and environmental drivers are linear and independent, which may result in diminished accuracy when these assumptions are violated. We extend regression LTREs to incorporate nonlinear (second-order) terms and compare the accuracy of both approaches for three previously published demographic datasets. We show that the second-order approach equals or outperforms the linear approach for all three case studies, even when all of the underlying vital rate functions are linear. Nonlinear vital rate responses to driver changes contributed most to population growth rate responses, but life history changes also made substantial contributions. Our results suggest that moving from linear to second-order LTRE analyses could improve our understanding of population responses to changing environments.


Subject(s)
Population Growth , Life Tables , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL