ABSTRACT
We aimed to explore the aberrant expression status of hsa-miR-141-3p and dual-specificity protein phosphatase 1 (DUSP1) and their relative mechanisms in uterine cervical carcinoma (UCC).Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) was conducted to detect the expression of hsa-miR-141-3p. Immunohistochemical (IHC) staining was performed to examine the expression of DUSP1 in UCC. Gene chips and RNA-seq datasets were also obtained to assess the expression level. Integrated standardized mean difference (SMD) was calculated to evaluate the expression status of hsa-miR-141-3p in UCC tissues comprehensively. DUSP1-overexpression and hsa-miR-141-3p-inhibition HeLa cells were established, and CCK-8, transwell, wound healing, cell cycle, and apoptosis assays were implemented. The targets of hsa-miR-141-3p were obtained with online tools, and the combination of hsa-miR-141-3p and DUSP1 was validated via dual-luciferase reporter assay. Single-cell RNA-seq data were analyzed to explore hsa-miR-141-3p and DUSP1 in different cells. An integrated SMD of 1.41 (95% CI[0.45, 2.38], p = 0.0041) with 558 samples revealed the overexpression of hsa-miR-141-3p in UCC tissues. And the pooled SMD of -1.06 (95% CI[-1.45, -0.66], p < 0.0001) with 1,268 samples indicated the downregulation of DUSP1. Inhibition of hsa-miR-141-3p could upregulate DUSP1 expression and suppress invasiveness and metastasis of HeLa cells. Overexpression of DUSP1 could hamper proliferation, invasion, and migration and boost apoptosis and distribution of G1 phase. The dual-luciferase reporter assay validated the combination of hsa-miR-141-3p and DUSP1. Moreover, the targets of hsa-miR-141-3p were mainly enriched in the MAPK signaling pathway and activated in fibroblasts and endothelial cells. The current study illustrated the upregulation of hsa-miR-141-3p and the downregulation of DUSP1 in UCC tissues. Hsa-miR-141-3p could promote UCC progression by targeting DUSP1.
Subject(s)
Dual Specificity Phosphatase 1 , MicroRNAs , Up-Regulation , Uterine Cervical Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Female , HeLa Cells , Cell Proliferation , Gene Expression Regulation, Neoplastic , Apoptosis , Cell Movement , Disease ProgressionABSTRACT
Hypertrophic scar (HS) is a common fibroproliferative disease caused by abnormal wound healing after deep skin injury. However, the existing approaches have unsatisfactory therapeutic effects, which promote the exploration of newer and more effective strategies. MiRNA-modified functional exosomes delivered by dissolvable microneedle arrays (DMNAs) are expected to provide new hope for HS treatment. In this study, a miRNA, miR-141-3p, which is downregulated in skin scar tissues and in hypertrophic scar fibroblasts (HSFs), is identified. MiR-141-3p mimics inhibit the proliferation, migration, and myofibroblast transdifferentiation of HSFs in vitro by targeting TGF-ß2 to suppress the TGF-ß2/Smad pathway. Subsequently, the engineered exosomes encapsulating miR-141-3p (miR-141-3pOE -Exos) are isolated from adipose-derived mesenchymal stem cells transfected with Lv-miR-141-3p. MiR-141-3pOE -Exos show the same inhibitive effects as miR-141-3p mimics on the pathological behaviors of HSFs in vitro. The DMNAs for sustained release of miR-141-3pOE -Exos are further fabricated in vivo. MiR-141OE -Exos@DMNAs effectively decrease the thickness of HS and improve fibroblast distribution and collagen fiber arrangement, and downregulate the expression of α-SMA, COL-1, FN, TGF-ß2, and p-Smad2/3 in the HS tissue. Overall, a promising, effective, and convenient exosome@DMNA-based miRNA delivery strategy for HS treatment is provided.
Subject(s)
Cicatrix, Hypertrophic , Exosomes , MicroRNAs , Humans , Cicatrix, Hypertrophic/therapy , Cicatrix, Hypertrophic/genetics , Cicatrix, Hypertrophic/metabolism , Transforming Growth Factor beta2/metabolism , Exosomes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Fibroblasts/metabolism , Cell Proliferation/geneticsABSTRACT
BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious virus that uses angiotensin converting enzyme 2 (ACE2), a pivotal member of the renin-angiotensin system (RAS), as its cell-entry receptor. Another member of the RAS, angiotensin II (Ang II), is the major biologically active component in this system. There is growing evidence suggesting that serum miRNAs could serve as prognostic biomarkers for SARS-CoV-2 infection and regulate ACE2 expression. Therefore, the aim of this study is to evaluate the changes in the serum levels of sACE2 and Ang II, as well as the expression level of miR-141-3p and miR-421 in SARS-CoV-2 positive and negative subjects. METHODS: In the present study, the serum levels of sACE2 and Ang II were measured in 94 SARS-CoV-2 positive patients and 94 SARS-CoV-2 negative subjects with some symptoms similar to those of SARS-CoV-2 positive patients using the ELISA method. In addition, the expression level of miR-141-3p and miR-421 as ACE2 regulators and biomarkers was evaluated using quantitative real-time PCR (qRT-PCR) method. RESULTS: The mean serum sACE2 concentration in the SARS-CoV-2-positive group was 3.268 ± 0.410 ng/ml, whereas in the SARS-CoV-2 negative group, it was 3.564 ± 0.437 ng/ml. Additionally, the mean serum Ang II level in the SARS-CoV-2 positive and negative groups were 60.67 ± 6.192 ng/L and 67.97 ± 6.837 ng/L, respectively. However, there was no significant difference in the serum levels of sACE2 (P value: 0.516) and Ang II (P value: 0.134) between the SARS-CoV-2 positive and negative groups. Meanwhile, our findings indicated that the expression levels of miR-141-3p and miR-421 in SARS-CoV-2 positive group were significantly lower and higher than SARS-CoV-2 negative group, respectively (P value < 0.001). CONCLUSIONS: Taken together, the results of this study showed that the serum levels of sACE2 and Ang II in SARS-CoV-2 positive and negative subjects were not significantly different, but the expression levels of miR-141-3p and miR-421 were altered in SARS-CoV-2 positive patients which need more investigation to be used as biomarkers for COVID-19 diagnosis.
Subject(s)
Angiotensin II , Angiotensin-Converting Enzyme 2 , COVID-19 , MicroRNAs , SARS-CoV-2 , Humans , MicroRNAs/blood , COVID-19/diagnosis , COVID-19/blood , COVID-19/virology , Angiotensin-Converting Enzyme 2/blood , Angiotensin-Converting Enzyme 2/genetics , Angiotensin II/blood , Male , Female , Case-Control Studies , Middle Aged , Adult , Biomarkers/blood , AgedABSTRACT
This study aims to explore novel and reliable biomarkers for predicting hepatocellular carcinoma (HCC) prognosis. Circular RNAs (circRNAs) were determined by analysis of human circRNA arrays and quantitative reverse transcription polymerase reactions. To test for an interaction between circDLG1, we used luciferase reporter assays, RNA immunoprecipitation, and fluorescence in situ hybridization assays that were employed to test the interaction between circDLG1, miR-141-3p, and WTAP. q-RT-PCR and western blot were used to evaluate the target regulation of miR-141-3p and WTAP. shRNA-mediated knockdown of circDLG1, proliferation, migration, and invasion experiment of metastasis were used to evaluate the function of circDLG. CircDLG1 rather than lining DLG1 was upregulated in HCC tissues, from HCC patients as well as HCC cell lines compared to normal controls. circDLG1 high expression in HCC patients was correlated with shorter overall survival. Knockdown of circDLG1 and miR-141-3p mimic could inhibit the tumorigenesis of HCC cells in vivo and in vitro. Importantly, we demonstrated that circDLG1 could act as a sponge of miR-141-3p to regulate the expression of WTAP, and further suppress the tumorigenesis of HCC cells. Our study reveals that circDLG1 can serve as a novel potential circulating biomarker for the detection of HCC. circDLG1 participates in the progression of HCC cells by sponging miR-141-3p with WTAP, providing new insight into the treatment of HCC.
Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Carcinogenesis/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , In Situ Hybridization, Fluorescence , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA, Circular/geneticsABSTRACT
Endometriosis is a chronic inflammatory disease distinguished by ectopic endometrium and fibrosis. NLRP3 inflammasome and pyroptosis are present in endometriosis. Aberrant increase of Long noncoding (Lnc)-metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays a vital role in endometriosis. However, the relationship between lnc-MALAT1, pyroptosis, and fibrosis is not completely known. In the present study, we found that the pyroptosis levels in ectopic endometrium of patients with endometriosis were significantly increased, consistent with fibrosis levels. Lipopolysaccharide (LPS) + ATP could induce pyroptosis of primary endometrial stromal cells (ESCs), thereby releasing interleukin (IL)-1ß and stimulating transforming growth factor (TGF)-ß1-mediated fibrosis. NLRP3 inhibitor MCC950 had the same effect as TGF-ß1 inhibitor SB-431542 in suppressing the fibrosis-inducing effect of LPS + ATP in vivo and in vitro. The abnormal increase of lnc-MALAT1 in ectopic endometrium was connected with NLRP3-mediated pyroptosis and fibrosis. Leveraging bioinformatic prediction and luciferase assays combined with western blotting and quantitative reverse transcriptase-polymerase chain reaction, we validated that lnc-MALAT1 sponges miR-141-3p to promote NLRP3 expression. Silencing lnc-MALAT1 in HESCs ameliorated NLRP3-mediated pyroptosis and IL-1ß release, thereby relieving TGF-ß1-mediated fibrosis. Consequently, our findings suggest that lnc-MALAT1 is critical for NLRP3-induced pyroptosis and fibrosis in endometriosis through sponging miR-141-3p, which may indicate a new therapeutic target of endometriosis treatment.
Subject(s)
Endometriosis , MicroRNAs , RNA, Long Noncoding , Female , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Pyroptosis , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RNA, Long Noncoding/metabolism , Transforming Growth Factor beta1/metabolism , Endometriosis/genetics , Lipopolysaccharides/pharmacology , Fibrosis , Adenosine TriphosphateABSTRACT
Adenomyosis (ADS) is a common benign gynecological disease. Abnormal proliferation at the endometrial-myometrial interface (EMI) plays a crucial role in the occurrence and progression of ADS. miR-141-3p is associated with cell proliferation and apoptosis. However, the specific mechanism of miR-141-3p in the etiology of ADS is still unknown. In this study, we explored the effects of miR-141-3p on the proliferation and apoptosis of ADS EMI smooth muscle cells (SMCs). We collected EMI tissues for the primary culture of SMCs from 25 patients diagnosed with ADS and 20 without ADS. Real-time quantitative polymerase chain reaction and western blot were used to measure the mRNA and protein expression levels of miR-141-3p, JAK2, STAT3, phospho-JAK2, and phospho-STAT3 in ADS EMI SMCs. The cell counting kit 8 assay and flow cytometry analysis were used to evaluate the proliferation and apoptosis of EMI SMCs. The miR-141-3p mimic/inhibitor was used to increase or decrease the expression level of miR-141-3p. We added WP1066 to block the phosphorylation of JAK2/STAT3 pathway components. The miR-141-3p levels were decreased, while JAK2 and STAT3 levels were increased in ADS EMI SMCs. miR-141-3p overexpression significantly inhibited the proliferation and enhanced the apoptosis of EMI SMCs, whereas a decrease in miR-141-3p expression level was connected to the opposite results. Meanwhile, inactivated JAK2/STAT3 pathway decreased proliferation and enhanced apoptosis of EMI SMCs after WP1066 treatment. Furthermore, rescue experiments confirmed that the JAK2/STAT3 pathway was the downstream pathway of miR-141-3p and reduced the effect of miR-141-3p on the proliferation and apoptosis of EMI SMCs. These results demonstrate that miR-141-3p regulates the proliferation and apoptosis of ADS EMI SMCs by modulating the JAK2/STAT3 pathway.
ABSTRACT
AIM: The premixed bioceramic sealer iRoot SP that is widely used clinically has been reported to kill bacterial biofilms and promote osteogenic differentiation of human stem cells from the apical papilla (hSCAPs). Although miR-141-3p has been substantiated to be involved in the osteogenic process, the underlying mechanisms remain unclear. The aim of this study was to investigate the role of miR-141-3p in osteogenic differentiation and underlying mechanisms of iRoot SP-treated hSCAPs. METHODOLOGY: hSCAPs were extracted from tissue blocks with enzyme digestion and identified by using immunofluorescence, flow cytometry and alizarin red staining. The mRNA expression level of miR-141-3p in hSCPAs after culture with iRoot SP was examined by quantitative real-time PCR (qRT-PCR) assay. SPAG9 was identified as a downstream target gene of miR-141-3p by dual-luciferase report assay. Alkaline phosphatase (ALP) staining and activity detection, alizarin red staining, calcium concentration assay, qRT-PCR and western blot were used to estimate osteogenic differentiation ability and involved protein expression levels of the osteogenic makers and signalling pathway-related factors in iRoot SP-treated hSCAPs. Data were analysed by one-way anova and post hoc Tukey's test to determine any statistical differences between the experimental groups and the control group. p < .05 was considered statistically significant. RESULTS: Expression of miR-141-3p was reduced in iRoot SP-treated hSCAPs with the increased exposure time up to 7 days, and the western blot and qRT-PCR results revealed that the osteogenic markers osteocalcin (OCN), osterix (OSX), runt-related transcription factor 2 (RUNX2) and dentin sialophosphoprotein (DSPP) were inversely correlated with miR-141-3p. The negative regulatory relationship between miR-141-3p and SPAG9/ mitogen-activated protein kinases (MAPK) signalling axis was validated in this in vitro experiments. CONCLUSIONS: The bioceramic sealer iRoot SP promoted osteogenic differentiation of hSCAPs by inhibiting miR-141-3p following down-regulated SPAG9 expression, and activated MAPK pathway. These findings proposed a novel therapeutic impact of bioceramic sealer iRoot SP inducing bone regeneration in refractory periapical periodontitis.
Subject(s)
MicroRNAs , Osteogenesis , Humans , Osteogenesis/genetics , MicroRNAs/metabolism , Mitogen-Activated Protein Kinases/metabolism , Cells, Cultured , Stem Cells/metabolism , Cell Differentiation/physiology , Adaptor Proteins, Signal Transducing/metabolismABSTRACT
Prostate cancer (PCa) is one of the leading causes of cancer-related death in males worldwide and exploring more reliable biomarkers for PCa is essential for the diagnosis and therapeutics for the disease. Although the functions of miR-141-3p and AlkB homolog 5 (ALKBH5) were identified in some cancers, whether they were involved in the development of PCa remains unclear. In this study, reverse transcription-quantitative polymerase chain reaction unveiled that the expression of ALKBH5 was reduced in PCa tissues and was negatively correlated with miR-141-3p. ALKBH5 attenuated the malignant development of PCa through suppressing the growth, migration, invasion, and sphere formation abilities of PCa cells. In addition, the luciferase activity assay identified that ALKBH5 was corroborated as a downstream target of miR-141-3p. Moreover, miR-141-3p expression was boosted in PCa tissues and cells and inhibition of miR-141-3p suppressed the tumor growth of PCa in vivo. Moreover, ALKBH5 was confirmed to suppress protein arginine methyltransferase 6 (PRMT6) expression through N6-methyladenosine (m6A) modification. We further identified that miR-141-3p-modulated PRMT6 level through mediating ALKBH5. Furthermore, PRMT6 level was positively correlated with miR-141-3p level and negatively associated with ALKBH5 level. Finally, rescue assays also uncovered that miR-141-3p aggravated PCa development by regulating PRMT6. In conclusion, miR-141-3p accelerated the malignant progression of PCa through ALKBH5-mediated m6A modification of PRMT6, which might offer a novel insight into the role of miR-141-3p and ALKBH5 in the treatments of PCa patients.
Subject(s)
AlkB Homolog 5, RNA Demethylase , MicroRNAs , Nuclear Proteins , Prostatic Neoplasms , Protein-Arginine N-Methyltransferases , Humans , Male , MicroRNAs/metabolism , Nuclear Proteins/metabolism , Prostatic Neoplasms/metabolism , Protein-Arginine N-Methyltransferases/metabolism , AlkB Homolog 5, RNA Demethylase/metabolismABSTRACT
Breast cancer (BC) is a public health problem worldwide, causing suffering and premature death among women. As a heterogeneous disease, BC-specific diagnosis and treatment are challenging. Ectonucleotidases are related to tumor development and their expression may vary among BC. miRNAs may participate in epigenetic events and may regulate ectonucleotidases in BC. This study aimed to evaluate the expression of ectonucleotidases according to BC subtypes and to predict if there is post-transcriptional regulation of them by miRNAs. MCF 10A (non-tumorigenic), MCF7 (luminal BC), and MDA-MB-231 (triple-negative BC - TNBC) breast cell lines were used and ENTPD1 (the gene encoding for NTPDase1) and NT5E (the gene encoding for ecto-5'-nucleotidase) gene expression was determined. Interestingly, the expression of ENTPD1 was only observed in MCF7 and NT5E was lower in MCF7 compared to MDA-MB-231 cell line. ATP, ADP, and AMP hydrolysis were observed on the surface of all cell lines, being higher in MDA-MB-231. Like qPCR, the activity of AMP hydrolysis was also lower in the MCF7 cells, which may represent a striking feature of this BC subtype. In silico analyses confirmed that the miRNAs miR-101-3p, miR-141-3p, and miR-340-5p were higher expressed in MCF7 cells and targeted NT5E mRNA. Altogether, data suggest that the regulation of NT5E by miRNAs in MCF7 lineage may direct the molecular profile of luminal BC. Thus, we suggest that the roles of ecto-5'-nucleotidase and the aforementioned miRNAs must be unraveled in TNBC to be possibly defined as diagnostic and therapeutic targets.
Subject(s)
Breast Neoplasms , MicroRNAs , Triple Negative Breast Neoplasms , 5'-Nucleotidase/genetics , 5'-Nucleotidase/metabolism , Antigens, CD , Apyrase , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , MicroRNAs/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathologyABSTRACT
BACKGROUND: Hepatic ischemia reperfusion injury (IRI) is a major factor affecting the prognosis of liver transplantation through a series of severe cell death and inflammatory responses. However, the potential role of miR-141-3p in hepatic IRI is currently unknown. METHODS: We collected the serum of liver transplantation patients to study the relationship between miR-141-3p and liver injury. A mouse hepatic IRI model was established to measure hepatic dysfunction and cell apoptosis. MiR-141-3p mimic and inhibitor were transfected into hepatocytes to explore the characteristics of hypoxia/reoxygenation (H/R), a classical hepatic IRI in vitro model. RESULTS: We found that miR-141-3p levels were negatively correlated with alanine aminotransferase (ALT)/aspartate aminotransferase (AST) in liver transplantation patients. The results demonstrated that miR-141-3p was decreased in mouse liver tissue after hepatic IRI in mice and in hepatocytes after H/R. Overexpression of miR-141-3p directly decreased Kelch-like ECH-associated protein 1 (Keap1) levels and attenuated cell apoptosis in vivo and in vitro, while inhibition of miR-141-3p facilitated apoptosis. Further experiments revealed that overexpression of miR-141-3p also attenuated oxidative stress-induced damage in hepatocytes under H/R conditions. CONCLUSIONS: Our results indicate that miR-141-3p plays a major role in hepatic IRI through the Keap1 signaling pathway, and the present study suggests that miR-141-3p might have a protective effect on hepatic IRI to some extent.
Subject(s)
Liver Diseases , MicroRNAs , Reperfusion Injury , Animals , Apoptosis/genetics , Disease Models, Animal , Hypoxia/metabolism , Ischemia , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Liver/metabolism , Liver Diseases/genetics , Liver Diseases/metabolism , Mice , MicroRNAs/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reperfusion Injury/genetics , Reperfusion Injury/metabolismABSTRACT
LncRNAs have been suggested to participate in the growth and metastasis of cancer through a variety of molecular mechanisms. Recently, SNHG10, a newly discovered lncRNA, is reported to play a role of an oncogene in osteosarcoma (OS) genesis. Nonetheless, the mechanism underlying OS remains unclear. The present work found that SNHG10 expression increased within OS cells and tissues, while suppressing its expression decreased OS cell proliferation, migration, invasion, but increased their apoptosis. As for the mechanism, we confirmed that SNHG10 could bind to miR-141-3p, while the latter could bind to WTAP. SNHG10 upregulated WTAP through decreasing miR-141-3p expression. More importantly, SNHG10 deletion remarkably reduced proliferation, migration, and invasion of cells, but accelerated their apoptosis. However, when cells were subjected to miR-141-3p inhibitor cotransfection or overexpressed WTAP, these effects were partially recovered. In summary, this study suggested that the expression of SNHG10 markedly elevated within OS, and the SNHG10/miR-141-3p/WTAP axis facilitated OS progression.
Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , RNA, Long Noncoding , Bone Neoplasms/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Osteosarcoma/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolismABSTRACT
BACKGROUND/AIMS: Renal calculi represent a prevalent disorder associated with mineral deposition in renal calyces and the pelvis. Aberrant microRNA (miRNA) expression is implicated in renal injury. This study investigated the mechanism of miR-141-3p in calcium oxalate (CaOx) crystal-induced renal tubular epithelial cell (RTEC) injury. METHODS: Human RTECs HK-2 cells were treated with CaOx crystals to induce RTEC injury. Cell viability was evaluated using Cell Counting Kit-8 assay, and apoptosis was measured using flow cytometry. The contents of lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), interleukin (IL)-1ß, and IL-18 were measured using enzyme-linked immunosorbent assay kits. The expressions of NLRP3, cleaved caspase-1, and GSDMD-N were detected using Western blot. miR-141-3p and NLRP3 expressions were determined using reverse transcription quantitative polymerase chain reaction. The binding of miR-141-3p and NLRP3 was validated using a dual-luciferase assay. The role of NLRP3 in the protection of miR-141-3p on RTEC injury was verified using functional rescue experiments. RESULTS: CaOx crystals induced RTEC injury, manifested as attenuated cell viability, enhanced apoptosis, elevated intracellular LDH and MDA levels, and decreased SOD level. Pyroptosis of RTECs was enhanced by CaOx crystal induction, evidenced by elevated expressions of cleaved caspase-1, GSDMD-N, IL-1ß, and IL-18. miR-141-3p expression was reduced in CaOx crystal-induced RTECs. miR-141-3p overexpression alleviated CaOx crystal-induced RTEC injury and suppressed pyroptosis of RTECs. miR-141-3p bound to NLRP3 and thereby repressed NLRP3 expression. NLRP3 overexpression reversed the protective effect of miR-141-3p overexpression on RTECs. CONCLUSION: miR-141-3p repressed NLRP3-mediated pyroptosis by suppressing NLRP3 expression, thus protecting CaOx crystal-induced RTEC injury.
Subject(s)
Calcium Oxalate , Kidney Calculi , MicroRNAs , NLR Family, Pyrin Domain-Containing 3 Protein , Calcium Oxalate/metabolism , Caspase 1/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Interleukin-18/metabolism , Kidney Calculi/metabolism , Kidney Calculi/pathology , Male , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Superoxide Dismutase/metabolismABSTRACT
OBJECTIVES: The aim of our study was to explore the role of circular RNA_0061140 (circ_0061140) in adenomyosis progression and its associated mechanism. DESIGN: We first analyzed the expression pattern of circ_0061140 in endometrial tissues of adenomyosis patients (n = 27) and uterine fibroid patients (n = 15). Loss-of-function experiments were conducted to analyze the biological roles of circ_0061140 in regulating the viability, apoptosis, proliferation, migration, and invasion of endometrial epithelial cells. The downstream microRNA (miRNA)/messenger RNA (mRNA) axis of circ_0061140 was predicted by bioinformatics tool Starbase, and its working mechanism was verified by rescue experiments. METHODS: Cell viability, apoptosis, proliferation, invasion, and migration were assessed by cell counting kit-8 assay, flow cytometry analysis, 5-ethynyl-2'-deoxyuridine assay, transwell assay, and scratch test. The binding relationship between miR-141-3p and circ_0061140 or lin-28 homolog B (LIN28B) was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. RESULTS: Circ_0061140 expression was upregulated in adenomyosis patients. Circ_0061140 knockdown suppressed the viability, proliferation, invasion, and migration and triggered the apoptosis of endometrial epithelial cells. Circ_0061140 served as a miRNA sponge for miR-141-3p, and miR-141-3p silencing partly reversed circ_0061140 knockdown-induced effects in endometrial epithelial cells. miR-141-3p directly interacted with LIN28B mRNA. LIN28B overexpression partly diminished miR-141-3p overexpression-mediated influences in endometrial epithelial cells. Circ_0061140 knockdown downregulated LIN28B expression by elevating miR-141-3p level in endometrial epithelial cells. LIMITATIONS: The functional verification of circ_0061140/miR-141-3p/LIN28B axis was merely conducted in vitro. CONCLUSION: Circ_0061140 contributed to adenomyosis progression by binding to miR-141-3p to induce LIN28B expression in vitro.
Subject(s)
Adenomyosis , MicroRNAs , RNA, Circular , RNA-Binding Proteins , Female , Humans , Adenomyosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Epithelial Cells , Epithelium , MicroRNAs/genetics , RNA, Messenger , RNA-Binding Proteins/genetics , RNA, Circular/geneticsABSTRACT
Maternally expressed 3 (MEG3) and RNA binding motif single stranded interacting protein 3 (RBMS3) are abnormally expressed in breast cancer susceptibility genes (BRCA), but the mechanism of the two in breast cancer (BC) is unclear. By performing in vivo and in vitro experiments, we found that MEG3 and RBMS3 were low-expressed, negatively correlated with high-expressed miR-141-3p, were positively correlated with each other in BC. MEG3 targeted miR-141-3p, and miR-141-3p targeted RBMS3. MEG3, which was mainly distributed in BC cytoplasm, could down-regulate miR-141-3p and up-regulate RBMS3, and reverse effect of miR-141-3p on related gene expressions and on promoting cancer development. Overexpressed MEG3 inhibited growth of xenografts, promoted cell apoptosis via regulating apoptosis related factors, and up-regulated RBMS3 expression but down-regulated miR-141-3p. The findings of this study showed that MEG3 inhibited proliferation and promoted apoptosis of BC cells through the miR-141-3p/RBMS3 axis, and MEG3 inhibited growth of xenografts through miR-141-3p.
Subject(s)
Breast Neoplasms , MicroRNAs , RNA, Long Noncoding , RNA-Binding Proteins , Trans-Activators , Apoptosis/genetics , Breast Neoplasms/genetics , Cell Proliferation/genetics , Female , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA-Binding Proteins/genetics , Trans-Activators/geneticsABSTRACT
Glioma is the most prevalent and lethal primary brain tumour. Abundant long non-coding RNAs ( lncRNAs) are aberrant and play crucial roles in the oncogenesis of glioma. The exact functions of linc00475 in glioma remain blurred. Here, we analysed the expression levels of linc00475 by qRT-PCR and discovered that linc00475 was up-regulated in glioma and predicted a poor prognosis in patients with glioma. Besides, inhibiting linc00475 restrained the progression of glioma in vitro and in vivo. Further experiments confirmed that linc00475 regulated the progression of glioma by acting as a sponge for miR-141-3p. Moreover, we detected the binding sites of linc00475 and miR-141-3p, the YAP1- 3'UTR and miR-141-3p by luciferase reporters. The rescue assays confirmed that inhibiting linc00475 restrained the progression of glioma through the miR-141-3p/YAP1 pathway. Collectively, our research demonstrates the key roles of linc00475 in glioma, which could be a promising therapeutic target.
Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Glioma/metabolism , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Blotting, Western , Cell Line, Tumor , Cell Survival/genetics , Cell Survival/physiology , Glioma/genetics , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Real-Time Polymerase Chain Reaction , Transcription Factors/genetics , YAP-Signaling ProteinsABSTRACT
MicroRNA (miR)-141-3p, which functions as an oncogene in multiple malignancies, has been shown to be highly overexpressed in esophageal cancer cells in our previous work. miR-141-3p is predicted to bind the messenger RNA (mRNA) of tuberous sclerosis complex 1 (TSC1), a tumor suppressor, with high affinity. In this study, we investigated the expression and functional interaction between miR-141-3p and TSC1 in esophageal cancer cells. Experiments were conducted in four esophageal cancer lines and in tumor cells isolated from human esophageal cancer specimens by laser capture microdissection. miR-141-3p expression was measured by real time and droplet digital PCR. Biotinylated RNA pull-down and luciferase reporter assays were used to assess binding. miR-141-3p function was tested by assessing proliferation, migration, invasion, and induction of autophagy following its silencing. We found that miR-141-3p levels were increased in TE7, OE33, and TE10 esophageal cancer cells compared to FLO-1 cells, with similar heterogeneity observed in human esophageal cancer specimens. Silencing of miR-141-3p led to increased TSC1 protein expression in these cells and was associated with increased TSC1 translation. Binding studies reveal that miR-141-3p binds to each of the predicted binding sites in the 3'-untranslated region of TSC1 mRNA. Following miR-141-3p silencing, TE7, OE33, and TE10 cells exhibited decreased proliferation, migration, and invasion, as well as enhanced autophagy. Importantly, these phenotypic effects were replicated by overexpression of TSC1 alone in these cells. Our results indicate that miR-141-3p functions in an oncogenic capacity in a subset of esophageal cancer cells, in part by suppressing TSC1 expression.
Subject(s)
Cell Movement/genetics , Cell Proliferation/genetics , Esophageal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Tuberous Sclerosis Complex 1 Protein/genetics , 3' Untranslated Regions/genetics , Binding Sites/genetics , Cell Line, Tumor , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Humans , Neoplasm Invasiveness , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tuberous Sclerosis Complex 1 Protein/metabolismABSTRACT
The transferrin receptor (TfR1) is the principal means of iron importation for most mammalian cells, and regulation of mRNA stability is a major mechanism through which TfR1 expression is controlled in response to changing intracellular iron levels. An endonuclease activity degrades the TfR1 mRNA during iron-repletion, which reduces iron importation and contributes to the restoration of homeostasis. Correct identification of the TfR1 mRNA endonuclease activity is important as it has the potential to be a pharmacological target for the treatment of several pathologies in which iron homeostasis is perturbed. A recent RNA article identified both miR-7-5p and miR-141-3p as mediators of TfR1 mRNA degradation during iron-repletion. However, the proposed TfR1 microRNA binding sites are inconsistent with several earlier studies. To better understand the discrepancy, we tested the proposed sites within an assay developed to detect changes to TfR1 mRNA stability. The complete disruption of both proposed binding sites failed to impact the assay in all cell lines tested, which include cell lines derived from mouse connective tissue (L-M), a human colon adenocarcinoma (SW480), and a human ovarian carcinoma (A2780). The overexpression of a miR-7-5p mimic also failed to decrease expression of both the endogenous TfR1 mRNA and a luciferase-TfR1 reporter under conditions in which the expression of a previously identified mir-7-5p target is attenuated. As a result, it is unlikely that the microRNAs are directly mediating iron-responsive degradation of the TfR1 mRNA as recently proposed. Instead, three short hairpin loops within the TfR1 3'-UTR are shown to be more consistent as endonuclease recognition elements.
Subject(s)
Antigens, CD/genetics , MicroRNAs/physiology , RNA, Messenger/metabolism , Receptors, Transferrin/genetics , 3' Untranslated Regions , Animals , Antigens, CD/metabolism , Binding Sites , Cell Line , Cell Line, Tumor , Humans , Iron/metabolism , Mice , MicroRNAs/metabolism , RNA Stability , Receptors, Transferrin/metabolismABSTRACT
Long noncoding RNA (LncRNA) small nucleolar RNA host gene 16 (SNHG16) is correlated with cell injuries, including pneumonia. However, its role and mechanism remain vague in pneumonia. The interplay among genes was confirmed by dual-luciferase reporter assay, RNA immunoprecipitation, and RNA pull-down assay. SNHG16 and sushi domain containing 2 (SUSD2) were upregulated, and miRNA (miR)-141-3p was downregulated in the serum of acute pneumonia patients and lipopolysaccharide (LPS)-challenged human lung fibroblasts WI-38. LPS induced apoptosis, autophagy, and inflammatory response in WI-38 cells, which was significantly attenuated by SNHG16 knockdown and/or miR-141-3p overexpression. Notably, both SNHG16 and SUSD2 were identified as target genes of miR-141-3p. Besides, the suppressive role of SNHG16 knockdown in LPS-induced in WI-38 cells was partially abolished by miR-141-3p silencing, and the similar inhibition of miR-141-3p overexpression was further blocked by SUSD2 restoration. In conclusion, knockdown of SNHG16 could alleviate LPS-induced apoptosis, autophagy, and inflammation in WI-38 cells partially though the SNHG16/miR-141-3p/SUSD2 pathway.
Subject(s)
Fibroblasts/metabolism , Membrane Glycoproteins/genetics , MicroRNAs/genetics , Pneumonia/genetics , RNA, Long Noncoding/genetics , Acute Disease , Apoptosis/drug effects , Apoptosis/genetics , Base Pairing , Base Sequence , Case-Control Studies , Cell Line , Child , Child, Preschool , Female , Fibroblasts/drug effects , Fibroblasts/pathology , Gene Expression Regulation , Humans , Infant , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Lung/metabolism , Lung/pathology , Male , Membrane Glycoproteins/metabolism , MicroRNAs/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Pneumonia/metabolism , Pneumonia/pathology , RNA, Long Noncoding/antagonists & inhibitors , RNA, Long Noncoding/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolismABSTRACT
Preeclampsia (PE) is characterized by the impaired invasive ability of trophocytes, which can be modulated by microRNAs (miRs). In the current study, the effects of rhynchophylline (Rhy) on the viability and invasive ability of trophocytes were explored by focusing on miR-141-3p/ZEB1 axis. The level of miR-141-3p was modulated in human trophocytes and the changes in cell viability, apoptosis, invasive ability, and ZEB1 level were detected. Then the trophocytes with miR-141-3p overexpression were treated with Rhy and the effects on trophocyte phenotypes were assessed. The induced miR-141-3p level suppressed cell viability, induced apoptosis, and inhibited invasion and ZEB1 level in trophocytes. The treatment of Rhy restored the viability and invasive ability of trophocytes under the overexpression of miR-141-3p, indicating the protective effects of Rhy on trophocytes. The findings in the current study highlighted the protective effects of Rhy on trophocytes during PE progression, which was associated with the inhibition of miR-141-3p.
Subject(s)
Cell Movement/drug effects , MicroRNAs/genetics , Oxindoles/pharmacology , Up-Regulation/drug effects , Zinc Finger E-box-Binding Homeobox 1/genetics , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , HumansABSTRACT
Renal interstitial fibrosis (RIF) is characterized by excessive extracellular matrix deposition and involves epithelial-mesenchymal transition (EMT). The lncRNA taurine-upregulated gene 1 (TUG1) participates in EMT in several cancers; however, the effect and underlying mechanism of TUG1 in RIF-related EMT remain unclear. Here, we explored the mechanisms by which TUG1 modulates RIF. An in vivo model of renal fibrosis was established by unilateral ureteral obstruction in Balb/c mice. Human renal proximal tubular epithelial (HK-2) cells treated with transforming growth factor (TGF)-ß1 were used to induce the in vitro model. Morphological changes and TUG1 expression were assessed. HK-2 cells were transfected with siRNA to silence TUG1. Western blot analysis, immunofluorescence staining, cell proliferation, and migration assays were performed to examine TGF-ß1-induced changes in EMT markers and EMT-like cell behaviors. TUG1 and ß-catenin (CTNNB1) levels were significantly upregulated, whereas miR-141-3p was significantly downregulated, during EMT in vitro and in vivo. TUG1 knockdown or miR-141-3p overexpression supported the epithelioid morphology of HK-2 cells while enhancing the downregulation of E-cadherin and upregulation of vimentin, α-smooth muscle actin, and ß-catenin levels in TGF-ß1-treated HK-2 cells. TUG1 knockdown promoted the proliferation and decreased the migration of HK-2 cells and enhanced the downregulation of miR-141-3p levels in TGF-ß1-treated HK-2 cells. TUG1 directly targeted miR-141-3p, and miR-141-3p was directly bound to CTNNB1. Downregulation of miR-141-3p inhibited TUG1 silencing-induced suppression of EMT. In conclusion, TUG1 promotes EMT in TGF-ß1-induced HK-2 cells via upregulation of ß-catenin levels by sponging miR-141-3p, suggesting a novel therapeutic candidate for RIF.