Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.542
Filter
Add more filters

Publication year range
1.
Cell ; 186(25): 5620-5637.e16, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38065082

ABSTRACT

Colorectal cancer exhibits dynamic cellular and genetic heterogeneity during progression from precursor lesions toward malignancy. Analysis of spatial multi-omic data from 31 human colorectal specimens enabled phylogeographic mapping of tumor evolution that revealed individualized progression trajectories and accompanying microenvironmental and clonal alterations. Phylogeographic mapping ordered genetic events, classified tumors by their evolutionary dynamics, and placed clonal regions along global pseudotemporal progression trajectories encompassing the chromosomal instability (CIN+) and hypermutated (HM) pathways. Integrated single-cell and spatial transcriptomic data revealed recurring epithelial programs and infiltrating immune states along progression pseudotime. We discovered an immune exclusion signature (IEX), consisting of extracellular matrix regulators DDR1, TGFBI, PAK4, and DPEP1, that charts with CIN+ tumor progression, is associated with reduced cytotoxic cell infiltration, and shows prognostic value in independent cohorts. This spatial multi-omic atlas provides insights into colorectal tumor-microenvironment co-evolution, serving as a resource for stratification and targeted treatments.


Subject(s)
Colorectal Neoplasms , Microsatellite Instability , Tumor Microenvironment , Humans , Chromosomal Instability/genetics , Colorectal Neoplasms/pathology , Gene Expression Profiling , p21-Activated Kinases/genetics , Phylogeny , Mutation , Disease Progression , Prognosis
2.
Cell ; 180(2): 387-402.e16, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31978347

ABSTRACT

Proteins are essential agents of biological processes. To date, large-scale profiling of cell line collections including the Cancer Cell Line Encyclopedia (CCLE) has focused primarily on genetic information whereas deep interrogation of the proteome has remained out of reach. Here, we expand the CCLE through quantitative profiling of thousands of proteins by mass spectrometry across 375 cell lines from diverse lineages to reveal information undiscovered by DNA and RNA methods. We observe unexpected correlations within and between pathways that are largely absent from RNA. An analysis of microsatellite instable (MSI) cell lines reveals the dysregulation of specific protein complexes associated with surveillance of mutation and translation. These and other protein complexes were associated with sensitivity to knockdown of several different genes. These data in conjunction with the wider CCLE are a broad resource to explore cellular behavior and facilitate cancer research.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Neoplasms/metabolism , Proteome/metabolism , Cell Line, Tumor , Gene Expression Profiling/methods , Humans , Mass Spectrometry/methods , Microsatellite Instability , Mutation/genetics , Proteomics/methods
3.
Cell ; 174(6): 1586-1598.e12, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30100188

ABSTRACT

Cancer immunotherapies have shown substantial clinical activity for a subset of patients with epithelial cancers. Still, technological platforms to study cancer T-cell interactions for individual patients and understand determinants of responsiveness are presently lacking. Here, we establish and validate a platform to induce and analyze tumor-specific T cell responses to epithelial cancers in a personalized manner. We demonstrate that co-cultures of autologous tumor organoids and peripheral blood lymphocytes can be used to enrich tumor-reactive T cells from peripheral blood of patients with mismatch repair-deficient colorectal cancer and non-small-cell lung cancer. Furthermore, we demonstrate that these T cells can be used to assess the efficiency of killing of matched tumor organoids. This platform provides an unbiased strategy for the isolation of tumor-reactive T cells and provides a means by which to assess the sensitivity of tumor cells to T cell-mediated attack at the level of the individual patient.


Subject(s)
Leukocytes, Mononuclear/cytology , T-Lymphocytes/immunology , Aged , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Culture Techniques , Coculture Techniques , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Female , Humans , In Vitro Techniques , Interferon-gamma/pharmacology , Leukocytes, Mononuclear/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lymphocyte Activation/drug effects , Male , Middle Aged , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , Tumor Cells, Cultured
4.
Cell ; 171(1): 163-178.e19, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28844694

ABSTRACT

Alterations in transcriptional regulators can orchestrate oncogenic gene expression programs in cancer. Here, we show that the BRG1/BRM-associated factor (BAF) chromatin remodeling complex, which is mutated in over 20% of human tumors, interacts with EWSR1, a member of a family of proteins with prion-like domains (PrLD) that are frequent partners in oncogenic fusions with transcription factors. In Ewing sarcoma, we find that the BAF complex is recruited by the EWS-FLI1 fusion protein to tumor-specific enhancers and contributes to target gene activation. This process is a neomorphic property of EWS-FLI1 compared to wild-type FLI1 and depends on tyrosine residues that are necessary for phase transitions of the EWSR1 prion-like domain. Furthermore, fusion of short fragments of EWSR1 to FLI1 is sufficient to recapitulate BAF complex retargeting and EWS-FLI1 activities. Our studies thus demonstrate that the physical properties of prion-like domains can retarget critical chromatin regulatory complexes to establish and maintain oncogenic gene expression programs.


Subject(s)
Calmodulin-Binding Proteins/chemistry , Calmodulin-Binding Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Sarcoma, Ewing/genetics , Cell Line, Tumor , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Microsatellite Repeats , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Prion Proteins/metabolism , Protein Domains , Sarcoma, Ewing/pathology
5.
Cell ; 170(5): 899-912.e10, 2017 Aug 24.
Article in English | MEDLINE | ID: mdl-28803727

ABSTRACT

Microsatellite repeat expansions in DNA produce pathogenic RNA species that cause dominantly inherited diseases such as myotonic dystrophy type 1 and 2 (DM1/2), Huntington's disease, and C9orf72-linked amyotrophic lateral sclerosis (C9-ALS). Means to target these repetitive RNAs are required for diagnostic and therapeutic purposes. Here, we describe the development of a programmable CRISPR system capable of specifically visualizing and eliminating these toxic RNAs. We observe specific targeting and efficient elimination of microsatellite repeat expansion RNAs both when exogenously expressed and in patient cells. Importantly, RNA-targeting Cas9 (RCas9) reverses hallmark features of disease including elimination of RNA foci among all conditions studied (DM1, DM2, C9-ALS, polyglutamine diseases), reduction of polyglutamine protein products, relocalization of repeat-bound proteins to resemble healthy controls, and efficient reversal of DM1-associated splicing abnormalities in patient myotubes. Finally, we report a truncated RCas9 system compatible with adeno-associated viral packaging. This effort highlights the potential of RCas9 for human therapeutics.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Genetic Therapy/methods , Oligonucleotides, Antisense/pharmacology , Animals , COS Cells , Cell Line , Cells, Cultured , Chlorocebus aethiops , Microsatellite Repeats , RNA Splicing , Trinucleotide Repeat Expansion
6.
Genes Dev ; 37(19-20): 913-928, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37932011

ABSTRACT

Addiction to the WRN helicase is a unique vulnerability of human cancers with high levels of microsatellite instability (MSI-H). However, while prolonged loss of WRN ultimately leads to cell death, little is known about how MSI-H cancers initially respond to acute loss of WRN-knowledge that would be helpful for informing clinical development of WRN targeting therapy, predicting possible resistance mechanisms, and identifying useful biomarkers of successful WRN inhibition. Here, we report the construction of an inducible ligand-mediated degradation system in which the stability of endogenous WRN protein can be rapidly and specifically tuned, enabling us to track the complete sequence of cellular events elicited by acute loss of WRN function. We found that WRN degradation leads to immediate accrual of DNA damage in a replication-dependent manner that curiously did not robustly engage checkpoint mechanisms to halt DNA synthesis. As a result, WRN-degraded MSI-H cancer cells accumulate DNA damage across multiple replicative cycles and undergo successive rounds of increasingly aberrant mitoses, ultimately triggering cell death. Of potential therapeutic importance, we found no evidence of any generalized mechanism by which MSI-H cancers could adapt to near-complete loss of WRN. However, under conditions of partial WRN degradation, addition of low-dose ATR inhibitor significantly increased their combined efficacy to levels approaching full inactivation of WRN. Overall, our results provide the first comprehensive view of molecular events linking upstream inhibition of WRN to subsequent cell death and suggest that dual targeting of WRN and ATR might be a useful strategy for treating MSI-H cancers.


Subject(s)
DNA Replication , Neoplasms , Humans , DNA Replication/genetics , DNA Helicases/metabolism , Microsatellite Repeats , DNA Damage , Neoplasms/drug therapy , Neoplasms/genetics , RecQ Helicases/genetics , RecQ Helicases/metabolism , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Werner Syndrome Helicase/genetics , Werner Syndrome Helicase/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism
7.
Annu Rev Neurosci ; 42: 227-247, 2019 07 08.
Article in English | MEDLINE | ID: mdl-30909783

ABSTRACT

Microsatellite mutations involving the expansion of tri-, tetra-, penta-, or hexanucleotide repeats cause more than 40 different neurological disorders. Although, traditionally, the position of the repeat within or outside of an open reading frame has been used to focus research on disease mechanisms involving protein loss of function, protein gain of function, or RNA gain of function, the discoveries of bidirectional transcription and repeat-associated non-ATG (RAN) have blurred these distinctions. Here we review what is known about RAN proteins in disease, the mechanisms by which they are produced, and the novel therapeutic opportunities they provide.


Subject(s)
DNA Repeat Expansion/genetics , Nerve Tissue Proteins/genetics , Nervous System Diseases/genetics , Protein Biosynthesis , Codon, Initiator/genetics , Endoplasmic Reticulum Stress , Eukaryotic Initiation Factor-2/physiology , Gain of Function Mutation , Genetic Code , Humans , Loss of Function Mutation , Microsatellite Repeats/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Transcription, Genetic
8.
Am J Hum Genet ; 110(3): 427-441, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36787739

ABSTRACT

Ewing sarcoma (EwS) is a rare bone and soft tissue malignancy driven by chromosomal translocations encoding chimeric transcription factors, such as EWSR1-FLI1, that bind GGAA motifs forming novel enhancers that alter nearby expression. We propose that germline microsatellite variation at the 6p25.1 EwS susceptibility locus could impact downstream gene expression and EwS biology. We performed targeted long-read sequencing of EwS blood DNA to characterize variation and genomic features important for EWSR1-FLI1 binding. We identified 50 microsatellite alleles at 6p25.1 and observed that EwS-affected individuals had longer alleles (>135 bp) with more GGAA repeats. The 6p25.1 GGAA microsatellite showed chromatin features of an EWSR1-FLI1 enhancer and regulated expression of RREB1, a transcription factor associated with RAS/MAPK signaling. RREB1 knockdown reduced proliferation and clonogenic potential and reduced expression of cell cycle and DNA replication genes. Our integrative analysis at 6p25.1 details increased binding of longer GGAA microsatellite alleles with acquired EWSR-FLI1 to promote Ewing sarcomagenesis by RREB1-mediated proliferation.


Subject(s)
Bone Neoplasms , Sarcoma, Ewing , Humans , Alleles , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/genetics , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology
9.
Brief Bioinform ; 25(5)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39129364

ABSTRACT

Microsatellite instability (MSI) is a phenomenon seen in several cancer types, which can be used as a biomarker to help guide immune checkpoint inhibitor treatment. To facilitate this, researchers have developed computational tools to categorize samples as having high microsatellite instability, or as being microsatellite stable using next-generation sequencing data. Most of these tools were published with unclear scope and usage, and they have yet to be independently benchmarked. To address these issues, we assessed the performance of eight leading MSI tools across several unique datasets that encompass a wide variety of sequencing methods. While we were able to replicate the original findings of each tool on whole exome sequencing data, most tools had worse receiver operating characteristic and precision-recall area under the curve values on whole genome sequencing data. We also found that they lacked agreement with one another and with commercial MSI software on gene panel data, and that optimal threshold cut-offs vary by sequencing type. Lastly, we tested tools made specifically for RNA sequencing data and found they were outperformed by tools designed for use with DNA sequencing data. Out of all, two tools (MSIsensor2, MANTIS) performed well across nearly all datasets, but when all datasets were combined, their precision decreased. Our results caution that MSI tools can have much lower performance on datasets other than those on which they were originally evaluated, and in the case of RNA sequencing tools, can even perform poorly on the type of data for which they were created.


Subject(s)
Computational Biology , Microsatellite Instability , Software , Humans , Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Exome Sequencing/methods
10.
CA Cancer J Clin ; 69(4): 258-279, 2019 07.
Article in English | MEDLINE | ID: mdl-31074865

ABSTRACT

Endometrial cancer is the most common gynecologic cancer in the United States, and its incidence is rising. Although there have been significant recent advances in our understanding of endometrial cancer biology, many aspects of treatment remain mired in controversy, including the role of surgical lymph node assessment and the selection of patients for adjuvant radiation or chemotherapy. For the subset of women with microsatellite-instable, metastatic disease, anti- programmed cell death protein 1 immunotherapy (pembrolizumab) is now approved by the US Food and Drug Administration, and numerous trials are attempting to build on this early success.


Subject(s)
Endometrial Neoplasms/therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/therapeutic use , Chemotherapy, Adjuvant , Cytoreduction Surgical Procedures , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Female , Genetic Predisposition to Disease , Humans , Hysterectomy , Lymph Node Excision , Neoplasm Metastasis , Neoplasm Recurrence, Local/therapy , Prognosis , Radiotherapy, Adjuvant , Risk Factors , Sentinel Lymph Node/pathology , Sentinel Lymph Node/surgery
11.
Mol Cell ; 72(2): 222-238.e11, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30293786

ABSTRACT

DNA polymerase stalling activates the ATR checkpoint kinase, which in turn suppresses fork collapse and breakage. Herein, we describe use of ATR inhibition (ATRi) as a means to identify genomic sites of problematic DNA replication in murine and human cells. Over 500 high-resolution ATR-dependent sites were ascertained using two distinct methods: replication protein A (RPA)-chromatin immunoprecipitation (ChIP) and breaks identified by TdT labeling (BrITL). The genomic feature most strongly associated with ATR dependence was repetitive DNA that exhibited high structure-forming potential. Repeats most reliant on ATR for stability included structure-forming microsatellites, inverted retroelement repeats, and quasi-palindromic AT-rich repeats. Notably, these distinct categories of repeats differed in the structures they formed and their ability to stimulate RPA accumulation and breakage, implying that the causes and character of replication fork collapse under ATR inhibition can vary in a DNA-structure-specific manner. Collectively, these studies identify key sources of endogenous replication stress that rely on ATR for stability.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , DNA Replication/genetics , Microsatellite Repeats/genetics , Animals , Cell Cycle Proteins/genetics , Chromatin/genetics , Chromatin Immunoprecipitation/methods , DNA Breaks, Double-Stranded , DNA Damage/genetics , Female , Genomic Instability/genetics , Humans , Mice , Replication Protein A/genetics
12.
J Biol Chem ; 300(7): 107443, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838773

ABSTRACT

Functional variants of the gene for the cytokine macrophage migration inhibitory factor (MIF) are defined by a 4-nucleotide promoter microsatellite (-794 CATT5-8, rs5844572) and confer risk for autoimmune, infectious, and oncologic diseases. We describe herein the discovery of a prototypic, small molecule inhibitor of MIF transcription with selectivity for high microsatellite repeat number and correspondingly high gene expression. Utilizing a high-throughput luminescent proximity screen, we identify 1-carbomethoxy-5-formyl-4,6,8-trihydroxyphenazine (CMFT) to inhibit the functional interaction between the transcription factor ICBP90 (namely, UHRF1) and the MIF -794 CATT5-8 promoter microsatellite. CMFT inhibits MIF mRNA expression in a -794 CATT5-8 length-dependent manner with an IC50 of 470 nM, and preferentially reduces ICBP90-dependent MIF mRNA and protein expression in high-genotypic versus low-genotypic MIF-expressing macrophages. RNA expression analysis also showed CMFT to downregulate MIF-dependent, inflammatory gene expression with little evidence of off-target metabolic toxicity. These findings provide proof-of-concept for advancing the pharmacogenomic development of precision-based MIF inhibitors for diverse autoimmune and inflammatory conditions.


Subject(s)
Intramolecular Oxidoreductases , Macrophage Migration-Inhibitory Factors , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/antagonists & inhibitors , Macrophage Migration-Inhibitory Factors/metabolism , Macrophage Migration-Inhibitory Factors/immunology , Humans , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/antagonists & inhibitors , Intramolecular Oxidoreductases/metabolism , Alleles , Microsatellite Repeats , Promoter Regions, Genetic , Animals , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Transcription, Genetic/drug effects , Mice , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism
13.
Gastroenterology ; 166(3): 466-482, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38065340

ABSTRACT

BACKGROUND & AIMS: Although immunotherapy shows substantial advancement in colorectal cancer (CRC) with microsatellite instability high, it has limited efficacy for CRC with microsatellite stability (MSS). Identifying combinations that reverse immune suppression and prime MSS tumors for current immunotherapy approaches remains an urgent need. METHODS: An in vitro CRISPR screen was performed using coculture models of primary tumor cells and autologous immune cells from MSS CRC patients to identify epigenetic targets that could enhance immunotherapy efficacy in MSS tumors. RESULTS: We revealed EHMT2, a histone methyltransferase, as a potential target for MSS CRC. EHMT2 inhibition transformed the immunosuppressive microenvironment of MSS tumors into an immunomodulatory one by altering cytokine expression, leading to T-cell-mediated cytotoxicity activation and improved responsiveness to anti-PD1 treatment. We observed galectin-7 up-regulation upon EHMT2 inhibition, which converted a "cold" MSS tumor environment into a T-cell-inflamed one. Mechanistically, CHD4 repressed galectin-7 expression by recruiting EHMT2 to form a cotranscriptional silencing complex. Galectin-7 administration enhanced anti-PD1 efficacy in MSS CRC, serving as a potent adjunct cytokine therapy. CONCLUSIONS: Our findings suggest that targeting the EHMT2/galectin-7 axis could provide a novel combination strategy for immunotherapy in MSS CRC.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Immunotherapy , Cytokines , Galectins/genetics , Microsatellite Repeats , Microsatellite Instability , Tumor Microenvironment , Histocompatibility Antigens , Histone-Lysine N-Methyltransferase
14.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: mdl-36682004

ABSTRACT

Somatic mutational signatures (MSs) identified by genome sequencing play important roles in exploring the cause and development of cancer. Thus far, many such signatures have been identified, and some of them do imply causes of cancer. However, a major bottleneck is that we do not know the potential meanings (i.e. carcinogenesis or biological functions) and contributing genes for most of them. Here, we presented a computational framework, Gene Somatic Genome Pattern (GSGP), which can decipher the molecular mechanisms of the MSs. More importantly, it is the first time that the GSGP is able to process MSs from ribonucleic acid (RNA) sequencing, which greatly extended the applications of both MS analysis and RNA sequencing (RNAseq). As a result, GSGP analyses match consistently with previous reports and identify the etiologies for a number of novel signatures. Notably, we applied GSGP to RNAseq data and revealed an RNA-derived MS involved in deficient deoxyribonucleic acid mismatch repair and microsatellite instability in colorectal cancer. Researchers can perform customized GSGP analysis using the web tools or scripts we provide.


Subject(s)
Neoplasms , Humans , Mutation , Neoplasms/genetics , Carcinogenesis/genetics , Base Sequence , RNA
15.
Brief Bioinform ; 24(6)2023 09 22.
Article in English | MEDLINE | ID: mdl-37833839

ABSTRACT

Microsatellite instability (MSI) is a hypermutator phenotype caused by DNA mismatch repair deficiency. MSI has been reported in various human cancers, particularly colorectal, gastric and endometrial cancers. MSI is a promising biomarker for cancer prognosis and immune checkpoint blockade immunotherapy. Several computational methods have been developed for MSI detection using DNA- or RNA-based approaches based on next-generation sequencing. Epigenetic mechanisms, such as DNA methylation, regulate gene expression and play critical roles in the development and progression of cancer. We here developed MSI-XGNN, a new computational framework for predicting MSI status using bulk RNA-sequencing and DNA methylation data. MSI-XGNN is an explainable deep learning model that combines a graph neural network (GNN) model to extract features from the gene-methylation probe network with a CatBoost model to classify MSI status. MSI-XGNN, which requires tumor-only samples, exhibited comparable performance with two well-known methods that require tumor-normal paired sequencing data, MSIsensor and MANTIS and better performance than several other tools. MSI-XGNN also showed good generalizability on independent validation datasets. MSI-XGNN identified six MSI markers consisting of four methylation probes (EPM2AIP1|MLH1:cg14598950, EPM2AIP1|MLH1:cg27331401, LNP1:cg05428436 and TSC22D2:cg15048832) and two genes (RPL22L1 and MSH4) constituting the optimal feature subset. All six markers were significantly associated with beneficial tumor microenvironment characteristics for immunotherapy, such as tumor mutation burden, neoantigens and immune checkpoint molecules such as programmed cell death-1 and cytotoxic T-lymphocyte antigen-4. Overall, our study provides a powerful and explainable deep learning model for predicting MSI status and identifying MSI markers that can potentially be used for clinical MSI evaluation.


Subject(s)
Colorectal Neoplasms , Microsatellite Instability , Humans , Colorectal Neoplasms/genetics , Microsatellite Repeats , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , DNA Methylation , Neural Networks, Computer , DNA/metabolism , RNA/metabolism , Tumor Microenvironment , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism
16.
J Pathol ; 263(3): 288-299, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38747304

ABSTRACT

In the Drug Rediscovery Protocol (DRUP), patients with cancer are treated based on their tumor molecular profile with approved targeted and immunotherapies outside the labeled indication. Importantly, patients undergo a tumor biopsy for whole-genome sequencing (WGS) which allows for a WGS-based evaluation of routine diagnostics. Notably, we observed that not all biopsies of patients with dMMR/MSI-positive tumors as determined by routine diagnostics were classified as microsatellite-unstable by subsequent WGS. Therefore, we aimed to evaluate the discordance rate between routine dMMR/MSI diagnostics and WGS and to further characterize discordant cases. We assessed patients enrolled in DRUP with dMMR/MSI-positive tumors identified by routine diagnostics, who were treated with immune checkpoint blockade (ICB) and for whom WGS data were available. Patient and tumor characteristics, study treatment outcomes, and material from routine care were retrieved from the patient medical records and via Palga (the Dutch Pathology Registry), and were compared with WGS results. Initially, discordance between routine dMMR/MSI diagnostics and WGS was observed in 13 patients (13/121; 11%). The majority of these patients did not benefit from ICB (11/13; 85%). After further characterization, we found that in six patients (5%) discordance was caused by dMMR tumors that did not harbor an MSI molecular phenotype by WGS. In six patients (5%), discordance was false due to the presence of multiple primary tumors (n = 3, 2%) and misdiagnosis of dMMR status by immunohistochemistry (n = 3, 2%). In one patient (1%), the exact underlying cause of discordance could not be identified. Thus, in this group of patients limited to those initially diagnosed with dMMR/MSI tumors by current routine diagnostics, the true assay-based discordance rate between routine dMMR/MSI-positive diagnostics and WGS was 5%. To prevent inappropriate ICB treatment, clinicians and pathologists should be aware of the risk of multiple primary tumors and the limitations of different tests. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
DNA Mismatch Repair , Immune Checkpoint Inhibitors , Microsatellite Instability , Humans , Female , Male , Middle Aged , Aged , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Whole Genome Sequencing , Adult , Biomarkers, Tumor/genetics , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/pathology , Aged, 80 and over , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy
17.
Mol Cell ; 68(3): 479-490.e5, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29056323

ABSTRACT

Transcription of expanded microsatellite repeats is associated with multiple human diseases, including myotonic dystrophy, Fuchs endothelial corneal dystrophy, and C9orf72-ALS/FTD. Reducing production of RNA and proteins arising from these expanded loci holds therapeutic benefit. Here, we tested the hypothesis that deactivated Cas9 enzyme impedes transcription across expanded microsatellites. We observed a repeat length-, PAM-, and strand-dependent reduction of repeat-containing RNAs upon targeting dCas9 directly to repeat sequences; targeting the non-template strand was more effective. Aberrant splicing patterns were rescued in DM1 cells, and production of RAN peptides characteristic of DM1, DM2, and C9orf72-ALS/FTD cells was drastically decreased. Systemic delivery of dCas9/gRNA by adeno-associated virus led to reductions in pathological RNA foci, rescue of chloride channel 1 protein expression, and decreased myotonia. These observations suggest that transcription of microsatellite repeat-containing RNAs is more sensitive to perturbation than transcription of other RNAs, indicating potentially viable strategies for therapeutic intervention.


Subject(s)
CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , Endonucleases/metabolism , Genetic Therapy/methods , Microsatellite Repeats , Myotonic Dystrophy/therapy , Transcription, Genetic , Alternative Splicing , Animals , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , CD24 Antigen/genetics , CD24 Antigen/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism , Dependovirus/genetics , Disease Models, Animal , Down-Regulation , Enzyme Activation , Female , Genetic Vectors , HEK293 Cells , HeLa Cells , Humans , Male , Mice, Transgenic , Myoblasts/metabolism , Myoblasts/pathology , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Myotonic Dystrophy/pathology , RNA, Guide, Kinetoplastida/biosynthesis , RNA, Guide, Kinetoplastida/genetics , Transduction, Genetic , ran GTP-Binding Protein/genetics , ran GTP-Binding Protein/metabolism
18.
Genomics ; 116(5): 110907, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39074670

ABSTRACT

BACKGROUND: Colon adenocarcinoma (COAD) is a prevalent malignant tumor globally, contributing significantly to cancer-related mortality. COAD guidelines label MSI (Microsatellite instability) and MSS (Microsatellite stability) subtypes as global classification criteria and treatment strategy selection criteria for COAD. Various combination therapies involving PD-L1 inhibitors and adjuvant therapy to enhance anti-tumor efficacy. METHODS: Datasets from single-cell RNA sequencing and bulk RNA sequencing in the TCGA and GEO databases were utilized to identify differentially expressed genes (DEGs). Furthermore, the correlation between ATP8B3 and PD-L1 was validated using siRNA, shRNA, and western blot analysis. Additionally, the association between ATP8B3 and immune checkpoint blockade (ICB) therapy was investigated through immune infiltration analysis and flow cytometry in both in vivo and in vitro assays. RESULTS: In the COAD patient group, ATP8B3 significantly contributed to the establishment of an immunosuppressive microenvironment. Inhibiting ATP8B3 led to a reduction in PD-L1 expression in colon cancer cell lines. Additionally, ATP8B3 expression levels could serve as a potential guide for PD-L1 treatment in MSI-H COAD patients, with higher ATP8B3 expression associated with increased sensitivity to PD-L1 therapy. However, due to the lack of immuno-killer cells in the microenvironment of MSS subtypes, elevated ATP8B3 expression couldn't increase the sensitivity of MSS COAD patients to PD-L1 inhibitors. CONCLUSION: Our research results support that Inhibiting ATP8B3 could enhance TIL (tumor-infiltrating lymphocyte) infiltration by reducing PD-L1 expression in MSI-H COAD, thereby serving as an effective strategy to improve PD-L1 blocker efficacy. The treatment strategy of combining ATP8B3 inhibitors and immunotherapy for MSI/MSS COAD patients will be the best choice.

19.
Genes Dev ; 31(11): 1067-1068, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28717044

ABSTRACT

Thomas and colleagues (pp. 1122-1133) demonstrate severe dysregulation of developmentally regulated alternative splicing and polyadenylation in congenital myotonic dystrophy (CDM). In doing so, they also highlight the importance of these post-transcriptional processes during normal fetal muscle development. Finally, they generate and characterize a mouse model of CDM that lacks all three Muscleblind-like proteins.


Subject(s)
Myotonic Dystrophy , RNA , Alternative Splicing , Animals , RNA Splicing , RNA-Binding Proteins/genetics
20.
Genes Dev ; 31(11): 1122-1133, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28698297

ABSTRACT

Myotonic dystrophy type 1 (DM1) is a CTG microsatellite expansion (CTGexp) disorder caused by expression of CUGexp RNAs. These mutant RNAs alter the activities of RNA processing factors, including MBNL proteins, leading to re-expression of fetal isoforms in adult tissues and DM1 pathology. While this pathogenesis model accounts for adult-onset disease, the molecular basis of congenital DM (CDM) is unknown. Here, we test the hypothesis that disruption of developmentally regulated RNA alternative processing pathways contributes to CDM disease. We identify prominent alternative splicing and polyadenylation abnormalities in infant CDM muscle, and, although most are also misregulated in adult-onset DM1, dysregulation is significantly more severe in CDM. Furthermore, analysis of alternative splicing during human myogenesis reveals that CDM-relevant exons undergo prenatal RNA isoform transitions and are predicted to be disrupted by CUGexp-associated mechanisms in utero. To test this possibility and the contribution of MBNLs to CDM pathogenesis, we generated mouse Mbnl double (Mbnl1; Mbnl2) and triple (Mbnl1; Mbnl2; Mbnl3) muscle-specific knockout models that recapitulate the congenital myopathy, gene expression, and spliceopathy defects characteristic of CDM. This study demonstrates that RNA misprocessing is a major pathogenic factor in CDM and provides novel mouse models to further examine roles for cotranscriptional/post-transcriptional gene regulation during development.


Subject(s)
Muscle Development/genetics , Myotonic Dystrophy/genetics , Myotonic Dystrophy/physiopathology , RNA Processing, Post-Transcriptional/genetics , RNA Splicing , RNA-Binding Proteins/genetics , Animals , Carrier Proteins/genetics , Cells, Cultured , Child, Preschool , DNA-Binding Proteins/genetics , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics , Gene Knockout Techniques , Humans , Infant , Mice , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL