Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 366
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Annu Rev Cell Dev Biol ; 37: 257-283, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34613816

ABSTRACT

Morphological transitions are typically attributed to the actions of proteins and lipids. Largely overlooked in membrane shape regulation is the glycocalyx, a pericellular membrane coat that resides on all cells in the human body. Comprised of complex sugar polymers known as glycans as well as glycosylated lipids and proteins, the glycocalyx is ideally positioned to impart forces on the plasma membrane. Large, unstructured polysaccharides and glycoproteins in the glycocalyx can generate crowding pressures strong enough to induce membrane curvature. Stress may also originate from glycan chains that convey curvature preference on asymmetrically distributed lipids, which are exploited by binding factors and infectious agents to induce morphological changes. Through such forces, the glycocalyx can have profound effects on the biogenesis of functional cell surface structures as well as the secretion of extracellular vesicles. In this review, we discuss recent evidence and examples of these mechanisms in normal health and disease.


Subject(s)
Glycocalyx , Cell Membrane/metabolism , Glycocalyx/chemistry , Glycocalyx/metabolism , Glycoproteins , Humans , Polysaccharides/analysis , Polysaccharides/chemistry , Polysaccharides/metabolism
2.
Annu Rev Biochem ; 88: 487-514, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31220978

ABSTRACT

Exosomes are small, single-membrane, secreted organelles of ∼30 to ∼200 nm in diameter that have the same topology as the cell and are enriched in selected proteins, lipids, nucleic acids, and glycoconjugates. Exosomes contain an array of membrane-associated, high-order oligomeric protein complexes, display pronounced molecular heterogeneity, and are created by budding at both plasma and endosome membranes. Exosome biogenesis is a mechanism of protein quality control, and once released, exosomes have activities as diverse as remodeling the extracellular matrix and transmitting signals and molecules to other cells. This pathway of intercellular vesicle traffic plays important roles in many aspects of human health and disease, including development, immunity, tissue homeostasis, cancer, and neurodegenerative diseases. In addition, viruses co-opt exosome biogenesis pathways both for assembling infectious particles and for establishing host permissiveness. On the basis of these and other properties, exosomes are being developed as therapeutic agents in multiple disease models.


Subject(s)
Exosomes/metabolism , Animals , Biological Transport , Exosomes/immunology , Exosomes/physiology , Exosomes/ultrastructure , Extracellular Matrix/metabolism , Humans , Neoplasms , Neurodegenerative Diseases , Protein Multimerization , Signal Transduction
3.
Cell ; 177(7): 1757-1770.e21, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31056282

ABSTRACT

Cells bend their plasma membranes into highly curved forms to interact with the local environment, but how shape generation is regulated is not fully resolved. Here, we report a synergy between shape-generating processes in the cell interior and the external organization and composition of the cell-surface glycocalyx. Mucin biopolymers and long-chain polysaccharides within the glycocalyx can generate entropic forces that favor or disfavor the projection of spherical and finger-like extensions from the cell surface. A polymer brush model of the glycocalyx successfully predicts the effects of polymer size and cell-surface density on membrane morphologies. Specific glycocalyx compositions can also induce plasma membrane instabilities to generate more exotic undulating and pearled membrane structures and drive secretion of extracellular vesicles. Together, our results suggest a fundamental role for the glycocalyx in regulating curved membrane features that serve in communication between cells and with the extracellular matrix.


Subject(s)
Cell Shape , Extracellular Matrix/metabolism , Glycocalyx/metabolism , Membrane Glycoproteins/metabolism , Mucins/metabolism , Animals , Cell Line , Extracellular Matrix/genetics , Glycocalyx/genetics , Horses , Humans , Membrane Glycoproteins/genetics , Mucins/genetics
4.
Proc Natl Acad Sci U S A ; 121(34): e2408551121, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39145934

ABSTRACT

The first steps of vision take place in the ciliary outer segment compartment of photoreceptor cells. The protein composition of outer segments is uniquely suited to perform this function. The most abundant among these proteins is the visual pigment, rhodopsin, whose outer segment trafficking involves intraflagellar transport (IFT). Here, we report three major findings from the analysis of mice in which ciliary transport was acutely impaired by conditional knockouts of IFT-B subunits. First, we demonstrate the existence of a sorting mechanism whereby mislocalized rhodopsin is recruited to and concentrated in extracellular vesicles prior to their release, presumably to protect the cell from adverse effects of protein mislocalization. Second, reducing rhodopsin expression significantly delays photoreceptor degeneration caused by IFT disruption, suggesting that controlling rhodopsin levels may be an effective therapy for some cases of retinal degenerative disease. Last, the loss of IFT-B subunits does not recapitulate a phenotype observed in mutants of the BBSome (another ciliary transport protein complex relying on IFT) in which non-ciliary proteins accumulate in the outer segment. Whereas it is widely thought that the role of the BBSome is to primarily participate in ciliary transport, our data suggest that the BBSome has another major function independent of IFT and possibly related to maintaining the diffusion barrier of the ciliary transition zone.


Subject(s)
Mice, Knockout , Rhodopsin , Animals , Mice , Rhodopsin/metabolism , Cilia/metabolism , Protein Transport , Biological Transport , Flagella/metabolism , Cell Compartmentation , Extracellular Vesicles/metabolism
5.
Trends Immunol ; 43(11): 864-867, 2022 11.
Article in English | MEDLINE | ID: mdl-36244891

ABSTRACT

Recent evidence suggests that cancer cell-derived extracellular vesicles might facilitate immunoevasion. Glycans are known to play a key role in immunomodulation, especially when tethered to biological membranes. However, the extracellular vesicle glycocode in cancer immunoevasion remains a largely unexplored area with promising potential for new putative diagnostic and therapeutic applications.


Subject(s)
Extracellular Vesicles , Neoplasms , Humans , Neoplasms/therapy
6.
Nano Lett ; 24(1): 1-8, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38122812

ABSTRACT

Extracellular vesicles and lipoproteins are lipid-based biological nanoparticles that play important roles in (patho)physiology. Recent evidence suggests that extracellular vesicles and lipoproteins can interact to form functional complexes. Such complexes have been observed in biofluids from healthy human donors and in various in vitro disease models such as breast cancer and hepatitis C infection. Lipoprotein components can also form part of the biomolecular corona that surrounds extracellular vesicles and contributes to biological identity. Potential mechanisms and the functional relevance of extracellular vesicle-lipoprotein complexes remain poorly understood. This Review addresses the current knowledge of the extracellular vesicle-lipoprotein interface while drawing on pre-existing knowledge of liposome interactions with biological nanoparticles. There is an urgent need for further research on the lipoprotein-extracellular vesicle interface, which could return important mechanistic, therapeutic, and diagnostic findings.


Subject(s)
Extracellular Vesicles , Lipoproteins , Humans
7.
Immunol Rev ; 304(1): 62-76, 2021 11.
Article in English | MEDLINE | ID: mdl-34542176

ABSTRACT

One of the hallmarks of the immune system is a dynamic landscape of cellular communication through the secretion of soluble factors, production of cell-bound ligands, and expression of surface receptors. This communication affects all aspects of immune cell behavior, integrates the responses of immune cells in tissues, and is fundamental to orchestrating effective immunity. Recent pioneering work has shown that the transfer of ribonucleic acids (RNAs) constitutes a novel mode of cellular communication. This communication involves diverse RNA species, with short noncoding RNAs especially enriched in the extracellular space. These RNAs are highly stable and selectively packaged for secretion. Transferred RNAs have functions in target cells that both mirror their cell-intrinsic roles and adopt novel mechanisms of action. These extracellular RNAs both impact the behavior of individual immune cells and participate in local and systemic immune responses. The impacts of RNA communication on immune cells and disease states have important implications for the development of novel clinical biomarkers and innovative therapeutic designs in immune-related disease. In this review, we will discuss the foundation of knowledge that is establishing RNA communication as an active and functional process in the immune system.


Subject(s)
Extracellular Vesicles , RNA , Cell Communication , Immune System , RNA/genetics
8.
J Proteome Res ; 23(6): 2288-2297, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38805445

ABSTRACT

In the work presented herein, a simple serial-pelleting purification strategy combined with a mass spectrometry-based proteomics analysis was developed as a means of discerning differences in extracellular vesicle (EV) populations found in bovine milk samples. A sequence of ultracentrifugation speeds was used to generate changes in the abundances of EV populations, allowing for the identification of associated proteins. A metric was developed to determine the relative abundances of proteins in large EVs (>200 nm) and small EVs (<200 nm). Of the 476 proteins consistently found in this study, 340 are associated with vesicular components. Of these, 156 were heavily enriched in large EVs, 155 shared between large and small EVs, and 29 heavily enriched in small EVs. Additionally, out of 68 proteins annotated as exosome proteins, 32 were enriched in large EVs, 27 shared between large and small EVs, 5 enriched in small EVs, and 7 were found to be nonvesicular contaminant proteins. The top correlated proteins in the small EV group were predominantly membrane-bound proteins, whereas the top correlated proteins in the large EV group were mostly cytosolic enzymes for molecular processing. This method provides a means of assessing the origins of vesicle components and provides new potential marker proteins within discrete vesicle populations.


Subject(s)
Exosomes , Milk , Proteomics , Ultracentrifugation , Animals , Cattle , Exosomes/chemistry , Exosomes/metabolism , Proteomics/methods , Milk/chemistry , Ultracentrifugation/methods , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Milk Proteins/analysis , Milk Proteins/metabolism , Milk Proteins/chemistry , Mass Spectrometry/methods
9.
Small ; 20(18): e2307240, 2024 May.
Article in English | MEDLINE | ID: mdl-38100284

ABSTRACT

Extracellular vesicles (EVs) are nanosized biomolecular packages involved in intercellular communication. EVs are released by all cells, making them broadly applicable as therapeutic, diagnostic, and mechanistic components in (patho)physiology. Sample purity is critical for correctly attributing observed effects to EVs and for maximizing therapeutic and diagnostic performance. Lipoprotein contaminants represent a major challenge for sample purity. Lipoproteins are approximately six orders of magnitude more abundant in the blood circulation and overlap in size, shape, and density with EVs. This study represents the first example of an EV purification method based on the chemically-induced breakdown of lipoproteins. Specifically, a styrene-maleic acid (SMA) copolymer is used to selectively breakdown lipoproteins, enabling subsequent size-based separation of the breakdown products from plasma EVs. The use of the polymer followed by tangential flow filtration or size-exclusion chromatography results in improved EV yield, preservation of EV morphology, increased EV markers, and reduced contaminant markers. SMA-based EV purification enables improved fluorescent labeling, reduces interactions with macrophages, and enhances accuracy, sensitivity, and specificity to detect EV biomarkers, indicating benefits for various downstream applications. In conclusion, SMA is a simple and effective method to improve the purity and yield of plasma-derived EVs, which favorably impacts downstream applications.


Subject(s)
Extracellular Vesicles , Lipoproteins , Maleates , Polystyrenes , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Lipoproteins/chemistry , Lipoproteins/metabolism , Maleates/chemistry , Humans , Animals , Chromatography, Gel , Mice , Macrophages/metabolism
10.
Exp Physiol ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092897

ABSTRACT

The purpose of this study was to determine the effect of circulating microvesicles isolated from chronic electronic (e-)cigarette users on cultured human umbilical vein endothelial cell (HUVEC) expression of nuclear factor-κB (NF-κB), cellular cytokine release, phosphorylation of endothelial nitric oxide synthase (eNOS) and NO production. The HUVECs were treated with microvesicles isolated via flow cytometry from nine non-tobacco users (five male and four female; 22 ± 2 years of age) and 10 e-cigarette users (six male and four female; 22 ± 2 years of age). Microvesicles from e-cigarette users induced significantly greater release of interleukin-6 (183.4 ± 23.6 vs. 150.6 ± 15.4 pg/mL; P = 0.002) and interleukin-8 (160.0 ± 31.6 vs. 129.4 ± 11.2 pg/mL; P = 0.01), in addition to expression of p-NF-κB p65 (Ser536) (18.8 ± 3.4 vs. 15.6 ± 1.5 a.u.; P = 0.02) from HUVECs compared with microvesicles from non-tobacco users. Nuclear factor-κB p65 was not significantly different between microvesicles from the non-tobacco users and from the e-cigarette users (87.6 ± 8.7 vs. 90.4 ± 24.6 a.u.; P = 0.701). Neither total eNOS (71.4 ± 21.8 vs. 80.4 ± 24.5 a.u.; P = 0.413) nor p-eNOS (Thr495) (229.2 ± 26.5 vs. 222.1 ± 22.7 a.u.; P = 0.542) was significantly different between microvesicle-treated HUVECs from non-tobacco users and e-cigarette users. However, p-eNOS (Ser1177) (28.9 ± 6.2 vs. 45.8 ± 9.0 a.u.; P < 0.001) expression was significantly lower from e-cigarette users compared with non-tobacco users. Nitric oxide production was significantly lower (8.2 ± 0.6 vs. 9.7 ± 0.9 µmol/L; P = 0.001) in HUVECs treated with microvesicles from e-cigarette users compared with microvesicles from non-tobacco users. This study demonstrated increased NF-κB activation and inflammatory cytokine production, in addition to diminished eNOS activity and NO production resulting from e-cigarette use. HIGHLIGHTS: What is the central question of this study? Circulating microvesicles contribute to cardiovascular health and disease via their effects on the vascular endothelium. The impact of electronic (e-)cigarette use on circulating microvesicle phenotype is not well understood. What is the main finding and its importance? Circulating microvesicles from e-cigarette users increase endothelial cell inflammation and impair endothelial nitric oxide production. Endothelial inflammation and diminished nitric oxide bioavailability are central factors underlying endothelial dysfunction and, in turn, cardiovascular disease risk. Deleterious changes in the functional phenotype of circulating microvesicles might contribute to the reported adverse effects of e-cigarette use on cardiovascular health.

11.
Eur J Haematol ; 113(3): 351-356, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38804098

ABSTRACT

BACKGROUND: Precursor plasma cell disorders such as monoclonal gammopathy of undetermined significance (MGUS) always precede the development of active malignancies such as multiple myeloma (MM). There is a need for novel biomarkers to identify those patients with such precursor plasma cell disorders who rapidly progress to MM. Plasma-derived extracellular vesicles (EVs) may serve as a reservoir of potential biomarkers that can shed light on the pathogenesis and disease biology of MM. METHODS: This study isolated small EVs (SEVs) and large EVs (LEVs) from the platelet-poor peripheral blood plasma of MGUS (n = 9) and MM (n = 12) patients using the size exclusion chromatography-based method and evaluated their proteome using a label-free proteomics workflow. RESULTS: In total, 2055 proteins were identified in SEVs, while 2794 proteins were identified in LEVs. The transferrin receptor (or CD71) protein was upregulated in both populations of EVs derived from MM patients compared to MGUS patients and was of prognostic significance. Similarly, three isoforms of serum amyloid A (SAA) protein, SAA1, SAA2, and SAA4, were also highly upregulated in SEVs within MM patients relative to MGUS patients. Finally, CD40 expression was also higher in the LEVs derived from MM patients than in MGUS patients. CONCLUSIONS: This study demonstrates the feasibility of successfully isolating both SEVs and LEVs from the peripheral blood of patients with plasma cell disorders and quantifying protein biomarkers within these EVs that could be of prognostic and diagnostic interest.


Subject(s)
Extracellular Vesicles , Monoclonal Gammopathy of Undetermined Significance , Multiple Myeloma , Proteome , Proteomics , Humans , Extracellular Vesicles/metabolism , Multiple Myeloma/diagnosis , Multiple Myeloma/blood , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Proteomics/methods , Male , Monoclonal Gammopathy of Undetermined Significance/diagnosis , Monoclonal Gammopathy of Undetermined Significance/blood , Monoclonal Gammopathy of Undetermined Significance/metabolism , Monoclonal Gammopathy of Undetermined Significance/pathology , Female , Middle Aged , Aged , Biomarkers, Tumor/blood , Precancerous Conditions/diagnosis , Precancerous Conditions/metabolism , Precancerous Conditions/blood , Precancerous Conditions/pathology , Biomarkers , Prognosis
12.
Bioorg Chem ; 150: 107589, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38941696

ABSTRACT

Extracellular vesicles (EVs) appear to play an important role in intercellular communication in various physiological processes and pathological conditions such as cancer. Like enveloped viruses, EVs can transport their contents into the nucleus of recipient cells, and a new intracellular pathway has been described to explain the nuclear shuttling of EV cargoes. It involves a tripartite protein complex consisting of vesicle-associated membrane protein-associated protein A (VAP-A), oxysterol-binding protein (OSBP)-related protein-3 (ORP3) and late endosome-associated Rab7 allowing late endosome entry into the nucleoplasmic reticulum. Rab7 binding to ORP3-VAP-A complex can be blocked by the FDA-approved antifungal drug itraconazole. Here, we design a new series of smaller triazole derivatives, which lack the dioxolane moiety responsible for the antifungal function, acting on the hydrophobic sterol-binding pocket of ORP3 and evaluate their structure-activity relationship through inhibition of VOR interactions and nuclear transfer of EV and HIV-1 cargoes. Our investigation reveals that the most effective compounds that prevent nuclear transfer of EV cargo and productive infection by VSV-G-pseudotyped HIV-1 are those with a side chain between 1 and 4 carbons, linear or branched (methyl) on the triazolone region. These potent chemical drugs could find clinical applications either for nuclear transfer of cancer-derived EVs that impact metastasis or viral infection.


Subject(s)
HIV Infections , Triazoles , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Humans , Structure-Activity Relationship , Molecular Structure , HIV Infections/drug therapy , HIV Infections/metabolism , HIV-1/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Dose-Response Relationship, Drug , Active Transport, Cell Nucleus/drug effects , Extracellular Vesicles/metabolism , Extracellular Vesicles/drug effects , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology
13.
J Nanobiotechnology ; 22(1): 201, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659058

ABSTRACT

The utilization of extracellular vesicles (EV) in immunotherapy, aiming at suppressing peripheral immune cells responsible for inflammation, has demonstrated significant efficacy in treating various inflammatory diseases. However, the clinical application of EV has faced challenges due to their inadequate targeting ability. In addition, most of the circulating EV would be cleared by the liver, resulting in a short biological half-life after systemic administration. Inspired by the natural microvesicles (MV, as a subset of large size EV) are originated and shed from the plasma membrane, we developed the immunosuppressive MV-mimetic (MVM) from endotoxin tolerant dendritic cells (DC) by a straightforward and effective extrusion approach, in which DC surface proteins were inherited for providing the homing ability to the spleen, while αCD3 antibodies were conjugated to the MVM membranes for specific targeting of T cells. The engineered MVM carried a large number of bioactive cargos from the parental cells, which exhibited a remarkable ability to promote the induction of regulatory T cells (Treg) and polarization of anti-inflammatory M2 macrophages. Mechanistically, the elevated Treg level by MVM was mediated due to the upregulation of miR-155-3p. Furthermore, it was observed that systemic and local immunosuppression was induced by MVM in models of sepsis and rheumatoid arthritis through the improvement of Treg and M2 macrophages. These findings reveal a promising cell-free strategy for managing inflammatory responses to infections or tissue injury, thereby maintaining immune homeostasis.


Subject(s)
Cell-Derived Microparticles , Dendritic Cells , Inflammation , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Animals , Mice , Inflammation/drug therapy , Cell-Derived Microparticles/metabolism , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Extracellular Vesicles , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Sepsis/immunology , Sepsis/drug therapy , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Humans , Immunotherapy/methods
14.
J Nanobiotechnology ; 22(1): 457, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085827

ABSTRACT

Intervertebral disc degeneration (IVDD) is characterized by the senescence and declining vitality of nucleus pulposus cells (NPCs), often driven by mitochondrial dysfunction. This study elucidates that mesenchymal stem cells (MSCs) play a crucial role in attenuating NPC senescence by secreting mitochondria-containing microvesicles (mitoMVs). Moreover, it demonstrates that static magnetic fields (SMF) enhance the secretion of mitoMVs by MSCs. By distinguishing mitoMV generation from exosomes, this study shifts focus to understanding the molecular mechanisms of SMF intervention, emphasizing cargo transport and plasma membrane budding processes, with RNA sequencing indicating the potential involvement of the microtubule-based transport protein Kif5b. The study further confirms the interaction between Rab22a and Kif5b, revealing Rab22a's role in sorting mitoMVs into microvesicles (MVs) and potentially mediating subsequent plasma membrane budding. Subsequent construction of a gelatin methacrylate (GelMA) hydrogel delivery system further addresses the challenges of in vivo application and verifies the substantial potential of mitoMVs in delaying IVDD. This research not only sheds light on the molecular intricacies of SMF-enhanced mitoMV secretion but also provides innovative perspectives for future IVDD therapeutic strategies.


Subject(s)
Cell-Derived Microparticles , Intervertebral Disc Degeneration , Magnetic Fields , Mesenchymal Stem Cells , Mitochondria , Nucleus Pulposus , Mesenchymal Stem Cells/metabolism , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/metabolism , Mitochondria/metabolism , Animals , Cell-Derived Microparticles/metabolism , Nucleus Pulposus/metabolism , Humans , Rats , Kinesins/metabolism , Cells, Cultured , Rats, Sprague-Dawley , rab GTP-Binding Proteins/metabolism , Male
15.
Adv Exp Med Biol ; 1450: 39-57, 2024.
Article in English | MEDLINE | ID: mdl-37421538

ABSTRACT

Apoptotic and healthy cells of domestic animals release membrane-enclosed particles from their plasma membrane. These special structures, called extracellular vesicles, play an important role in intercellular communication. In the past, it was believed that their function was mainly to dispose unwanted cell contents and to help maintain cell homeostasis. However, we now know that they have important roles in health and disease and have diagnostic value as well as great potential for therapy in veterinary medicine. Extracellular vesicles facilitate cellular exchanges by delivering functional cargo molecules to nearby or distant tissues. They are produced by various cell types and are found in all body fluids. Their cargo reflects the state of the releasing parent cell, and despite their small size, this cargo is extraordinarily complex. Numerous different types of molecules contained in vesicles make them an extremely promising tool in the field of regenerative veterinary medicine. To further increase research interest and discover their full potential, some of the basic biological mechanisms behind their function need to be better understood. Only then will we be able to maximize the clinical relevance for targeted diagnostic and therapeutic purposes in various domestic animal species.


Subject(s)
Extracellular Vesicles , Animals , Extracellular Vesicles/metabolism , Cell Communication , Communication
16.
Int J Mol Sci ; 25(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38396820

ABSTRACT

The members of the Flaviviridae family are becoming an emerging threat for public health, causing an increasing number of infections each year and requiring effective treatment. The consequences of these infections can be severe and include liver inflammation with subsequent carcinogenesis, endothelial damage with hemorrhage, neuroinflammation, and, in some cases, death. The mechanisms of Flaviviridae pathogenesis are being actively investigated, but there are still many gaps in their understanding. Extracellular vesicles may play important roles in these mechanisms, and, therefore, this topic deserves detailed research. Recent data have revealed the involvement of extracellular vesicles in steps of Flaviviridae pathogenesis such as transmission, immune evasion, and inflammation, which is critical for disease establishment. This review covers recent papers on the roles of extracellular vesicles in the pathogenesis of Flaviviridae and includes examples of clinical applications of the accumulated data.


Subject(s)
Extracellular Vesicles , Flaviviridae Infections , Flaviviridae , Humans , Flaviviridae Infections/drug therapy , Immune Evasion , Inflammation/therapy
17.
Mol Plant Microbe Interact ; 36(4): 235-244, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36867731

ABSTRACT

The arbuscular mycorrhizal (AM) symbiosis is an ancient and highly conserved mutualism between plant and fungal symbionts, in which a highly specialized membrane-delimited fungal arbuscule acts as the symbiotic interface for nutrient exchange and signaling. As a ubiquitous means of biomolecule transport and intercellular communication, extracellular vesicles (EVs) are likely to play a role in this intimate cross-kingdom symbiosis, yet, there is a lack of research investigating the importance of EVs in AM symbiosis despite known roles in microbial interactions in both animal and plant pathosystems. Clarifying the current understanding of EVs in this symbiosis in light of recent ultrastructural observations is paramount to guiding future investigations in the field, and, to this end, this review summarizes recent research investigating these areas. Namely, this review discusses the available knowledge regarding biogenesis pathways and marker proteins associated with the various plant EV subclasses, EV trafficking pathways during symbiosis, and the endocytic mechanisms implicated in the uptake of these EVs. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Extracellular Vesicles , Mycorrhizae , Symbiosis , Plants/microbiology , Biological Transport , Extracellular Vesicles/metabolism , Plant Roots
18.
Biol Proced Online ; 25(1): 25, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37726652

ABSTRACT

BACKGROUND: Exosomes, a special subtype of extracellular vesicles derived from human cells, serve as vital mediators of intercellular communication by transporting diverse bioactive cargos, including proteins and enzymes. However, the underlying mechanisms governing exosome secretion and regulation remain poorly understood. In this study, we employed a dual-reporter system consisting of bioluminescent Gaussia luciferase and fluorescent proteins to investigate the dynamics and regulation of exosome secretion in cultured human cells. RESULTS: Our results demonstrated that the engineered dual-reporters effectively monitored both exosome-mediated and ER-Golgi-mediated secretory pathways in a specific and quantitative manner. Notably, we observed distinct characteristics of exosome-mediated protein secretion, including significantly lower capacity and different dynamics compared to the ER-Golgi pathway. This phenomenon was observed in human kidney 293T cells and liver HepG2 cells, emphasizing the conserved nature of exosome-mediated secretion across cell types. Furthermore, we investigated the impact of brefeldin A (BFA), an inhibitor of ER-to-Golgi membrane trafficking, on protein secretion. Interestingly, BFA inhibited protein secretion via the ER-Golgi pathway while stimulating exosome-mediated protein secretion under same experimental conditions. CONCLUSIONS: Collectively, our study highlights the utility of the dual-reporter system for real-time monitoring and quantitative analysis of protein secretion through conventional ER-Golgi and unconventional exosome pathways. Moreover, our findings unveil distinct features of exosome-mediated protein secretion, shedding light on its differential capacity, dynamics, and regulatory mechanisms compared to ER-Golgi-mediated proteins in human cells.

19.
Mol Pharm ; 20(4): 1898-1913, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36919912

ABSTRACT

Recently, extracellular vesicles (EVs) have garnered considerable interest as potential vehicles for drug delivery, including gene therapy. Although EVs from diverse sources have been investigated, current techniques used in the field for EV generation limit large-scale EV production. The placenta is essentially a tissue transplant and has unique properties that allow it to avoid the maternal immune system making it likely that placental EVs will not generate inflammatory responses and will avoid clearance by the immune system. We propose that placental EVs produced from explant cultures are an efficient method to produce considerable quantities of EVs that would be safe to administer, and we hypothesize that placental EVs can be loaded with large exogenous plasmids. To this end, we trialed three strategies to load plasmid DNA into placental EVs, including loading via electroporation of placental tissue prior to EV isolation and loading directly into placental EVs via electroporation or direct incubation of the EVs in plasmid solution. We report that the placenta releases vast quantities of EVs compared to placental cells in monolayer cultures. We show successful loading of plasmid DNA into both large- and small-EVs following both exogenous loading strategies with more plasmid encapsulated in large-EVs. Importantly, direct incubation did not alter EV size nor quantity. Further, we showed that the loading efficiency into EVs was dependent on the exogenous plasmid DNA dose and the DNA size. These results provide realistic estimates of plasmid loading capacity into placental EVs using current technologies and showcase the potential of placental EVs as DNA delivery vehicles.


Subject(s)
Extracellular Vesicles , Placenta , Pregnancy , Female , Humans , DNA , Drug Delivery Systems , Plasmids/genetics
20.
Cells Tissues Organs ; 212(1): 111-123, 2023.
Article in English | MEDLINE | ID: mdl-35168230

ABSTRACT

Over the past 50 years, several different types of extracellular vesicles have been discovered including exosomes, microvesicles, and matrix vesicles. These vesicles are secreted by cells for specific purposes and contain cargo such as microRNA, cytokines, and lipids. A novel extracellular vesicle, the matrix-bound nanovesicle (MBV), has been recently discovered. The MBV is similar to the microvesicle, however, it is attached to the extracellular matrix, instead of being secreted. This review compares MBVs to other types of extracellular vesicles to try and better understand their origin and function. Further, this review will explain various extracellular vesicle isolation methods and how these can be used for MBVs and summarize characterization of MBV cargo such as microRNA, proteins, and lipids. Lastly, we will summarize the effects of MBVs on cells. MBVs are a novel class of extracellular vesicles that hold great promise as a platform for delivery of targeted gene and drug therapeutics.


Subject(s)
Exosomes , Extracellular Vesicles , MicroRNAs , Exosomes/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Proteins , Lipids
SELECTION OF CITATIONS
SEARCH DETAIL