Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Molecules ; 28(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38067477

ABSTRACT

Neuropathy target esterase (NTE) is a serine hydrolase with phospholipase B activity, which is involved in maintaining the homeostasis of phospholipids. It can be inhibited by aging inhibitors such as some organophosphorus (OP) compounds, which leads to delayed neurotoxicity with distal degeneration of axons. However, the detailed binding conformation of aging and non-aging inhibitors with NTE is not known. In this study, new computational models were constructed by using MODELLER 10.3 and AlphaFold2 to further investigate the inhibition mechanism of aging and non-aging compounds using molecular docking. The results show that the non-aging compounds bind the hydrophobic pocket much deeper than aging compounds and form the hydrophobic interaction with Phe1066. Therefore, the unique binding conformation of non-aging compounds may prevent the aging reaction. These important differences of the binding conformations of aging and non-aging inhibitors with NTE may help explain their different inhibition mechanism and the protection of non-aging NTE inhibitors against delayed neuropathy.


Subject(s)
Carboxylic Ester Hydrolases , Organophosphorus Compounds , Animals , Molecular Docking Simulation , Carboxylic Ester Hydrolases/metabolism , Organophosphorus Compounds/chemistry , Aging , Chickens/metabolism
2.
J Cell Physiol ; 236(6): 4435-4444, 2021 06.
Article in English | MEDLINE | ID: mdl-33184906

ABSTRACT

Recently, studies have shown that neuropathy target esterase (NTE) is essential to placental and normal blood vessel development. However, whether it is involved in abnormal placenta angiogenesis of pre-eclampsia remains unknown. Thus, our aim was to observe the expression of NTE in pre-eclamptic placentas and its effects and mechanism of NTE on the migration and the tube formation of human umbilical vein endothelial cells (HUVECs). Immunohistochemical staining showed that the NTE protein was intensely located in blood vessels of the normal pregnant placenta. However, western blot revealed that the expression level of NTE protein was significantly reduced in pre-eclamptic placenta. The results indicated that overexpression of NTE significantly promoted the migration and the tube formation of HUVECs compared with those of the control and scramble short hairpin RNA (shRNA) group. Conversely, NTE shRNA obviously inhibited the migration and the tube formation of HUVECs. Additionally, chromatography assay evidenced that NTE overexpression significantly reduced the level of phosphatidylcholine (PC) of HUVECs, but NTE shRNA obviously increased the level of PC of HUVECs. Furthermore, exogenous PC and lysophosphatidylcholine (LPC) significantly inhibited the tube formation of HUVECs in a dose-dependent manner. Collectively, our results suggest that reduced NTE in placenta may contribute to abnormal placenta angiogenesis of pre-eclampsia via the dysregulation of PC and LPC metabolism.


Subject(s)
Carboxylic Ester Hydrolases/metabolism , Cell Movement , Human Umbilical Vein Endothelial Cells/enzymology , Neovascularization, Physiologic , Phospholipases/metabolism , Phospholipids/metabolism , Placenta/blood supply , Pre-Eclampsia/enzymology , Adult , Carboxylic Ester Hydrolases/genetics , Case-Control Studies , Cells, Cultured , Female , Glycerylphosphorylcholine/metabolism , Humans , Lysophosphatidylcholines/metabolism , Phosphatidylcholines/metabolism , Phospholipases/genetics , Pre-Eclampsia/genetics , Pre-Eclampsia/physiopathology , Pregnancy , Signal Transduction , Young Adult
3.
Cell Physiol Biochem ; 45(3): 1013-1022, 2018.
Article in English | MEDLINE | ID: mdl-29428958

ABSTRACT

BACKGROUND/AIMS: Neuropathy target esterase (NTE, also known as neurotoxic esterase) is proven to deacylate phosphatidylcholine (PC) to glycerophosphocholine as a phospholipase B. Recently; studies showed that artificial phosphatidylserine/PC microvesicles can induce preeclampsia (PE)-like changes in pregnant mice. However, it is unclear whether NTE plays a key role in the pathology of PE, a pregnancy-related disease, which was characterized by deficient trophoblast invasion and reduced trophoblast-mediated remodeling of spiral arteries. The aim of this study was to investigate the expression pattern of NTE in the placenta from women with PE and normal pregnancy, and the molecular mechanism of NTE involved in the development of PE. METHODS: NTE expression levels in placentas from 20 pregnant women with PE and 20 healthy pregnant women were detected using quantitative PCR and immunohistochemistry staining. The effect of NTE on trophoblast migration and invasion and the underlying mechanisms were examined in HTR-8/SVneo cell lines by transfection method. RESULTS: NTE mRNA and protein expression levels were significantly decreased in preeclamptic placentas than normal control. Over-expression of NTE in HTR-8/SVneo cells significantly promoted trophoblast cells migration and invasion and was associated with increased MMP-9 levels. Conversely, shRNA-mediated down-regulation of NTE markedly inhibited the cell migration and invasion. In addition, silencing NTE reduced the MMP-9 activity and phosphorylated Erk1/2 and AKT levels. CONCLUSIONS: Our results suggest that the decreased NTE may contribute to the development of PE through impairing trophoblast invasion by down-regulating MMP-9 via the Erk1/2 and AKT signaling pathway.


Subject(s)
Carboxylic Ester Hydrolases/metabolism , Matrix Metalloproteinase 9/metabolism , Pre-Eclampsia/pathology , Adult , Carboxylic Ester Hydrolases/antagonists & inhibitors , Carboxylic Ester Hydrolases/genetics , Cell Line , Cell Movement , Down-Regulation , Female , Gestational Age , Humans , Male , Matrix Metalloproteinase 2/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , Placenta/metabolism , Pre-Eclampsia/metabolism , Pregnancy , RNA Interference , Signal Transduction , Trophoblasts/cytology , Trophoblasts/metabolism , Young Adult
4.
Arch Toxicol ; 91(2): 909-919, 2017 Feb.
Article in English | MEDLINE | ID: mdl-26838044

ABSTRACT

Multiple epidemiological and experimental studies have demonstrated that exposure to organophosphorus compounds (OPs) is associated with a variety of neurological disorders. Some of these exposure symptoms cannot be precisely correlated with known molecular targets and mechanisms of toxicity. Most of the known molecular targets of OPs fall in the protein family of serine esterases. We have shown that three esterase components in the soluble fraction of chicken brain (an animal model frequently used in OP neurotoxicity assays) can be kinetically distinguished using paraoxon, mipafox and phenylmethyl sulfonyl fluoride as inhibitors, and phenyl valerate as a substrate; we termed them Eα, Eß and Eγ. The Eα-component, which is highly sensitive to paraoxon and mipafox and resistant to PMSF, has shown sensitivity to the substrate acetylthiocholine, and to ethopropazine and iso-OMPA (specific inhibitors of butyrylcholinesterase; BChE) but not to BW 284C51 (a specific inhibitor of acetylcholinesterase; AChE). In this work, we employed a large-scale proteomic analysis B with a LC/MS/MS TripleTOF system; 259 proteins were identified in a chromatographic fractionated sample enriched in Eα activity of the chicken brain soluble fraction. Bioinformatics analysis revealed that BChE is the only candidate protein identified to be responsible for almost all the Eα activity. This study demonstrates the potential information to be gained from combining kinetic dissection with large-scale proteomics and bioinformatics analyses for identification of proteins that are targets of OP toxicity and may be involved in detoxification of phosphoryl and carbonyl esters.


Subject(s)
Brain/drug effects , Butyrylcholinesterase/metabolism , Carboxylic Ester Hydrolases/metabolism , Isoflurophate/analogs & derivatives , Animals , Brain/metabolism , Carboxylic Ester Hydrolases/antagonists & inhibitors , Chickens , Chromatography, Liquid/methods , Computational Biology/methods , Dose-Response Relationship, Drug , Isoflurophate/administration & dosage , Isoflurophate/toxicity , Phenothiazines/pharmacology , Proteomics/methods , Tandem Mass Spectrometry/methods
5.
Arch Toxicol ; 91(10): 3295-3305, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28299395

ABSTRACT

Phenyl valerate is used for detecting and measuring neuropathy target esterase (NTE) and has been used for discriminating esterases as potential target in hen model of organophosphorus delayed neuropathy. In previous studies we observed that phenyl valerate esterase (PVase) activity of an enzymatic fraction in chicken brain might be due to a butyrylcholinesterase protein (BuChE), and it was suggested that this enzymatic fraction could be related to the potentiation/promotion phenomenon of the organophosphate-induced delayed neuropathy (OPIDN). In this work, PVase activity of purified human butyrylcholinesterase (hBuChE) is demonstrated and confirms the novel observation that a relationship of BuChE with PVase activities is also relevant for humans, as is, therefore the potential role in toxicity for humans. The KM and catalytic constant (kcat) were estimated as 0.52/0.72 µM and 45,900/49,200 min-1 respectively. Furthermore, this work studies the inhibition by preincubation of PVase and cholinesterase activities of hBuChE with irreversible inhibitors (mipafox, iso-OMPA or PMSF), showing that these inhibitors interact similarly in both activities with similar second-order inhibition constants. Acethylthiocholine and phenyl valerate partly inhibit PVase and cholinesterase activities, respectively. All these observations suggest that both activities occur in the same active center. The interaction with a reversible inhibitor (ethopropazine) showed that the cholinesterase activity was more sensitive than the PVase activity, showing that the sensitivity for this reversible inhibitor is affected by the nature of the substrate. The present work definitively establishes the capacity of BuChE to hydrolyze the carboxylester phenyl valerate using a purified enzyme (hBuChE). Therefore, BuChE should be considered in the research of organophosphorus targets of toxicity related with PVase proteins.


Subject(s)
Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Valerates/metabolism , Acetylcholine/metabolism , Carboxylic Ester Hydrolases/metabolism , Humans , Hydrolysis , Isoflurophate/analogs & derivatives , Isoflurophate/pharmacology , Phenothiazines/pharmacology , Phenylmethylsulfonyl Fluoride/pharmacology , Tetraisopropylpyrophosphamide/pharmacology
6.
Mol Biol Rep ; 43(11): 1285-1292, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27558092

ABSTRACT

Neuropathy target esterase (NTE) and NTE-related esterase (NRE) are endoplasmic reticulum (ER) membrane-anchored proteins belonging to the NTE protein family. NTE and NRE are degraded by macroautophagy and by the ubiquitin-proteasome pathway. However, the regulation of NTE and NRE by proteasome has not been well understood. Western blotting showed that the deletion of the regulatory region of NTE and NRE led to protein accumulation compared with that of the corresponding wild-type proteins. Further, deletion and site-directed mutagenesis experiments demonstrated that the destruction (D) box was required for the proteasomal degradation of NTE and NRE. However, unlike the deletion of the regulatory region, the deletion of the D box did not affect the subcellular localisation of NTE or NRE or disrupt the ER. Moreover, the deletion of the D box or the regulatory region of NTE has similar inhibitory effects on cell growth, which are greater than those produced by the full-length NTE. Here, for the first time, we show that the D box is involved in the regulation of NTE family proteins by the proteasome but not in their subcellular localisation. In addition, these results suggest that the NTE overexpression-mediated inhibition of cell growth is related to active protein levels but not to its ER disruption effect.


Subject(s)
Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/metabolism , Proteasome Endopeptidase Complex/metabolism , Animals , Autophagy , COS Cells , Carboxylic Ester Hydrolases/genetics , Chlorocebus aethiops , DNA Mutational Analysis , HeLa Cells , Humans , Protein Binding , Proteolysis
7.
J Appl Toxicol ; 36(11): 1468-75, 2016 11.
Article in English | MEDLINE | ID: mdl-26970094

ABSTRACT

The adult hen is the standard animal model for testing organophosphorus (OP) compounds for organophosphorus compound-induced delayed neurotoxicity (OPIDN). Recently, we developed a mouse model for biochemical assessment of the neuropathic potential of OP compounds based on brain neuropathy target esterase (NTE) and acetylcholinesterase (AChE) inhibition. We carried out the present work to further develop the mouse model by testing the hypothesis that whole blood NTE inhibition could be used as a biochemical marker for exposure to neuropathic OP compounds. Because brain NTE and AChE inhibition are biomarkers of OPIDN and acute cholinergic toxicity, respectively, we compared NTE and AChE 20-min IC50 values as well as ED50 values 1 h after single intraperitoneal (i.p.) injections of increasing doses of two neuropathic OP compounds that differed in acute toxicity potency. We found good agreement between the brain and blood for in vitro sensitivity of each enzyme as well for the ratios IC50 (AChE)/IC50 (NTE). Both OP compounds inhibited AChE and NTE in the mouse brain and blood dose-dependently, and brain and blood inhibitions in vivo were well correlated for each enzyme. For both OP compounds, the ratio ED50 (AChE)/ED50 (NTE) in blood corresponded to that in the brain despite the somewhat higher sensitivity of blood enzymes. Thus, our results indicate that mouse blood NTE could serve as a biomarker of exposure to neuropathic OP compounds. Moreover, the data suggest that relative inhibition of blood NTE and AChE provide a way to assess the likelihood that OP compound exposure in a susceptible species would produce cholinergic and/or delayed neuropathic effects. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Brain/drug effects , Carboxylic Ester Hydrolases/blood , Neurotoxicity Syndromes/blood , Organophosphorus Compounds/toxicity , Acetylcholinesterase/metabolism , Animals , Biomarkers/blood , Brain/enzymology , Carboxylic Ester Hydrolases/antagonists & inhibitors , Carboxylic Ester Hydrolases/metabolism , Dose-Response Relationship, Drug , Male , Mice, Inbred Strains , Neurotoxicity Syndromes/enzymology , Neurotoxicity Syndromes/etiology , Organophosphorus Compounds/chemistry
8.
J Appl Toxicol ; 34(12): 1426-35, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24395470

ABSTRACT

Inhibition and aging of neuropathy target esterase (NTE) by neuropathic organophosphorus (OP) compounds triggers OP compound-induced delayed neuropathy (OPIDN), whereas inhibition of acetylcholinesterase (AChE) produces cholinergic toxicity. The neuropathic potential of an OP compound is defined by its relative inhibitory potency toward NTE vs. AChE assessed by enzyme assays following dosing in vivo or after incubations of direct-acting compounds or active metabolites with enzymes in vitro. The standard animal model of OPIDN is the adult hen, but its large size and high husbandry costs make this species a burdensome model for assessing neuropathic potential. Although the mouse does not readily exhibit clinical signs of OPIDN, it displays axonal lesions and expresses brain AChE and NTE. Therefore, the present research was performed as a further test of the hypothesis that inhibition of mouse brain AChE and NTE could be used to assess neuropathic potential using mouse brain preparations in vitro or employing mouse brain assays following dosing of OP compounds in vivo. Excellent correlations were obtained for inhibition kinetics in vitro of mouse brain enzymes vs. hen brain and human recombinant enzymes. Furthermore, inhibition of mouse brain AChE and NTE after dosing with OP compounds afforded ED(50) ratios that agreed with relative inhibitory potencies assessed in vitro. Taken together, results with mouse brain enzymes demonstrated consistent correspondence between in vitro and in vivo predictors of neuropathic potential, thus adding to previous studies supporting the validity of a mouse model for biochemical assessment of the ability of OP compounds to produce OPIDN.


Subject(s)
Acetylcholinesterase/metabolism , Carboxylic Ester Hydrolases/antagonists & inhibitors , Disease Models, Animal , Enzyme Inhibitors/toxicity , Neurotoxicity Syndromes/enzymology , Organophosphorus Compounds/toxicity , Animals , Brain/drug effects , Brain/enzymology , Chickens , Dose-Response Relationship, Drug , Female , Humans , Male , Mice, Inbred C57BL , Neurotoxicity Syndromes/etiology , Species Specificity
9.
Neurotoxicology ; 101: 16-25, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224782

ABSTRACT

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are useful markers to assess the effects of exposure to anticholinesterase insecticides (Anti-AChE). In addition, lymphocyte neuropathy target esterase (LNTE) has been used as biomarker of neuropathic organophosphate compounds (OPs). Thus, this study evaluates the main types of circulating biomarkers related to the cholinergic system and to the neuropathy induced by OPs in standardized human samples. To achieve this objective, total protein of human plasma, erythrocytes and lymphocytes were first standardized, and then AChE, BChE and LNTE activities in human blood were evaluated in the presence of inhibitors. The acceptance criteria of the regulatory agency were respected with coefficients of regression of curves of 0.9972 for cholinesterase and 0.9956 for LNTE analyses. The wavelength established to perform cholinesterase assay was 450 nm and the time of incubation of the enzymes with inhibitors was 30 min. Differences were observed among the IC50 values regarding the in vitro inhibition of AChE, BChE and LNTE in the presence of OPs. In conclusion, the procedures demonstrated by the present work were simple, fast, inexpensive, sensitive, easy to be replicated and suitable to make conclusions about the neurotoxicity induced by Anti-AChE and neuropathic OPs.


Subject(s)
Insecticides , Neurotoxicity Syndromes , Humans , Butyrylcholinesterase , Acetylcholinesterase/metabolism , Organophosphorus Compounds/toxicity , Cholinesterase Inhibitors/toxicity , Insecticides/toxicity , Neurotoxicity Syndromes/diagnosis , Neurotoxicity Syndromes/etiology
10.
Elife ; 132024 Apr 25.
Article in English | MEDLINE | ID: mdl-38660940

ABSTRACT

Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.


Subject(s)
Blood-Brain Barrier , Carboxylic Ester Hydrolases , Fatty Acids , Inflammation , Neuroglia , Animals , Blood-Brain Barrier/metabolism , Fatty Acids/metabolism , Inflammation/metabolism , Neuroglia/metabolism , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/genetics , Lysosomal Storage Diseases/metabolism , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/pathology , Humans , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics
11.
Metabolites ; 12(7)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35888761

ABSTRACT

As an endoplasmic reticulum (ER)-anchored phospholipase, neuropathy target esterase (NTE) catalyzes the deacylation of lysophosphatidylcholine (LPC) and phosphatidylcholine (PC). The catalytic domain of NTE (NEST) exhibits comparable activity to NTE and binds to lipid droplets (LD). In the current study, the nucleotide monophosphate (cNMP)-binding domains (CBDs) were firstly demonstrated not to be essential for the ER-targeting of NTE, but to be involved in the normal ER distribution and localization to LD. NEST was associated with LD surface and influenced LD formation in human neuroblastoma cells. Overexpression of NEST enhances triacylglycerol (TG) accumulation upon oleic acid loading. Quantitative targeted lipidomic analysis shows that overexpression of NEST does not alter diacylglycerol levels but reduces free fatty acids content. NEST not only lowered levels of LPC and acyl-LPC, but not PC or alkyl-PC, but also widely altered levels of other lipid metabolites. Qualitative PCR indicates that the increase in levels of TG is due to the expression of diacylglycerol acyltransferase 1 gene by NEST overexpression. Thus, NTE may broadly regulate lipid metabolism to play roles in LD biogenesis in cells.

12.
Metabolites ; 12(4)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35448471

ABSTRACT

Patatin-like phospholipase domain-containing protein 6 (PNPLA6), originally called Neuropathy Target Esterase (NTE), belongs to a family of hydrolases with at least eight members in mammals. PNPLA6/NTE was first identified as a key factor in Organophosphate-induced delayed neuropathy, a degenerative syndrome that occurs after exposure to organophosphates found in pesticides and nerve agents. More recently, mutations in PNPLA6/NTE have been linked with a number of inherited diseases with diverse clinical symptoms that include spastic paraplegia, ataxia, and chorioretinal dystrophy. A conditional knockout of PNPLA6/NTE in the mouse brain results in age-related neurodegeneration, whereas a complete knockout causes lethality during embryogenesis due to defects in the development of the placenta. PNPLA6/NTE is an evolutionarily conserved protein that in Drosophila is called Swiss-Cheese (SWS). Loss of SWS in the fly also leads to locomotory defects and neuronal degeneration that progressively worsen with age. This review will describe the identification of PNPLA6/NTE, its expression pattern, and normal role in lipid homeostasis, as well as the consequences of altered NPLA6/NTE function in both model systems and patients.

13.
Brain Sci ; 12(8)2022 Jul 24.
Article in English | MEDLINE | ID: mdl-35892416

ABSTRACT

Acute or chronic exposures to pesticides have been linked to neurotoxicity and the potential development of neurodegenerative diseases (NDDs). This study aimed to consider the neurotoxicity of three widely utilized pesticides: malathion, chlorpyrifos, and paraquat within the hippocampus (HC), corpus striatum (CS), cerebellum (CER), and cerebral cortex (CC). Neurotoxicity was evaluated at relatively low, medium, and high pesticide dosages. All pesticides inhibited acetylcholinesterase (AChE) and neuropathy target esterase (NTE) in each of the brain regions, but esterase inhibition was greatest in the HC and CS. Each of the pesticides also induced greater disruption to cellular bioenergetics within the HC and CS, and this was monitored via inhibition of mitochondrial complex enzymes I and II, reduced ATP levels, and increased lactate production. Similarly, the HC and CS were more vulnerable to redox stress, with greater inhibition of the antioxidant enzymes catalase and superoxide dismutase and increased lipid peroxidation. All pesticides induced the production of nuclear Nrf2 in a dose-dependent manner. Collectively, these results show that pesticides disrupt cellular bioenergetics and that the HC and CS are more susceptible to pesticide effects than the CER and CC.

14.
Toxicology ; 453: 152725, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33617914

ABSTRACT

Organophosphorus compounds (OP) causes prominent delayed neuropathy in vivo and cytotoxicity to neuronal cells in vitro. The primary target protein of OP's neurotoxicity is neuropathy target esterase (NTE), which can convert phosphatidylcholine (PC) to glycerophosphocholine (GPC). Recent studies reveal that autophagic cell death is important for the initiation and progression of OP-induced neurotoxicity both in vivo and in vitro. However, the mechanism of how OP induces autophagic cell death is unknown. Here it is found that GPC is an important organic osmolyte in the neuroblastoma cells, and treatment with tri-o-cresyl phosphate (TOCP), a representative OP, leads to the decrease of GPC and imbalance of extracellular and intracellular osmolality. Knockdown of GPC metabolizing enzyme glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5) reverses TOCP-induced autophagic cell death, which further supports the notion that the reduced GPC level leads to the autophagic cell death. Furthermore, it is found that autophagic cell death is due to the induction of reactive oxygen species (ROS) and mitochondrial damage by imbalance of osmolality with TOCP treatment. In summary, this study reveals that TOCP treatment decreases GPC level and intracellular osmolality, which induces ROS and mitochondrial damage and leads to the cell death and neurite degradation by autophagy. This study lays the foundation for further investigations on the potential therapeutic approaches for OP neurotoxicity or NTE mutation-related neurological diseases.


Subject(s)
Cytotoxins/toxicity , Intracellular Fluid/drug effects , Intracellular Fluid/metabolism , Neuroblastoma/metabolism , Organophosphorus Compounds/toxicity , Autophagy/drug effects , Autophagy/physiology , Cell Line, Tumor , Humans , Osmolar Concentration
15.
Toxicol Sci ; 180(1): 160-174, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33483753

ABSTRACT

Environmental exposure to tricresyl phosphate (TCP) may lead to severe neurotoxic effects, including organophosphate (OP)-induced delayed neuropathy. TCP has three symmetric isomers, distinguished by the methyl group position on the aromatic ring system. One of these isomers, tri-ortho-cresyl phosphate (ToCP), has been reported for years as a neuropathic OP, targeting neuropathic target esterase (NTE/PNPLA6), but its mode of toxic action had not been fully elucidated. Zebrafish eleuthero-embryo and larva were used to characterize the differential action of the TCP isomers. The symmetric isomers inhibited phenyl valerate (PV)-NTE enzymatic activity in vivo with different IC50, while no effect was observed on acetylcholinesterase activity. Moreover, the locomotor behavior was also affected by tri-para-cresyl phosphate and tri-meta-cresyl phosphate, only ToCP exposure led to locomotor hyperactivity lasting several hours, associated with defects in the postural control system and an impaired phototactic response, as revealed by the visual motor response test. The electric field pulse motor response test demonstrated that a seizure-like, multiple C-bend-spaghetti phenotype may be significantly induced by ToCP only, independently of any inhibition of PV-NTE activity. Eleuthero-embryos exposed to picrotoxin, a known gamma-aminobutyric acid type-A receptor inhibitor, exhibited similar adverse outcomes to ToCP exposure. Thus, our results demonstrated that the TCP mode of toxic action was isomer specific and not initially related to modulation of PV-NTE activity. Furthermore, it was suggested that the molecular events involved were linked to an impairment of the balance between excitation and inhibition in neuronal circuits.


Subject(s)
Tritolyl Phosphates , Animals , Carboxylic Ester Hydrolases , Chickens , Seizures/chemically induced , Valerates , Zebrafish
16.
Adv Neurotoxicol ; 4: 1-78, 2020.
Article in English | MEDLINE | ID: mdl-32518884

ABSTRACT

Systemic inhibition of neuropathy target esterase (NTE) with certain organophosphorus (OP) compounds produces OP compound-induced delayed neurotoxicity (OPIDN), a distal degeneration of axons in the central nervous system (CNS) and peripheral nervous system (PNS), thereby providing a powerful model for studying a spectrum of neurodegenerative diseases. Axonopathies are important medical entities in their own right, but in addition, illnesses once considered primary neuronopathies are now thought to begin with axonal degeneration. These disorders include Alzheimer's disease, Parkinson's disease, and motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Moreover, conditional knockout of NTE in the mouse CNS produces vacuolation and other degenerative changes in large neurons in the hippocampus, thalamus, and cerebellum, along with degeneration and swelling of axons in ascending and descending spinal cord tracts. In humans, NTE mutations cause a variety of neurodegenerative conditions resulting in a range of deficits including spastic paraplegia and blindness. Mutations in the Drosophila NTE orthologue SwissCheese (SWS) produce neurodegeneration characterized by vacuolization that can be partially rescued by expression of wild-type human NTE, suggesting a potential therapeutic approach for certain human neurological disorders. This chapter defines NTE and OPIDN, presents an overview of OP compounds, provides a rationale for NTE research, and traces the history of discovery of NTE and its relationship to OPIDN. It then briefly describes subsequent studies of NTE, including practical applications of the assay; aspects of its domain structure, subcellular localization, and tissue expression; abnormalities associated with NTE mutations, knockdown, and conventional or conditional knockout; and hypothetical models to help guide future research on elucidating the role of NTE in OPIDN.

17.
Biomolecules ; 9(12)2019 12 09.
Article in English | MEDLINE | ID: mdl-31835418

ABSTRACT

: Neuropathy target esterase (NTE) is an endoplasmic reticulum (ER)-localized phospholipase that deacylates phosphatidylcholine (PC) and lysophosphatidylcholine (LPC). Loss-of-function mutations in the human NTE gene have been associated with a spectrum of neurodegenerative disorders such as hereditary spastic paraplegia, ataxia and chorioretinal dystrophy. Despite this, little is known about structure-function relationships between NTE protein domains, enzymatic activity and the interaction with cellular organelles. In the current study we show that the C-terminal region of NTE forms a catalytically active domain that exhibits high affinity for lipid droplets (LDs), cellular storage organelles for triacylglycerol (TAG), which have been recently implicated in the progression of neurodegenerative diseases. Ectopic expression of the C domain in cultured cells decreases cellular PC, elevates TAG and induces LD clustering. LD interactions of NTE are inhibited by default by a non-enzymatic regulatory (R) region with three putative nucleotide monophosphate binding sites. Together with a N-terminal TMD the R region promotes proper distribution of the catalytic C-terminal region to the ER network. Taken together, our data indicate that NTE may exhibit dynamic interactions with the ER and LDs depending on the interplay of its functional regions. Mutations that disrupt this interplay may contribute to NTE-associated disorders by affecting NTE positioning.


Subject(s)
Carboxylic Ester Hydrolases/metabolism , Endoplasmic Reticulum/enzymology , Lipid Droplets/enzymology , Animals , COS Cells , Chlorocebus aethiops , Lysophospholipase/metabolism , Neurodegenerative Diseases/metabolism , Triglycerides/metabolism
18.
Front Neurosci ; 13: 1207, 2019.
Article in English | MEDLINE | ID: mdl-31780887

ABSTRACT

Mutations in patatin-like phospholipase domain-containing protein 6 (PNPLA6) have been linked with a number of inherited diseases with clinical symptoms that include spastic paraplegia, ataxia, and chorioretinal dystrophy. PNPLA6 is an evolutionary conserved protein whose ortholog in Drosophila is Swiss-Cheese (SWS). Both proteins are phospholipases hydrolyzing lysophosphatidylcholine (LPC) and phosphatidylcholine (PC). Consequently, loss of SWS/PNPLA6 in flies and mice increases both lipids and leads to locomotion deficits and neurodegeneration. PNPLA6 knock-out mice are embryonic lethal, and a mutation creating an early stop codon in human PNPLA6 has only been identified in compound heterozygote patients. In contrast, disease-causing point mutations are found in homozygous patients, with some localized in the phospholipase domain while others are in a region that contains several cNMP binding sites. To investigate how different mutations affect the function of PNPLA6 in an in vivo model, we expressed them in the Drosophila sws1 null mutant. Expressing wild-type PNPLA6 suppressed the locomotion and degenerative phenotypes in sws 1 and restored lipid levels, confirming that the human protein can replace fly SWS. In contrast, none of the mutant proteins restored lipid levels, although they suppressed the behavioral and degenerative phenotypes, at least in early stages. These results show that these mutant forms of PNPLA6 retain some biological function, indicating that disruption of lipid homeostasis is only part of the pathogenic mechanism. Furthermore, our finding that mutations in the cNMP binding sites prevented the restoration of normal lipid levels supports previous evidence that cNMP regulates the phospholipase activity of PNPLA6.

19.
Iran J Pharm Res ; 17(3): 1116-1124, 2018.
Article in English | MEDLINE | ID: mdl-30127834

ABSTRACT

Certain organophosphorus esters, such as diisopropylfluorophosphate (DFP), cause delayed neuropathy by inhibition of neuropathy target esterase (NTE) keeping the neuron in normal function. In this study, effects of neurobion alone and in combination with dexamethasone on DFP-induced delayed neuropathy were evaluated. Thirty-five mice were divided into five groups, each consisting of 7 mice. Except group1 (Normal group), group 2 received normal saline and 1h later, 1 mg/kg DFP; groups 3, 4 and 5 received 150 mg/kg neurobion, 2 mg/kg dexamethasone and 150 mg/kg neurobion plus 2 mg/kg dexamethasone, respectively and 1h later 1mg/kg DFP. Twenty one days after the last injection, the mice were killed by decapitation under deep anesthesia. NTE level was determined in the brain and though there was no significant difference between the groups, neurobion and neurobion plus dexamethasone partly- not significantly (p > 0.05)- were able to prevent reduction of NTE in the brain caused by DFP. Histopathological evaluation of sciatic nerves showed that neurobion and neurobion plus dexamethasone significantly suppressed the harmful effect of DFP. We also evaluated the activity of acetylcholine esterase (AChE), concentration of glutathione (GSH), and malondialdehyde (MDA) levels in the serum. Results showed dexamethasone (p < 0.001) and dexamethasone in combination with neurobion (p < 0.01) diminished AChE activity significantly compared to the DFP group. Neurobion caused a significant increase in the GSH level (p < 0.05). No significant change was seen in MDA. It is suggested that neurobion should be added and used in the first aid equipment and techniques for exposure to organophosphorus compounds, e.g. pesticides and chemical warfare.

20.
Front Mol Neurosci ; 11: 129, 2018.
Article in English | MEDLINE | ID: mdl-29740279

ABSTRACT

Organophosphate-induced delayed neuropathy (OPIDN) is characterized by progressive axonal degeneration and demyelination of the spinal cord and sciatic nerves. The neuregulin 1/epidermal growth factor receptor (ErbB) signaling pathway is crucial for axonal myelination. In this study, we investigated whether the neuregulin 1/ErbB signaling pathway mediated the progression of OPIDN. Adult hens were given tri-o-cresyl phosphate (TOCP), a typical neuropathic organophosphorus compound, to induce OPIDN. The ErbB inhibitor lapatinib was administered to hens 4 h prior to and 4 days after TOCP exposure. The neuregulin 1/ErbB signaling pathway was examined for their role in maintaining spinal cord and sciatic nerve fiber integrity. Schwann cell line sNF96.2 was used as the in vitro cell model. The in vivo results showed that TOCP (750 mg/kg body weight, p.o.) induced prominent ataxia and significant axon degeneration in the spinal cord and sciatic nerves. Lapatinib (25 mg/kg body weight, p.o.) treatment attenuated OPIDN clinically and histopathlogically and partially prevented the TOCP-induced activation of neuregulin 1/ErbB signaling pathway. Lapatinib also prevented the TOCP-induced inhibition of neuropathy target esterase (NTE), a key enzyme during the development of OPIDN, and the disturbed metabolism of phosphatidylcholine in sciatic nerves. In addition, lapatinib was shown, in vitro, to protect sNF96.2 cells from TOCP-induced dedifferentiation through neuregulin 1/ErbB signaling. Our results suggest that neuregulin 1/ErbB, through regulation of NTE activity in the peripheral nervous system, mediates the progression of OPIDN. Thus, this signal may serve as a potential target for the treatment of OPIDN.

SELECTION OF CITATIONS
SEARCH DETAIL