Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 301
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 109(3): 508-517, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35172124

ABSTRACT

Non-obstructive azoospermia (NOA) is a severe and frequent cause of male infertility, often treated by testicular sperm extraction followed by intracytoplasmic sperm injection. The aim of this study is to improve the genetic diagnosis of NOA, by identifying new genes involved in human NOA and to better assess the chances of successful sperm extraction according to the individual's genotype. Exome sequencing was performed on 96 NOA-affected individuals negative for routine genetic tests. Bioinformatics analysis was limited to a panel of 151 genes selected as known causal or candidate genes for NOA. Only highly deleterious homozygous or hemizygous variants were retained as candidates. A likely causal defect was identified in 16 genes in a total of 22 individuals (23%). Six genes had not been described in man (DDX25, HENMT1, MCMDC2, MSH5, REC8, TDRKH) and 10 were previously reported (C14orf39, DMC1, FANCM, GCNA, HFM1, MCM8, MEIOB, PDHA2, TDRD9, TERB1). Seven individuals had defects in genes from piwi or DNA repair pathways, three in genes involved in post-meiotic maturation, and 12 in meiotic processes. Interestingly, all individuals with defects in meiotic genes had an unsuccessful sperm retrieval, indicating that genetic diagnosis prior to TESE could help identify individuals with low or null chances of successful sperm retrieval and thus avoid unsuccessful surgeries.


Subject(s)
Azoospermia , Azoospermia/diagnosis , Azoospermia/genetics , DNA Helicases/metabolism , DNA-Binding Proteins/genetics , Humans , Male , Sperm Retrieval , Testis/metabolism , Exome Sequencing
2.
Mol Cell Proteomics ; 22(6): 100564, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37146716

ABSTRACT

Spermatogenesis defects are important for male infertility; however, the etiology and pathogenesis are still unknown. Herein, we identified two loss-of-function mutations of STK33 in seven individuals with non-obstructive azoospermia. Further functional studies of these frameshift and nonsense mutations revealed that Stk33-/KI male mice were sterile, and Stk33-/KI sperm were abnormal with defects in the mitochondrial sheath, fibrous sheath, outer dense fiber, and axoneme. Stk33KI/KI male mice were subfertile and had oligoasthenozoospermia. Differential phosphoproteomic analysis and in vitro kinase assay identified novel phosphorylation substrates of STK33, fibrous sheath components A-kinase anchoring protein 3 and A-kinase anchoring protein 4, whose expression levels decreased in testis after deletion of Stk33. STK33 regulated the phosphorylation of A-kinase anchoring protein 3/4, affected the assembly of fibrous sheath in the sperm, and played an essential role in spermiogenesis and male infertility.


Subject(s)
A Kinase Anchor Proteins , Infertility, Male , Humans , Male , Mice , Animals , A Kinase Anchor Proteins/metabolism , Semen/metabolism , Spermatozoa/metabolism , Spermatogenesis/physiology , Sperm Tail/metabolism , Protein Serine-Threonine Kinases/metabolism , Infertility, Male/genetics , Infertility, Male/metabolism , Flagella/metabolism
3.
Mol Cell Proteomics ; 22(6): 100556, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37087050

ABSTRACT

Non-obstructive azoospermia (NOA), the most severe form of male infertility, could be treated with intracytoplasmic sperm injection, providing spermatozoa were retrieved with the microdissection testicular sperm extraction (mTESE). We hypothesized that testis-specific and germ cell-specific proteins would facilitate flow cytometry-assisted identification of rare spermatozoa in semen cell pellets of NOA patients, thus enabling non-invasive diagnostics prior to mTESE. Data mining, targeted proteomics, and immunofluorescent microscopy identified and verified a panel of highly testis-specific proteins expressed at the continuum of germ cell differentiation. Late germ cell-specific proteins AKAP4_HUMAN and ASPX_HUMAN (ACRV1 gene) revealed exclusive localization in spermatozoa tails and acrosomes, respectively. A multiplex imaging flow cytometry assay facilitated fast and unambiguous identification of rare but morphologically intact AKAP4+/ASPX+/Hoechst+ spermatozoa within debris-laden semen pellets of NOA patients. While the previously suggested markers for spermatozoa retrieval suffered from low diagnostic specificity, the multistep gating strategy and visualization of AKAP4+/ASPX+/Hoechst+ cells with elongated tails and acrosome-capped nuclei facilitated fast and unambiguous identification of the mature intact spermatozoa. AKAP4+/ASPX+/Hoechst+ assay may emerge as a noninvasive test to predict retrieval of morphologically intact spermatozoa by mTESE, thus improving diagnostics and treatment of severe forms of male infertility.


Subject(s)
Azoospermia , Infertility, Male , Male , Humans , Azoospermia/genetics , Azoospermia/metabolism , Azoospermia/therapy , Semen/metabolism , Spermatozoa/metabolism , Testis/metabolism , Infertility, Male/metabolism , Retrospective Studies , A Kinase Anchor Proteins/metabolism
4.
BMC Genomics ; 25(1): 583, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38858625

ABSTRACT

BACKGROUND: The issue of male fertility is becoming increasingly common due to genetic differences inherited over generations. Gene expression and evaluation of non-coding RNA (ncRNA), crucial for sperm development, are significant factors. This gene expression can affect sperm motility and, consequently, fertility. Understanding the intricate protein interactions that play essential roles in sperm differentiation and development is vital. This knowledge could lead to more effective treatments and interventions for male infertility. MATERIALS AND METHODS: Our research aim to identify new and key genes and ncRNA involved in non-obstructive azoospermia (NOA), improving genetic diagnosis and offering more accurate estimates for successful sperm extraction based on an individual's genotype. RESULTS: We analyzed the transcript of three NOA patients who tested negative for genetic sperm issues, employing comprehensive genome-wide analysis of approximately 50,000 transcript sequences using microarray technology. This compared gene expression profiles between NOA sperm and normal sperm. We found significant gene expression differences: 150 genes were up-regulated, and 78 genes were down-regulated, along with 24 ncRNAs up-regulated and 13 ncRNAs down-regulated compared to normal conditions. By cross-referencing our results with a single-cell genomics database, we identified overexpressed biological process terms in differentially expressed genes, such as "protein localization to endosomes" and "xenobiotic transport." Overrepresented molecular function terms in up-regulated genes included "voltage-gated calcium channel activity," "growth hormone-releasing hormone receptor activity," and "sialic acid transmembrane transporter activity." Analysis revealed nine hub genes associated with NOA sperm: RPL34, CYB5B, GOL6A6, LSM1, ARL4A, DHX57, STARD9, HSP90B1, and VPS36. CONCLUSIONS: These genes and their interacting proteins may play a role in the pathophysiology of germ cell abnormalities and infertility.


Subject(s)
Azoospermia , Gene Expression Profiling , Gene Regulatory Networks , MicroRNAs , RNA, Long Noncoding , RNA, Messenger , Single-Cell Analysis , Spermatozoa , Humans , Male , Azoospermia/genetics , Azoospermia/metabolism , Spermatozoa/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA , Transcriptome , Oligonucleotide Array Sequence Analysis
5.
Am J Hum Genet ; 108(2): 324-336, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33508233

ABSTRACT

Human infertility is a multifactorial disease that affects 8%-12% of reproductive-aged couples worldwide. However, the genetic causes of human infertility are still poorly understood. Synaptonemal complex (SC) is a conserved tripartite structure that holds homologous chromosomes together and plays an indispensable role in the meiotic progression. Here, we identified three homozygous mutations in the SC coding gene C14orf39/SIX6OS1 in infertile individuals from different ethnic populations by whole-exome sequencing (WES). These mutations include a frameshift mutation (c.204_205del [p.His68Glnfs∗2]) from a consanguineous Pakistani family with two males suffering from non-obstructive azoospermia (NOA) and one female diagnosed with premature ovarian insufficiency (POI) as well as a nonsense mutation (c.958G>T [p.Glu320∗]) and a splicing mutation (c.1180-3C>G) in two unrelated Chinese men (individual P3907 and individual P6032, respectively) with meiotic arrest. Mutations in C14orf39 resulted in truncated proteins that retained SYCE1 binding but exhibited impaired polycomplex formation between C14ORF39 and SYCE1. Further cytological analyses of meiosis in germ cells revealed that the affected familial males with the C14orf39 frameshift mutation displayed complete asynapsis between homologous chromosomes, while the affected Chinese men carrying the nonsense or splicing mutation showed incomplete synapsis. The phenotypes of NOA and POI in affected individuals were well recapitulated by Six6os1 mutant mice carrying an analogous mutation. Collectively, our findings in humans and mice highlight the conserved role of C14ORF39/SIX6OS1 in SC assembly and indicate that the homozygous mutations in C14orf39/SIX6OS1 described here are responsible for infertility of these affected individuals, thus expanding our understanding of the genetic basis of human infertility.


Subject(s)
Azoospermia/genetics , Mutation , Primary Ovarian Insufficiency/genetics , Adult , Azoospermia/physiopathology , Chromosome Pairing , Codon, Nonsense , DNA-Binding Proteins/metabolism , Female , Homozygote , Humans , Male , Meiosis , Middle Aged , Nuclear Proteins/metabolism , Pedigree , Primary Ovarian Insufficiency/physiopathology , Spermatocytes/metabolism , Spermatocytes/physiology , Synaptonemal Complex/genetics , Synaptonemal Complex/metabolism , Whole Genome Sequencing
6.
Biol Reprod ; 110(2): 408-418, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-37903059

ABSTRACT

Non-obstructive azoospermia affects more than 10% of infertile men with over 70% patients are idiopathic with uncharacterized molecular mechanisms, which is referred as idiopathic non-obstructive azoospermia. In this study, we checked the morphology of Sertoli cell mitochondria in testis biopsies from patients with idiopathic non-obstructive azoospermia and patients with obstructive azoospermia who have normal spermiogenesis. The expression of 104 genes controlling mitochondria fission and fusion were analyzed in three gene expression datasets including a total of 60 patients with non-obstructive azoospermia. The levels of 7 candidate genes were detected in testis biopsies from 38 patients with idiopathic non-obstructive azoospermia and 24 patients with obstructive azoospermia who have normal spermatogenesis by RT-qPCR. Cell viability, apoptosis, mitochondria membrane potential, adenosine triphosphate production, oxygen consumption, and mitochondria morphology were examined in primary human Sertoli cells. Mouse spermatogonial stem cells were used to detect the cell supporting capacity of Sertoli cells. We observed that patients with idiopathic non-obstructive azoospermia had elongated mitochondria. MTFR2 and ATP5IF1 were downregulated, whereas BAK1 was upregulated in idiopathic non-obstructive azoospermia testis and Sertoli cells. Sertoli cells from patients with idiopathic non-obstructive azoospermia had reduced viability, mitochondria membrane potential, adenosine triphosphate production, oxygen consumption rate, glycolysis and increased apoptosis. Knockdown MTFR2 in Sertoli cells increased the mitochondria size. Knockdown ATP5IF1 did not change mitochondrial morphology but increased adenosine triphosphate hydrolysis. Overexpression of BAK1 reduced membrane potential and upregulated cell apoptosis. The dysregulation of all these three genes contributed to the dysfunction of Sertoli cells, which provides a clue for idiopathic non-obstructive azoospermia treatment.


Subject(s)
Azoospermia , Mitochondrial Diseases , Male , Humans , Mice , Animals , Sertoli Cells/metabolism , Azoospermia/genetics , Mitochondrial Dynamics , Testis/metabolism , Spermatogenesis/genetics , Adenosine Triphosphate/metabolism , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2 Homologous Antagonist-Killer Protein/metabolism
7.
Mol Hum Reprod ; 30(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38258527

ABSTRACT

Oligozoospermia and azoospermia are two common phenotypes of male infertility characterized by massive sperm defects owing to failure of spermatogenesis. The deleterious impact of candidate variants with male infertility is to be explored. In our study, we identified three hemizygous missense variants (c.388G>A: p.V130M, c.272C>T: p.A91V, and c.467C>T: p.A156V) and one hemizygous nonsense variant (c.478C>T: p.R160X) in the Rhox homeobox family member 1 gene (RHOXF1) in four unrelated cases from a cohort of 1201 infertile Chinese men with oligo- and azoospermia using whole-exome sequencing and Sanger sequencing. RHOXF1 was absent in the testicular biopsy of one patient (c.388G>A: p.V130M) whose histological analysis showed a phenotype of Sertoli cell-only syndrome. In vitro experiments indicated that RHOXF1 mutations significantly reduced the content of RHOXF1 protein in HEK293T cells. Specifically, the p.V130M, p.A156V, and p.R160X mutants of RHOXF1 also led to increased RHOXF1 accumulation in cytoplasmic particles. Luciferase assays revealed that p.V130M and p.R160X mutants may disrupt downstream spermatogenesis by perturbing the regulation of doublesex and mab-3 related transcription factor 1 (DMRT1) promoter activity. Furthermore, ICSI treatment could be beneficial in the context of oligozoospermia caused by RHOXF1 mutations. In conclusion, our findings collectively identified mutated RHOXF1 to be a disease-causing X-linked gene in human oligo- and azoospermia.


Subject(s)
Azoospermia , Infertility, Male , Oligospermia , Humans , Male , Azoospermia/genetics , Azoospermia/pathology , Genes, X-Linked , HEK293 Cells , Infertility, Male/genetics , Oligospermia/genetics , Semen
8.
Clin Genet ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956960

ABSTRACT

Non-obstructive azoospermia (NOA) resulting from primary spermatogenic failure represents one of the most severe forms of male infertility, largely because therapeutic options are very limited. Beyond their diagnostic value, genetic tests for NOA also hold prognostic potential. Specifically, genetic diagnosis enables the establishment of genotype-testicular phenotype correlations, which, in some cases, provide a negative predictive value for testicular sperm extraction (TESE), thereby preventing unnecessary surgical procedures. In this study, we employed whole-genome sequencing (WGS) to investigate two generations of an Iranian family with NOA and identified a homozygous splicing variant in TDRKH (NM_001083965.2: c.562-2A>T). TDRKH encodes a conserved mitochondrial membrane-anchored factor essential for piRNA biogenesis in germ cells. In Tdrkh knockout mice, de-repression of retrotransposons in germ cells leads to spermatogenic arrest and male infertility. Previously, our team reported TDRKH involvement in human NOA cases through the investigation of a North African cohort. This current study marks the second report of TDRKH's role in NOA and human male infertility, underscoring the significance of the piRNA pathway in spermatogenesis. Furthermore, across both studies, we demonstrated that men carrying TDRKH variants, similar to knockout mice, exhibit complete spermatogenic arrest, correlating with failed testicular sperm retrieval.

9.
Clin Genet ; 105(1): 99-105, 2024 01.
Article in English | MEDLINE | ID: mdl-37715646

ABSTRACT

Non-obstructive azoospermia (NOA) is the most severe form of human male infertility, and the genetic causes of NOA with meiotic arrest remain largely unclear. In this study, we identified novel compound heterozygous MEIOB variants (c.814C > T: p.R272X and c.976G > A: p.A326T) and a previously undescribed homozygous non-canonical splicing variant of MEIOB (c.528 + 3A > C) in two NOA-affected individuals from two irrelevant Chinese families. MEIOB missense variant (p.A326T) significantly reduced protein abundance and nonsense variant (p.R272X) produced a truncated protein. Both of two variants impaired the MEIOB-SPATA22 interaction. The MEIOB non-canonical splicing variant resulted in whole Exon 6 skipping by minigene assay, which was predicted to produce a frameshift truncated protein (p.S111Rfs*32). Histological and immunostaining analysis indicated that both patients exhibited a similar phenotype as we previously reported in Meiob mutant mice, that is, absence of spermatids in seminiferous tubules and meiotic arrest. Our study identified three novel pathogenic variants of MEIOB in NOA patients, extending the mutation spectrum of the MEIOB and highlighting the contribution of meiotic recombination related genes in human fertility.


Subject(s)
Azoospermia , Infertility, Male , Humans , Male , Mice , Animals , Azoospermia/genetics , Azoospermia/pathology , Infertility, Male/genetics , Mutation/genetics , Proteins/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Meiosis/genetics , DNA-Binding Proteins/genetics
10.
Hum Reprod ; 39(2): 303-309, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38140699

ABSTRACT

Fertility restoration using autologous testicular tissue transplantation is relevant for infertile men surviving from childhood cancer and, possibly, in men with absent or incomplete spermatogenesis resulting in the lack of spermatozoa in the ejaculate (non-obstructive azoospermia, NOA). Currently, testicular tissue from pre-pubertal boys extracted before treatment with gonadotoxic cancer therapy can be cryopreserved with good survival of spermatogonial stem cells. However, strategies for fertility restoration, after successful cancer treatment, are still experimental and no clinical methods have yet been developed. Similarly, no clinically available treatments can help men with NOA to become biological fathers after failed attempts of testicular surgical sperm retrieval. We present a case of a 31-year-old man with NOA who had three pieces of testis tissue (each ∼2 × 4 × 2 mm3) extracted and cryopreserved in relation to performing microdissection testicular sperm extraction (mTESE). Approximately 2 years after mTESE, the thawed tissue pieces were engrafted in surgically created pockets bilaterally under the scrotal skin. Follow-up was performed after 2, 4, and 6 months with assessment of reproductive hormones and ultrasound of the scrotum. After 6 months, all engrafted tissue was extracted and microscopically analyzed for the presence of spermatozoa. Furthermore, parts of the extracted tissue were analyzed histologically and by immunohistochemical analysis. Active blood flow in the engrafted tissue was demonstrated by doppler ultrasound after 6 months. No spermatozoa were found in the extracted tissue. Histological and immunohistochemical analysis demonstrated graft survival with intact clear tubules and normal cell organization. Sertoli cells and spermatocytes with normal morphology were located near the basement membrane. MAGE-A and VASA positive spermatogonia/spermatocytes were detected together with SOX9 positive Sertoli cells. Spermatocytes and/or Sertoli cells positive for γH2AX was also detected. In summary, following autologous grafting of frozen-thawed testis tissue under the scrotal skin in a man with NOA, we demonstrated graft survival after 6 months. No mature spermatozoa were detected; however, this is likely due to the pre-existing spermatogenic failure.


Subject(s)
Azoospermia , Testis , Adult , Humans , Male , Child , Testis/pathology , Semen , Spermatozoa/pathology , Spermatogonia , Sertoli Cells , Azoospermia/surgery , Azoospermia/pathology , Sperm Retrieval
11.
Hum Reprod ; 39(5): 1131-1140, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38511217

ABSTRACT

STUDY QUESTION: Do copy-number variations (CNVs) in the azoospermia factor (AZF) regions and monogenic mutations play a major role in the development of isolated (non-syndromic) non-obstructive azoospermia (NOA) in Japanese men with a normal 46, XY karyotype? SUMMARY ANSWER: Deleterious CNVs in the AZF regions and damaging sequence variants in eight genes likely constitute at least 8% and approximately 8% of the genetic causes, respectively, while variants in other genes play only a minor role. WHAT IS KNOWN ALREADY: Sex chromosomal abnormalities, AZF-linked microdeletions, and monogenic mutations have been implicated in isolated NOA. More than 160 genes have been reported as causative/susceptibility/candidate genes for NOA. STUDY DESIGN, SIZE, DURATION: Systematic molecular analyses were conducted for 115 patients with isolated NOA and a normal 46, XY karyotype, who visited our hospital between 2017 and 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS: We studied 115 unrelated Japanese patients. AZF-linked CNVs were examined using sequence-tagged PCR and multiplex ligation-dependent probe amplification, and nucleotide variants were screened using whole exome sequencing (WES). An optimized sequence kernel association test (SKAT-O), a gene-based association study using WES data, was performed to identify novel disease-associated genes in the genome. The results were compared to those of previous studies and our in-house control data. MAIN RESULTS AND THE ROLE OF CHANCE: Thirteen types of AZF-linked CNVs, including the hitherto unreported gr/gr triplication and partial AZFb deletion, were identified in 63 (54.8%) cases. When the gr/gr deletion, a common polymorphism in Japan, was excluded from data analyses, the total frequency of CNVs was 23/75 (30.7%). This frequency is higher than that of the reference data in Japan and China (11.1% and 14.7%, respectively). Known NOA-causative AZF-linked CNVs were found in nine (7.8%) cases. Rare damaging variants in known causative genes (DMRT1, PLK4, SYCP2, TEX11, and USP26) and hemizygous/multiple-heterozygous damaging variants in known spermatogenesis-associated genes (TAF7L, DNAH2, and DNAH17) were identified in nine cases (7.8% in total). Some patients carried rare damaging variants in multiple genes. SKAT-O detected no genes whose rare damaging variants were significantly accumulated in the patient group. LIMITATIONS, REASONS FOR CAUTION: The number of participants was relatively small, and the clinical information of each patient was fragmentary. Moreover, the pathogenicity of identified variants was assessed only by in silico analyses. WIDER IMPLICATIONS OF THE FINDINGS: This study showed that various AZF-linked CNVs are present in more than half of Japanese NOA patients. These results broadened the structural variations of AZF-linked CNVs, which should be considered for the molecular diagnosis of spermatogenic failure. Furthermore, the results of this study highlight the etiological heterogeneity and possible oligogenicity of isolated NOA. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by Grants from the Japan Society for the Promotion of Science (21K19283 and 21H0246), the Japan Agency for Medical Research and Development (22ek0109464h0003), the National Center for Child Health and Development, the Canon Foundation, the Japan Endocrine Society, and the Takeda Science Foundation. The results of this study were based on samples and patient data obtained from the International Center for Reproductive Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan. The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Azoospermia , Cell Cycle Proteins , DNA Copy Number Variations , Humans , Azoospermia/genetics , Male , Exome Sequencing , Adult , Mutation , Japan , Karyotyping
12.
Mol Biol Rep ; 51(1): 68, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38175272

ABSTRACT

BACKGROUND: Both non-obstructive azoospermia (NOA) and primary ovarian insufficiency (POI) are pathological conditions characterized by premature and frequently complete gametogenesis failure. Considering that the conserved meiosis I steps are the same between oogenesis and spermatogenesis, inherited defects in meiosis I may result in common causes for both POI and NOA. The present research is a retrospective investigation on an Iranian family with four siblings of both genders who were affected by primary gonadal failure. METHODS: Proband, an individual with NOA, was subjected to clinical examination, hormonal assessment, and genetic consultation. After reviewing the medical history of other infertile members of the family, patients with NOA went through genetic investigations including karyotyping and assessment of Y chromosome microdeletions, followed by Whole exome sequencing (WES) on the proband. After analyzing WES data, the candidate variant was validated using Sanger sequencing and traced in the family. RESULTS: WES analysis of the proband uncovered a novel homozygote nonsense variant, namely c.118C>T in MSH4. This variant resulted in the occurrence of a premature stop codon in residue 40 of MSH4. Notably, the variant was absent in all public exome databases and in the exome data of 400 fertile Iranian individuals. Additionally, the variant was found to co-segregate with infertility in the family. It was also observed that all affected members had homozygous mutations, while their parents were heterozygous and the fertile sister had no mutant allele, corresponding to autosomal recessive inheritance. In addition, we conducted a review of variants reported so far in MSH4, as well as available clinical features related to these variants. The results show that the testicular sperm retrieval and ovarian stimulation cycles have not been successful yet. CONCLUSION: Overall, the results of this study indicate that the identification of pathogenic variants in this gene will be beneficial in selecting proper therapeutic strategies. Also, the findings of this study demonstrate that clinicians should obtain the history of other family members of the opposite sex when diagnosing for POI and/or NOA.


Subject(s)
Azoospermia , Primary Ovarian Insufficiency , Male , Humans , Female , Azoospermia/genetics , Homozygote , Iran , Primary Ovarian Insufficiency/genetics , Retrospective Studies , Semen , Cell Cycle Proteins
13.
Article in English | MEDLINE | ID: mdl-38366682

ABSTRACT

BACKGROUND: Non-obstructive azoospermia (NOA) diagnosis poses challenges for couples seeking parenthood. Microdissection testicular sperm extraction (MD-TESE) excels in retrieving testicular sperm cells for NOA cases. However, limited live birth data in Australian NOA patients hinders accurate counselling. AIMS: This study aimed to determine the likelihood of infertile couples with a male partner diagnosed with NOA conceiving biological children using MD-TESE / intracytoplasmic sperm injection (ICSI). MATERIALS AND METHODS: A retrospective cohort study included 108 NOA men treated at a public fertility unit and a private fertility centre (May 2009-May 2022). PRIMARY OUTCOME: live birth rate (LBR); secondary outcomes: sperm retrieval rate, pregnancy rate, and neonatal outcomes. RESULTS: Among 108 patients undergoing MD-TESE, the positive sperm retrieval rate (PSRR) was 64.8% (70/108). Histology best predicted sperm retrieval success, with hypo-spermatogenesis yielding a 94.1% PSRR. Age, testicular volume, and hormonal parameters had no significant impact. Mean male age: 35.4 years; mean partner age: 32.7 years. Fertilisation rate: 50.7%. LBR per initiated cycle: 58.7% (37/63); per embryo transfer: 63.8% (37/58); per initially diagnosed NOA man: 34.3% (37/108). Cumulative LBR: 74.1% (43/58); twin rate: 10.8% (4/37). No neonatal deaths or defects were observed among 47 live offspring. CONCLUSION: This study provides valuable data for counselling NOA couples on the probability of conceiving biological offspring. MD-TESE and ICSI yielded favourable PSRR (64.8%) and LBR (63.8%). However, couples should be aware that once NOA is confirmed, the chance of taking home a baby is 34%.

14.
Pak J Med Sci ; 40(3Part-II): 410-414, 2024.
Article in English | MEDLINE | ID: mdl-38356829

ABSTRACT

Objective: To determine the association of serum kisspeptin, leptin, and other hormonal profile with non-obstructive azoospermia (NOA) in infertile male subjects. Methods: This cross-sectional study was conducted at Australian Concept Infertility Medical Center, and Ziauddin University, Karachi from March 2018 to March 2020. The duration of the study was two years. Serum samples of 106 azoospermic participants were taken. Division of the subjects was done on a histological basis into obstructive azoospermia (OA) n=36, NOA n=70 which were further divided into spermatid maturation arrest (SMA), n=41, and sertoli cell-only syndrome (SCOS) n=29. Serum kisspeptin and leptin were measured by ELISA (Cloud-Clone Corp). Results: The follicle-stimulating hormone (FSH) (p<0.01), luteinizing hormone (LH) (p<0.01), thyroid-stimulating hormone (TSH) (p<0.01), and estradiol (p<0.01) was significantly high in the NOA group. However, kisspeptin was significantly decreased (p<0.01) in the NOA group. In the multivariate analysis after adjusting for other variables, the results showed that with the decrease in kisspeptin, the chances of being NOA were increased. Moreover, with the increase in Leptin, FSH, LH, and TSH the chances of being NOA were significantly enhanced. Conclusion: Serum kisspeptin, leptin, FSH, LH, TSH, and estradiol can be a potential marker for NOA in terms of better diagnosis, targeted therapeutic management, and the decision to proceed with surgical intervention.

15.
Am J Hum Genet ; 107(2): 342-351, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32673564

ABSTRACT

Male infertility affects ∼7% of men, but its causes remain poorly understood. The most severe form is non-obstructive azoospermia (NOA), which is, in part, caused by an arrest at meiosis. So far, only a few validated disease-associated genes have been reported. To address this gap, we performed whole-exome sequencing in 58 men with unexplained meiotic arrest and identified the same homozygous frameshift variant c.676dup (p.Trp226LeufsTer4) in M1AP, encoding meiosis 1 associated protein, in three unrelated men. This variant most likely results in a truncated protein as shown in vitro by heterologous expression of mutant M1AP. Next, we screened four large cohorts of infertile men and identified three additional individuals carrying homozygous c.676dup and three carrying combinations of this and other likely causal variants in M1AP. Moreover, a homozygous missense variant, c.1166C>T (p.Pro389Leu), segregated with infertility in five men from a consanguineous Turkish family. The common phenotype between all affected men was NOA, but occasionally spermatids and rarely a few spermatozoa in the semen were observed. A similar phenotype has been described for mice with disruption of M1ap. Collectively, these findings demonstrate that mutations in M1AP are a relatively frequent cause of autosomal recessive severe spermatogenic failure and male infertility with strong clinical validity.


Subject(s)
Cell Cycle Checkpoints/genetics , Infertility, Male/genetics , Meiosis/genetics , Mutation/genetics , Proteins/genetics , Spermatogenesis/genetics , Adult , Alleles , Animals , Azoospermia/genetics , Homozygote , Humans , Male , Mice , Phenotype , Spermatozoa/abnormalities , Testis/abnormalities , Turkey , Exome Sequencing/methods
16.
Hum Reprod ; 38(4): 655-670, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36807972

ABSTRACT

STUDY QUESTION: Is the vertebrate protein Dead end (DND1) a causative factor for human infertility and can novel in vivo assays in zebrafish help in evaluating this? SUMMARY ANSWER: Combining patient genetic data with functional in vivo assays in zebrafish reveals a possible role for DND1 in human male fertility. WHAT IS KNOWN ALREADY: About 7% of the male population is affected by infertility but linking specific gene variants to the disease is challenging. The function of the DND1 protein was shown to be critical for germ cell development in several model organisms but a reliable and cost-effective method for evaluating the activity of the protein in the context of human male infertility is still missing. STUDY DESIGN, SIZE, DURATION: Exome data from 1305 men included in the Male Reproductive Genomics cohort were examined in this study. A total of 1114 of the patients showed severely impaired spermatogenesis but were otherwise healthy. Eighty-five men with intact spermatogenesis were included in the study as controls. PARTICIPANTS/MATERIALS, SETTING, METHODS: We screened the human exome data for rare, stop-gain, frameshift, splice site, as well as missense variants in DND1. The results were validated by Sanger sequencing. Immunohistochemical techniques and, when possible, segregation analyses were performed for patients with identified DND1 variants. The amino acid exchange in the human variant was mimicked at the corresponding site of the zebrafish protein. Using different aspects of germline development in live zebrafish embryos as biological assays, we examined the activity level of these DND1 protein variants. MAIN RESULTS AND THE ROLE OF CHANCE: In human exome sequencing data, we identified four heterozygous variants in DND1 (three missense and one frameshift variant) in five unrelated patients. The function of all of the variants was examined in the zebrafish and one of those was studied in more depth in this model. We demonstrate the use of zebrafish assays as a rapid and effective biological readout for evaluating the possible impact of multiple gene variants on male fertility. This in vivo approach allowed us to assess the direct impact of the variants on germ cell function in the context of the native germline. Focusing on the DND1 gene, we find that zebrafish germ cells, expressing orthologs of DND1 variants identified in infertile men, failed to arrive correctly at the position where the gonad develops and exhibited defects in cell fate maintenance. Importantly, our analysis facilitated the evaluation of single nucleotide variants, whose impact on protein function is difficult to predict, and allowed us to distinguish variants that do not affect the protein's activity from those that strongly reduce it and could thus potentially be the primary cause for the pathological condition. These aberrations in germline development resemble the testicular phenotype of azoospermic patients. LIMITATIONS, REASONS FOR CAUTION: The pipeline we present requires access to zebrafish embryos and to basic imaging equipment. The notion that the activity of the protein in the zebrafish-based assays is relevant for the human homolog is well supported by previous knowledge. Nevertheless, the human protein may differ in some respects from its homologue in zebrafish. Thus, the assay should be considered only one of the parameters used in defining DND1 variants as causative or non-causative for infertility. WIDER IMPLICATIONS OF THE FINDINGS: Using DND1 as an example, we have shown that the approach described in this study, relying on bridging between clinical findings and fundamental cell biology, can help to establish links between novel human disease candidate genes and fertility. In particular, the power of the approach we developed is manifested by the fact that it allows the identification of DND1 variants that arose de novo. The strategy presented here can be applied to different genes in other disease contexts. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by the German Research Foundation, Clinical Research Unit, CRU326 'Male Germ Cells'. There are no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Infertility, Male , Zebrafish , Animals , Humans , Male , Zebrafish/genetics , Infertility, Male/genetics , Infertility, Male/pathology , Testis/pathology , Fertility , Phenotype , Neoplasm Proteins/genetics
17.
Reprod Biol Endocrinol ; 21(1): 30, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36945018

ABSTRACT

BACKGROUND: Non-obstructive azoospermia (NOA) affects approximately 1% of the male population worldwide. The underlying mechanism and gene transcription remain unclear. This study aims to explore the potential pathogenesis for the detection and management of NOA. METHODS: Based on four microarray datasets from the Gene Expression Omnibus database, integrated analysis and weighted correlation network analysis (WGCNA) were used to obtain the intersected common differentially expressed genes (DESs). Differential signaling pathways were identified via GO and GSVA-KEGG analyses. We constructed a seventeen-gene signature model using least absolute shrinkage and selection operation (LASSO) regression, and validated its efficacy in another two GEO datasets. Three patients with NOA and three patients with obstructive azoospermia were recruited. The mRNA levels of seven key genes were measured in testicular samples, and the gene expression profile was evaluated in the Human Protein Atlas (HPA) database. RESULTS: In total, 388 upregulated and 795 downregulated common DEGs were identified between the NOA and control groups. ATPase activity, tubulin binding, microtubule binding, and metabolism- and immune-associated signaling pathways were significantly enriched. A seventeen-gene signature predictive model was constructed, and receiver operating characteristic (ROC) analysis showed that the area under the curve (AUC) values were 1.000 (training group), 0.901 (testing group), and 0.940 (validation set). The AUCs of seven key genes (REC8, CPS1, DHX57, RRS1, GSTA4, SI, and COX7B) were all > 0.8 in both the testing group and the validation set. The qRT-PCR results showed that consistent with the sequencing data, the mRNA levels of RRS1, GSTA4, and COX7B were upregulated, while CPS1, DHX57, and SI were downregulated in NOA. Four genes (CPS1, DHX57, RRS1, and SI) showed significant differences. Expression data from the HPA database showed the localization characteristics and trajectories of seven key genes in spermatogenic cells, Sertoli cells, and Leydig cells. CONCLUSIONS: Our findings suggest a novel seventeen-gene signature model with a favorable predictive power, and identify seven key genes with potential as NOA-associated marker genes. Our study provides a new perspective for exploring the underlying pathological mechanism in male infertility.


Subject(s)
Azoospermia , Humans , Male , Azoospermia/genetics , Azoospermia/pathology , Gene Expression Profiling , Sertoli Cells/pathology , Transcriptome/genetics , RNA, Messenger/genetics
18.
Mol Cell Biochem ; 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37659974

ABSTRACT

Spermatogenesis, a key part of the spermiation process, is regulated by a combination of key cells, such as primordial germ cells, spermatogonial stem cells, and somatic cells, such as Sertoli cells. Abnormal spermatogenesis can lead to azoospermia, testicular tumors, and other diseases related to male infertility. The application of single-cell RNA sequencing (scRNA-seq) technology in male reproduction is gradually increasing with its unique insight into deep mining and analysis. The data cover different periods of neonatal, prepubertal, pubertal, and adult stages. Different types of male infertility diseases including obstructive and non-obstructive azoospermia (NOA), Klinefelter Syndrome (KS), Sertoli Cell Only Syndrome (SCOS), and testicular tumors are also covered. We briefly review the principles and application of scRNA-seq and summarize the research results and application directions in spermatogenesis in different periods and pathological states. Moreover, we discuss the challenges of applying this technology in male reproduction and the prospects of combining it with other technologies.

19.
Reprod Biomed Online ; 46(6): 973-981, 2023 06.
Article in English | MEDLINE | ID: mdl-37005152

ABSTRACT

RESEARCH QUESTION: What is the risk of hypogonadism in men with obstructive azoospermia, non-obstructive azoospermia (NOA) or Klinefelter syndrome after testicular sperm extraction (TESE)? DESIGN: This prospective longitudinal cohort study was carried out between 2007 and 2015. RESULTS: Around 36% of men with Klinefelter syndrome, 4% of men with obstructive azoospermia and 3% of men with NOA needed testosterone replacement therapy (TRT). Klinefelter syndrome was strongly associated with TRT while no association was found between obstructive azoospermia or NOA and TRT. Irrespective of the pre-operative diagnosis, a higher testosterone concentration before TESE was associated with a lower chance of needing TRT. CONCLUSIONS: Men with obstructive azoospermia or NOA have a similar moderate risk of clinical hypogonadism after TESE, while this risk is much larger for men with Klinefelter syndrome. The risk of clinical hypogonadism is lower when testosterone concentrations are high before TESE.


Subject(s)
Azoospermia , Hypogonadism , Klinefelter Syndrome , Male , Humans , Azoospermia/therapy , Prospective Studies , Klinefelter Syndrome/complications , Longitudinal Studies , Sperm Retrieval , Retrospective Studies , Semen , Testis/surgery , Spermatozoa , Hypogonadism/complications , Testosterone
20.
Zygote ; 31(1): 8-13, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36258642

ABSTRACT

The aim of this study was to assess the consequences of treatment with pentoxifylline (PTX), an inducer of sperm motility, on sperm DNA fragmentation (SDF) and clinical characteristics in non-obstructive azoospermia (NOA) patients. The pilot study included 15 NOA patients. Half of each sperm sample before and after rapid freezing, was treated with PTX (3.6 mM /l, 30 min) as the PTX group and the remaining samples were considered as the control. SDF and sperm motility were assessed in each group. The clinical study comprised 30 fresh testicular sperm extractions (TESE) and 22 post-thawed TESE intracytoplasmic sperm injection cycles. Half of the mature oocytes from each patient were injected with PTX-treated spermatozoa and the remaining oocytes were injected with non-treated spermatozoa. Fertilization was assessed at 16 h post injection. Embryo transfer was carried out on day 2 after fertilization. Chemical pregnancy was assessed 2 weeks after transfer. PTX was found to significantly increase (P < 0.05) sperm motility. There was an insignificant difference in SDF rates between the groups (P > 0.05). In patient ovaries given fresh TESE, there was not any significant difference in clinical characteristics (P > 0.05). In patient ovaries given post-thawed TESE, there was a significant difference in the number of 2PN and in embryo formation (P < 0.05). Differences in the results of chemical pregnancy were insignificant (P > 0.05) between the groups. In addition, there was not any correlation between DNA fragmentation index and sperm motility and laboratory outcomes. Therefore, obtaining viable spermatozoa using PTX was more effective in post-thawed TESE regime patients in terms of 2PN and in embryo formation, deprived of damaging effects on sperm DNA integrity.


Subject(s)
Azoospermia , Pentoxifylline , Pregnancy , Humans , Female , Male , Azoospermia/drug therapy , Azoospermia/genetics , Pentoxifylline/pharmacology , Pilot Projects , Sperm Motility , Semen , Spermatozoa , Testis , DNA , Sperm Retrieval , Retrospective Studies , Pregnancy Rate
SELECTION OF CITATIONS
SEARCH DETAIL