ABSTRACT
Shallow thermokarst lakes are important sources of greenhouse gases (GHGs) such as methane (CH4 ) and carbon dioxide (CO2 ) resulting from continuous permafrost thawing due to global warming. Concentrations of GHGs dissolved in water typically increase with decreasing lake size due to coastal abrasion and organic matter delivery. We hypothesized that (i) CH4 oxidation depends on the natural oxygenation gradient in the lake water and sediments and increases with lake size because of stronger wind-induced water mixing; (ii) CO2 production increases with decreasing lake size, following the dissolved organic matter gradient; and (iii) both processes are more intensive in the upper than deeper sediments due to the in situ gradients of oxygen (O2 ) and bioavailable carbon. We estimated aerobic CH4 oxidation potentials and CO2 production based on the injection of 13 C-labeled CH4 in the 0-10 cm and 10-20 cm sediment depths of small (~300 m2 ), medium (~3000 m2 ), and large (~106 m2 ) shallow thermokarst lakes in the West Siberian Lowland. The CO2 production was 1.4-3.5 times stronger in the upper sediments than in the 10-20 cm depth and increased from large (158 ± 18 nmol CO2 g-1 sediment d.w. h-1 ) to medium and small (192 ± 17 nmol CO2 g-1 h-1 ) lakes. Methane oxidation in the upper sediments was similar in all lakes, while at depth, large lakes had 14- and 74-fold faster oxidation rates (5.1 ± 0.5 nmol CH4 -derived CO2 g-1 h-1 ) than small and medium lakes, respectively. This was attributed to the higher O2 concentration in large lakes due to the more intense wind-induced water turbulence and mixing than in smaller lakes. From a global perspective, the CH4 oxidation potential confirms the key role of thermokarst lakes as an important hotspot for GHG emissions, which increase with the decreasing lake size.
Subject(s)
Greenhouse Gases , Lakes , Methane/analysis , Carbon Dioxide/analysis , Oxidation-Reduction , WaterABSTRACT
Vast stores of millennial-aged soil carbon (MSC) in permafrost peatlands risk leaching into the contemporary carbon cycle after thaw caused by climate warming or increased wildfire activity. Here we tracked the export and downstream fate of MSC from two peatland-dominated catchments in subarctic Canada, one of which was recently affected by wildfire. We tested whether thermokarst bog expansion and deepening of seasonally thawed soils due to wildfire increased the contributions of MSC to downstream waters. Despite being available for lateral transport, MSC accounted for ≤6% of dissolved organic carbon (DOC) pools at catchment outlets. Assimilation of MSC into the aquatic food web could not explain its absence at the outlets. Using δ13 C-Δ14 C-δ15 N-δ2 H measurements, we estimated only 7% of consumer biomass came from MSC by direct assimilation and algal recycling of heterotrophic respiration. Recent wildfire that caused seasonally thawed soils to reach twice as deep in one catchment did not change these results. In contrast to many other Arctic ecosystems undergoing climate warming, we suggest waterlogged peatlands will protect against downstream delivery and transformation of MSC after climate- and wildfire-induced permafrost thaw.
Subject(s)
Permafrost , Carbon , Carbon Cycle , Ecosystem , SoilABSTRACT
Climate warming affects the carbon cycle of northern peatlands through temperature rises and a changing carbon availability. To clarify the effects of elevated temperature and labile carbon addition on SOC mineralization, as well as their microbial driving mechanisms, topsoil (0-10 cm) and subsoil (10-20 cm) were collected from a peatland in the Great Hing'an Mountains and incubated with or without 13C-glucose at 10 °C and 15 °C for 42 days. The results showed that 5 °C warming significantly stimulated SOC mineralization along with NH4+-N and NO3--N content increases, as well as a decrease in invertase and urease activities. Glucose addition triggered a positive priming effect (PE) in the early stage of the incubation but changed to a negative PE in the late stage of the incubation. Glucose likely regulates carbon dynamics by altering fungi: bacteria, soil invertase, and ß-glucodase activities, and MBC, DOC, NH4+-N contents. Glucose addition increased fungal abundance in 0-10 cm at 10 °C and 15 °C, and 10-20 cm at 10 °C, respectively, but significantly decreased fungal abundance in 10-20 cm at 15 °C. Glucose addition decreased bacterial abundance in 0-10 cm at 10 °C but increased bacterial abundance in 10-20 cm soil at 10 °C, and in 0-10 and 10-20 cm soils at 15 °C, respectively. Glucose addition significantly decreased the fungi: bacteria ratio in 0-20 cm soils at 15 °C. In addition, Q10 was significantly positively correlated with the changes in soil DOC, NH4+-N contents, invertase, and ß-glucosidase activities, while negatively correlated with fungi: bacteria and urease activities after 5 °C of warming, and glucose addition significantly increased the Q10. Labile carbon may decrease carbon losses in northern peatlands that inhibit warming-induced carbon emission increase, thus partially buffering soil carbon content against change.
ABSTRACT
Peatlands store one-third of the total global soil carbon (C.) despite covering only 3-4% of the global land surface. Most peatlands are distributed in mid-high latitude regions and are even in permafrost regions, are sensitive to climate change and are disturbed by wildfire. Although several studies have focused on the impact of historical climate change and regional human activities on the C. accumulation process in these peatlands, the impact of these factors on the stability of the C. pool remains poorly understood. Here, based on the 210Pb age-depth model, we investigated the historical variations of C. stability during the last 150 years for five typical peatlands in the northern Great Khingan Mountains (Northeast China), an area located in a permafrost region that is sensitive to climate change and to wildfires, which have clearly increased due to regional human activities. The results showed that low C. accumulation rates (CARs) and weakly C. stability in studied peatlands before 1900. While, the increasing anthropogenic wildfire frequency and the residual products (e.g. pyrogenic carbon) increased the CARs and C. stability in peatlands from 1900 to 1980. The mean July temperature is the most important climate factor for peatlands C. stability. After 1980, due to the low wildfire frequencies influenced by human policies, increasing temperatures and decreasing precipitation not only increased the CARs but also markedly increased the C. stability of the peatlands C. pool in the northern Great Khingan Mountains, especially after 2000.