Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.936
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(7): e2218813120, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36745798

ABSTRACT

Efficient H2 harvesting from wastewater instead of pure water can minimize fresh water consumption, which is expected to solve the problem of water shortage in H2 production process and contribute to carbon neutrality in the environmental remediation, but the inevitable electron depletion caused by electron-consuming pollutants will result in an exhausted H2 evolution reaction (HER) performance. In this paper, by coupling piezocatalysis and advanced oxidation processes (AOPs) by a MoS2/Fe0/peroxymonosulfate (PMS) ternary system, extensive types of wastewater achieved considerable H2 generation, which exceeded the yield in pure water with synchronous advanced degradation of organic pollutants. In addition, profiting from the crucial bridging role of PMS, the H2 yield in nitrobenzene wastewater after the introduction of PMS-based AOPs increased 3.37-fold from 267.7 µmol·g-1·h-1 to 901.0 µmol·g-1·h-1 because the presence of PMS both thermodynamically benefited MoS2 piezocatalytic H2 evolution and eliminated the electron depletion caused by organic pollutants. By this way, the original repressed H2 evolution performance in substrate of wastewater not only was regained but even showed a significant enhancement than that in pure water (505.7 µmol·g-1·h-1). Additionally, the cyclonic piezoelectric reactor was preliminarily designed for future industrialization. This strategy provided a valuable path for the recycling of actual wastewater by fuel production and synchronous advanced treatment.

2.
Nano Lett ; 24(26): 7861-7867, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38753952

ABSTRACT

Water-processable hybrid piezo- and thermo-electric materials have an increasing range of applications. We use the nanoconfinement effect of ferroelectric discrete molecular complex [Cu(l-phe)(bpy)(H2O)]PF6·H2O (1) in a nonpolar polymer 1D-nanofiber to envision the high-performance flexible hybrid piezo- and thermo-electric nanogenerator (TEG). The 1D-nanoconfined crystallization of 1 enhances piezoelectric throughput with a high degree of mechano-sensitivity, i.e., 710 mV/N up to 3 N of applied force with 10,000 cycles of unaffected mechanical endurance. Thermoelectric properties analysis shows a noticeable improvement in Seebeck coefficient (∼4 fold) and power factor (∼6 fold) as compared to its film counterpart, which is attributed to the enhanced density of states near the Fermi edges as evidenced by ultraviolet photoelectric spectroscopy and density functional based theoretical calculations. We report an aqueous processable hybrid TEG that provides an impressive magnitude of Seebeck coefficient (∼793 µV/K) and power factor (∼35 mWm-1K-2) in comparison to a similar class of materials.

3.
Nano Lett ; 24(39): 12148-12155, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39311691

ABSTRACT

Defect dipoles are crucial for regulating electromechanical properties in piezoelectric ceramics, but their effects on polarization and electrostrain behaviors are still unclear. Here, a reasonable theoretical model is proposed and evidenced by experiments to address a long-standing puzzle of the relationship between the internal bias field and defect dipoles. By incorporating the additional polarization induced by defect dipoles, we refine the classical theory to account for the recently reported asymmetric giant-strain behaviors. Phase-field simulation reveals the electrostrain evolution in response to defect dipole elastic distortion and additional polarization. This work not only elucidates the effect of defect dipoles on polarization and electrostrain but also advances the theoretical understanding of defects in piezoelectrics.

4.
Nano Lett ; 24(35): 10711-10717, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39167774

ABSTRACT

The room-temperature sodium-sulfur (RT Na-S) battery is a promising alternative to traditional lithium-ion batteries owing to its abundant material availability and high specific energy density. However, the sodium polysulfide shuttle effect and dendritic growth pose significant challenges to their practical applications. In this study, we apply diverse disciplinary backgrounds to introduce a novel method to stimulate polarized BaTiO3 (BTO) nanoparticles on the separator. This approach generates more charges due to the piezoelectric effect under stronger driving forces produced by applying a controllable acoustic field at the outer edge of the cell. The acoustically stimulated BTO attracts more polysulfides, thus reducing the shuttling effect from the cathode to the anode and ultimately enhancing the battery performance. Meanwhile, the acoustic waves create additional streaming flows, improving the uniformity of the sodium ion dispersion, enhancing the sodium ion transport and reducing the possibility of sodium dendrite development. We believe that this work offers a new strategy for the development of high-performance Na-S batteries.

5.
Nano Lett ; 24(28): 8472-8480, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38950892

ABSTRACT

Strain can modulate bandgap and carrier mobilities in two-dimensional (2D) materials. Conventional strain-application methodologies relying on flexible/patterned/nanoindented substrates are limited by low thermal tolerance, poor tunability, and/or scalability. Here, we leverage the converse piezoelectric effect to electrically generate and control strain transfer from a piezoelectric thin film to electromechanically coupled 2D MoS2. Electrical bias polarity change across the piezo film tunes the nature of strain transferred to MoS2 from compressive (∼0.23%) to tensile (∼0.14%) as verified through Raman and photoluminescence spectroscopies and substantiated by density functional theory calculations. The device architecture, on silicon substrate, integrates an MoS2 field-effect transistor on a metal-piezoelectric-metal stack enabling strain modulation of transistor drain current (130×), on/off ratio (150×), and mobility (1.19×) with high precision, reversibility, and resolution. Large, tunable tensile (1056) and compressive (-1498) strain gauge factors, electrical strain modulation, and high thermal tolerance promise facile integration with silicon-based CMOS and micro-electromechanical systems.

6.
Small ; 20(38): e2400732, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38764258

ABSTRACT

Currently, methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis is a clinically life-threatening disease, however, long-term antibiotic treatment can lead to bacterial resistance, posing a huge challenge to treatment and public health. In this study, glucose-derived carbon spheres loaded with zinc oxide (ZnO@HTCS) are successfully constructed. This composite demonstrates the robust ability to generate reactive oxygen species (ROS) under ultrasound (US) irradiation, eradicating 99.788% ± 0.087% of MRSA within 15 min and effectively treating MRSA-induced osteomyelitis infection. Piezoelectric force microscopy tests and finite element method simulations reveal that the ZnO@HTCS composite exhibits superior piezoelectric catalytic performance compared to pure ZnO, making it a unique piezoelectric sonosensitizer. Density functional theory calculations reveal that the formation of a Mott-Schottky heterojunction and an internal piezoelectric field within the interface accelerates the electron transfer and the separation of electron-hole pairs. Concurrently, surface vacancies of the composite enable the adsorption of a greater amount of oxygen, enhancing the piezoelectric catalytic effect and generating a substantial quantity of ROS. This work not only presents a promising approach for augmenting piezoelectric catalysis through construction of a Schottky heterojunction interface but also provides a novel, efficient therapeutic strategy for treating osteomyelitis.


Subject(s)
Carbon , Glucose , Methicillin-Resistant Staphylococcus aureus , Osteomyelitis , Zinc Oxide , Methicillin-Resistant Staphylococcus aureus/drug effects , Osteomyelitis/drug therapy , Zinc Oxide/chemistry , Carbon/chemistry , Catalysis , Glucose/chemistry , Ultrasonic Waves , Animals , Reactive Oxygen Species/metabolism , Staphylococcal Infections/drug therapy
7.
Small ; 20(32): e2311570, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38483028

ABSTRACT

Fluoropolymers, including polytetrafluoroethylene (PTFE, Teflon), polyvinylidene difluoride (PVDF), and fluorine kautschuk materials (FKMs, Viton) are critical polymers for applications ranging from non-stick coatings, corrosion resistant seals, semiconductor manufacturing, membranes, and energy harvesting technologies. However, the synthesis of these fluoropolymers requires the use of per- and polyfluorinated alkyl substances (PFAS) known colloquially as "forever chemicals," and as such there is a pressing need to develop alternative technologies that can serve the end-use of fluoropolymers without the environmental cost of using PFAS. Further, fluoropolymers themselves fall under the PFAS umbrella. Here, alternative mechanical-to-electrical energy harvesting polymers are reviewed and benchmarked against the leading fluoropolymer energy harvesters. These alternative technologies include nonfluoropolymer piezoelectric polymers, triboelectric nanogenerators (TENGs), ferroelectric elastomers, and flexoelectric polymers. A vision towards sustainable, non-fluoropolymer-based energy harvesting is provided.

8.
Small ; 20(3): e2304752, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37691019

ABSTRACT

The patient-centered healthcare requires timely disease diagnosis and prognostic assessment, calling for individualized physiological monitoring. To assess the postoperative hemodynamic status of patients, implantable blood flow monitoring devices are highly expected to deliver real time, long-term, sensitive, and reliable hemodynamic signals, which can accurately reflect multiple physiological conditions. Herein, an implantable and unconstrained vascular electronic system based on a piezoelectric sensor immobilized is presented by a "growable" sheath around continuously growing arterial vessels for real-timely and wirelessly monitoring of hemodynamics. The piezoelectric sensor made of circumferentially aligned polyvinylidene fluoride nanofibers around pulsating artery can sensitively perceive mechanical signals, and the growable sheath bioinspired by the structure and function of leaf sheath has elasticity and conformal shape adaptive to the dynamically growing arterial vessels to avoid growth constriction. With this integrated and smart design, long-term, wireless, and sensitive monitoring of hemodynamics are achieved and demonstrated in rats and rabbits. It provides a simple and versatile strategy for designing implantable sensors in a less invasive way.


Subject(s)
Electronics , Hemodynamics , Humans , Animals , Rabbits , Rats , Prostheses and Implants , Monitoring, Physiologic
9.
Small ; 20(13): e2308104, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37955918

ABSTRACT

Next-generation medical and consumer electrical devices require soft, flexible materials. Piezoelectric materials, capable of converting mechanical stress into electrical energy, are of interest across various fields. Chiral nanostructures, with inherent chirality, have emerged as potential piezoelectric materials. Peptide-based materials, known for self-assembly and stimuli responsiveness, hold promise for the utilization of chiral nanostructures. When combined with luminescent chromophores, peptides can generate aggregation-induced chiroptical effects like Circularly Polarized Luminescence (CPL) and Circular Dichroism (CD). In this study, a chiral organogel, L,L-1 is synthesized, and its self-assembly, mechanical properties, and chiroptical features are examined. The organogel exhibits thermo-reversible and thixotropic behavior, forming fibrillar networks and 2D-sheets upon cooling. CD spectroscopy reveals aggregation-induced chirality on pyrene chromophore, resulting in CPL with glum values of 3.0 (± 0.2) × 10-3 and 3.1 (± 0.2) × 10-3 for L,L-1 and D,D-1, respectively. Notably, the 2D-sheets exhibit an enhanced piezoelectric response (d33 ≈76.0 pm V-1) compared to the fibrillar network (d33 ≈64.1 pm V-1). Introducing an electron-deficient molecule into the solution forms a Charge-transfer (CT) complex, modulating the piezoelectric response to d33 ≈52.44 pm V-1. This study offers a promising approach to optoelectronics design, presenting a chiral system with both CPL and piezoelectric responses, opening new possibilities for innovative applications.

10.
Small ; 20(24): e2307689, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38098306

ABSTRACT

Piezoelectric composite materials can convert mechanical energy into electrical energy, thus promoting battery-free motion-sensing systems. However, their substandard mechanical performance limits the capability of sensors developed using flexible piezoelectric materials. This study introduces a novel design strategy for preparing high-strength flexible piezoelectric composite materials comprising unidirectional carbon fiber-reinforced potassium sodium niobate (K0.5Na0.5NbO3) nanoparticle-filled epoxy resin (UDCF/KNN-EP). The fibers significantly improve the Young's modulus of UDCF/KNN-EP along the fiber direction, which reaches 282.5 MPa. Moreover, the composite exhibits excellent stretchability and piezoelectric response ( V pp ∼ 1.1 V ${V}_{{\mathrm{pp}}}\ \sim \ 1.1\ V$ ) in the cross-fiber direction under cyclic tensile loading. Multiscale finite element analysis is performed via simulation, which allows theoretical examination of the experimental results and the material's mechanical response mechanism. Finally, UDCF/KNN-EP is seamlessly incorporated into athletic gear and used to measure the impact caused by baseball catching and track footfall patterns. This study harnesses the superior strength of carbon fibers to enhance the durability and dependability of self-powered sensors without compromising flexibility in specific directions.

11.
Small ; 20(25): e2309487, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38197548

ABSTRACT

Cellular senescence, a vulnerable state of growth arrest, has been regarded as a potential strategy to weaken the resistance of tumor cells, leading to dramatic improvements in treatment efficacy. However, a selective and efficient strategy for inducing local tumor cellular senescence has not yet been reported. Herein, piezoelectric catalysis is utilized to reduce intracellular NAD+ to NADH for local tumor cell senescence for the first time. In detail, a biocompatible nanomedicine (BTO/Rh-D@M) is constructed by wrapping the piezoelectric BaTiO3/(Cp*RhCl2)2 (BTO/Rh) and doxorubicin (DOX) in the homologous cytomembrane with tumor target. After tumors are stimulated by ultrasound, negative and positive charges are generated on the BTO/Rh by piezoelectric catalysis, which reduce the intracellular NAD+ to NADH for cellular senescence and oxidize H2O to reactive oxygen species (ROS) for mitochondrial damage. Thus, the therapeutic efficacy of tumor immunogenic cell death-induced chemo-immunotherapy is boosted by combining cellular senescence, DOX, and ROS. The results indicate that 23.9% of the piezoelectric catalysis-treated tumor cells senesced, and solid tumors in mice disappeared completely after therapy. Collectively, this study highlights a novel strategy to realize cellular senescence utilizing piezoelectric catalysis and the significance of inducing tumor cellular senescence to improve therapeutic efficacy.


Subject(s)
Cellular Senescence , Doxorubicin , Immunotherapy , Reactive Oxygen Species , Cellular Senescence/drug effects , Animals , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Catalysis , Reactive Oxygen Species/metabolism , Mice , Immunotherapy/methods , NAD/metabolism , NAD/chemistry , Cell Line, Tumor , Humans , Titanium/chemistry , Titanium/pharmacology , Neoplasms/therapy , Neoplasms/pathology , Neoplasms/drug therapy , Rhodium/chemistry , Rhodium/pharmacology , Barium Compounds
12.
Small ; 20(36): e2401931, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38708707

ABSTRACT

Chemodynamic therapy (CDT) is a non-invasive strategy for generating reactive oxygen species (ROS) and is promising for cancer treatment. However, increasing ROS in tumor therapy remains challenging. Therefore, exogenous excitation and inhibition of electron-hole pair recombination are attractive for modulating ROS storms in tumors. Herein, a Ce-doped BiFeO3 (CBFO) piezoelectric sonosensitizer to modulate ROS generation and realize a synergistic mechanism of CDT/sonodynamic therapy and piezodynamic therapy (PzDT) is proposed. The mixed Fe2+ and Ce3+ can implement a circular Fenton/Fenton-like reaction in the tumor microenvironment. Abundant ·OH can be generated by ultrasound (US) stimulation to enhance CDT efficacy. As a typical piezoelectric sonosensitizer, CBFO can produce O2 - owing to the enhanced polarization by the US, resulting in the motion of charge carriers. In addition, CBFO can produce a piezoresponse irradiated upon US, which accelerates the migration rate of electrons/holes in opposite directions and results in energy band bending, further achieving toxic ROS production and realizing PzDT. Density functional theory calculations confirmed that Ce doping shortens the diffusion of electrons and improves the conductivity and catalytic activity of CBFO. This distinct US-enhanced strategy emphasizes the effects of doping engineering and piezoelectric-optimized therapy and shows great potential for the treatment of malignant tumors.


Subject(s)
Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Humans , Neoplasms/therapy , Animals , Cell Line, Tumor , Mice , Combined Modality Therapy , Cerium/chemistry , Tumor Microenvironment
13.
Small ; : e2403899, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984756

ABSTRACT

Biosensors have emerged as vital tools for the detection and monitoring of essential biological information. However, their efficiency is often constrained by limitations in the power supply. To address this challenge, energy harvesting systems have gained prominence. These off-grid, independent systems harness energy from the surrounding environment, providing a sustainable solution for powering biosensors autonomously. This continuous power source overcomes critical constraints, ensuring uninterrupted operation and seamless data collection. In this article, a comprehensive review of recent literature on energy harvesting-based biosensors is presented. Various techniques and technologies are critically examined, including optical, mechanical, thermal, and wireless power transfer, focusing on their applications and optimization. Furthermore, the immense potential of these energy harvesting-driven biosensors is highlighted across diverse fields, such as medicine, environmental surveillance, and biosignal analysis. By exploring the integration of energy harvesting systems, this review underscores their pivotal role in advancing biosensor technology. These innovations promise improved efficiency, reduced environmental impact, and broader applicability, marking significant progress in the field of biosensors.

14.
Small ; 20(28): e2310110, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38329191

ABSTRACT

Hydrogels show great potential in biomedical applications due to their inherent biocompatibility, high water content, and resemblance to the extracellular matrix. However, they lack self-powering capabilities and often necessitate external stimulation to initiate cell regenerative processes. In contrast, piezoelectric materials offer self-powering potential but tend to compromise flexibility. To address this, creating a novel hybrid biomaterial of piezoelectric hydrogels (PHs), which combines the advantageous properties of both materials, offers a systematic solution to the challenges faced by these materials when employed separately. Such innovative material system is expected to broaden the horizons of biomedical applications, such as piezocatalytic medicinal and health monitoring applications, showcasing its adaptability by endowing hydrogels with piezoelectric properties. Unique functionalities, like enabling self-powered capabilities and inducing electrical stimulation that mimics endogenous bioelectricity, can be achieved while retaining hydrogel matrix advantages. Given the limited reported literature on PHs, here recent strategies concerning material design and fabrication, essential properties, and distinctive applications are systematically discussed. The review is concluded by providing perspectives on the remaining challenges and the future outlook for PHs in the biomedical field. As PHs emerge as a rising star, a comprehensive exploration of their potential offers insights into the new hybrid biomaterials.


Subject(s)
Biocompatible Materials , Hydrogels , Hydrogels/chemistry , Biocompatible Materials/chemistry , Humans , Animals
15.
Small ; 20(37): e2401650, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38712474

ABSTRACT

Piezoelectric catalysis is a novel catalytic technology that has developed rapidly in recent years and has attracted extensive interest among researchers in the field of tumor therapy for its acoustic-sensitizing properties. Nevertheless, researchers are still controversial about the key technical difficulties in the modulation of piezoelectric sonosensitizers for tumor therapy applications, which is undoubtedly a major obstacle to the performance modulation of piezoelectric sonosensitizers. Clarification of this challenge will be beneficial to the design and optimization of piezoelectric sonosensitizers in the future. Here, the authors start from the mechanism of piezoelectric catalysis and elaborate the mechanism and methods of defect engineering and phase engineering for the performance modulation of piezoelectric sonosensitizers based on the energy band theory. The combined therapeutic strategy of piezoelectric sonosensitizers with enzyme catalysis and immunotherapy is introduced. Finally, the challenges and prospects of piezoelectric sonosensitizers are highlighted. Hopefully, the explorations can guide researchers toward the optimization of piezoelectric sonosensitizers and can be applied in their own research.

16.
Small ; 20(27): e2308058, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38286621

ABSTRACT

The unsatisfactory lithium-ion conductivity (σ) and limited mechanical strength of polymer solid electrolytes hinder their wide applications in solid-state lithium metal batteries (SSLMBs). Here, a thin piezoelectric polymer solid electrolyte integrating electromechanical coupling and ferroelectric polarization effects has been designed and prepared to achieve long-term stable cycling of SSLMBs. The ferroelectric Bi4Ti3O12 nanoparticle (BIT NPs) loaded poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) piezoelectric nanofibers (B-P NFs) membranes are introduced into the poly(ethylene oxide) (PEO) matrix, endowing the composite electrolyte with unique polarization and piezoelectric effects. The piezoelectric nanofiber membrane with a 3D network structure not only promotes the dissociation of lithium (Li) salts through the polarization effect but also cleverly utilizes the coupling effect of a mechanical stress-local electric field to achieve dynamic regulation of the Li electroplating process. Through the corresponding experimental tests and density functional theory calculations, the intrinsic mechanism of piezoelectric electrolytes improving σ and suppressing Li dendrites is fully revealed. The obtained piezoelectric electrolyte has achieved stable cycling of LiFePO4 batteries over 2000 cycles and has also shown good practical application potential in flexible pouch batteries.

17.
Small ; : e2401561, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899348

ABSTRACT

Recreating the natural heart's mechanical and electrical environment is crucial for engineering functional cardiac tissue and repairing infarcted myocardium in vivo. In this study, multimaterial-printed serpentine microarchitectures are presented with synergistic mechanical/piezoelectric stimulation, incorporating polycaprolactone (PCL) microfibers for mechanical support, polyvinylidene fluoride (PVDF) microfibers for piezoelectric stimulation, and magnetic PCL/Fe3O4 for controlled deformation via an external magnet. Rat cardiomyocytes in piezoelectric constructs, subjected to dynamic mechanical stimulation, exhibit advanced maturation, featuring superior sarcomeric structures, improved calcium transients, and upregulated maturation genes compared to non-piezoelectric constructs. Furthermore, these engineered piezoelectric cardiac constructs demonstrate significant structural and functional repair of infarcted myocardium, as evidenced by enhanced ejection and shortening fraction, reduced fibrosis and inflammation, and increased angiogenesis. The findings underscore the therapeutic potential of piezoelectric cardiac constructs for myocardial infarction therapy.

18.
Small ; 20(30): e2308715, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38412419

ABSTRACT

Biomolecular piezoelectric materials show great potential in the field of wearable and implantable biomedical devices. Here, a self-assemble approach is developed to fabricating flexible ß-glycine piezoelectric nanofibers with interfacial polarization locked aligned crystal domains induced by Nb2CTx nanosheets. Acted as an effective nucleating agent, Nb2CTx nanosheets can induce glycine to crystallize from edges toward flat surfaces on its 2D crystal plane and form a distinctive eutectic structure within the nanoconfined space. The interfacial polarization locking formed between O atom on glycine and Nb atom on Nb2CTx is essential to align the ß-glycine crystal domains with (001) crystal plane intensity extremely improved. This ß-phase glycine/Nb2CTx nanofibers (Gly-Nb2C-NFs) exhibit fabulous mechanical flexibility with Young's modulus of 10 MPa, and an enhanced piezoelectric coefficient of 5.0 pC N-1 or piezoelectric voltage coefficient of 129 × 10-3Vm N-1. The interface polarization locking greatly improves the thermostability of ß-glycine before melting (≈210°C). A piezoelectric sensor based on this Gly-Nb2C-NFs is used for micro-vibration sensing in vivo in mice and exhibits excellent sensing ability. This strategy provides an effective approach for the regular crystallization modulation for glycine crystals, opening a new avenue toward the design of piezoelectric biomolecular materials induced by 2D materials.

19.
Small ; 20(26): e2308661, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38258607

ABSTRACT

Passive daytime radiative cooling (PDRC) materials with sustainable energy harvesting capability is critical to concurrently reduce traditional cooling energy utilized for thermal comfort and transfer natural clean energies into electricity. Herein, a versatile photonic film (Ecoflex@BTO@UAFL) based on a novel fluorescent luminescence color passive radiative cooling with triboelectric and piezoelectric effect is developed by filling the dielectric BaTiO3 (BTO) nanoparticles and ultraviolet absorption fluorescent luminescence (UAFL) powder into the elastic Ecoflex matrix. Test results demonstrate that the Ecoflex@BTO@UAFL photonic film exhibits a maximum passive radiative cooling effect of ∽10.1 °C in the daytime. Meanwhile, its average temperature drop in the daytime is ~4.48 °C, which is 0.91 °C higher than that of the Ecoflex@BTO photonic film (3.56 °C) due to the addition of UAFL material. Owing to the high dielectric constant and piezoelectric effect of BTO nanoparticles, the maximum power density (0.53 W m-2, 1 Hz @ 10 N) of the Ecoflex@BTO photonic film-based hybrid nanogenerator is promoted by 70.9% compared to the Ecoflex film-based TENG. This work provides an ingenious strategy for combining PDRC effects with triboelectric and piezoelectric properties, which can spontaneously achieve thermal comfort and energy conservation, offering a new insight into multifunctional energy saving.

20.
Small ; 20(28): e2309758, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38326102

ABSTRACT

Achieving relatively uniform dispersion in organic-inorganic composites with overwhelming differences in surface energy is a perennial challenge. Herein, novel eliminated polyvinylidene fluoride (EPVDF)/EPVDF functionalized barium titanate nanoparticles (EPVDF@BT) flexible piezoelectric nanogenerators (PENGs) with strong interfacial adhesion are developed via thermal stretching following sequential click chemistry. Thanks to the strong interfacial adhesion, the optimal PENGs containing ultra-high ß-phase content (97.2%) exhibit not only optimized mechanical and dielectric behaviors but also excellent piezoelectric properties with high piezoelectric output (V = 10.7 V, I = 216 nA), reliable durability (8000 cycles), ultrafast response time (20 ms), and good sensitivity (2.09 nA kPa-1), far outperforming most reported PVDF-based composites. Furthermore, COMSOL finite element simulations (FEM) confirm that the elevated stress transfer efficiency induced by the strong interfacial adhesion is the main driving force for enhanced piezoelectric performances. For practical applications, self-powered PENGs can simply but stably capture mechanical energy, drive tiny electronic devices, and serve as potential multifunctional and durable sensors for detecting human physiological motions. This work opens a pioneering avenue to break the trade-offs between piezoelectric and other properties, which is of great importance for developing self-powered flexible sensors.

SELECTION OF CITATIONS
SEARCH DETAIL