Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.600
Filter
Add more filters

Publication year range
1.
J Neurosci ; 43(25): 4580-4597, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37147134

ABSTRACT

Exposure to combinations of environmental toxins is growing in prevalence; and therefore, understanding their interactions is of increasing societal importance. Here, we examined the mechanisms by which two environmental toxins, polychlorinated biphenyls (PCBs) and high-amplitude acoustic noise, interact to produce dysfunction in central auditory processing. PCBs are well established to impose negative developmental impacts on hearing. However, it is not known whether developmental exposure to this ototoxin alters the sensitivity to other ototoxic exposures later in life. Here, male mice were exposed to PCBs in utero, and later as adults were exposed to 45 min of high-intensity noise. We then examined the impacts of the two exposures on hearing and the organization of the auditory midbrain using two-photon imaging and analysis of the expression of mediators of oxidative stress. We observed that developmental exposure to PCBs blocked hearing recovery from acoustic trauma. In vivo two-photon imaging of the inferior colliculus (IC) revealed that this lack of recovery was associated with disruption of the tonotopic organization and reduction of inhibition in the auditory midbrain. In addition, expression analysis in the inferior colliculus revealed that reduced GABAergic inhibition was more prominent in animals with a lower capacity to mitigate oxidative stress. These data suggest that combined PCBs and noise exposure act nonlinearly to damage hearing and that this damage is associated with synaptic reorganization, and reduced capacity to limit oxidative stress. In addition, this work provides a new paradigm by which to understand nonlinear interactions between combinations of environmental toxins.SIGNIFICANCE STATEMENT Exposure to common environmental toxins is a large and growing problem in the population. This work provides a new mechanistic understanding of how the prenatal and postnatal developmental changes induced by polychlorinated biphenyls (PCBs) could negatively impact the resilience of the brain to noise-induced hearing loss (NIHL) later in adulthood. The use of state-of-the-art tools, including in vivo multiphoton microscopy of the midbrain helped in identifying the long-term central changes in the auditory system after the peripheral hearing damage induced by such environmental toxins. In addition, the novel combination of methods employed in this study will lead to additional advances in our understanding of mechanisms of central hearing loss in other contexts.


Subject(s)
Hearing Loss, Noise-Induced , Inferior Colliculi , Polychlorinated Biphenyls , Female , Pregnancy , Male , Mice , Animals , Inferior Colliculi/physiology , Polychlorinated Biphenyls/toxicity , Noise/adverse effects , Hearing , Acoustic Stimulation/methods
2.
Stat Med ; 43(7): 1441-1457, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38303638

ABSTRACT

Mixture analysis is an emerging statistical tool in epidemiological research that seeks to estimate the health effects associated with mixtures of several exposures. This approach acknowledges that individuals experience many simultaneous exposures and it can estimate the relative importance of components in the mixture. Health effects due to mixtures may vary over space driven by to political, demographic, environmental, or other differences. In such cases, estimating a global mixture effect without accounting for spatial variation would induce bias in effect estimates and potentially lower statistical power. To date, no methods have been developed to estimate spatially varying chemical mixture effects. We developed a Bayesian spatially varying mixture model that estimates spatially varying mixture effects and the importance weights of components in the mixture, while adjusting for covariates. We demonstrate the efficacy of the model through a simulation study that varies the number of mixtures (one and two) and spatial pattern (global, one-dimensional, radial) and magnitude of mixture effects, showing that the model is able to accurately reproduce the spatial pattern of mixture effects across a diverse set of scenarios. Finally, we apply our model to a multi-center case-control study of non-Hodgkin lymphoma (NHL) in Detroit, Iowa, Los Angeles, and Seattle. We identify significant spatially varying positive and inverse associations with NHL for two mixtures of pesticides in Iowa and do not find strong spatial effects at the other three centers. In conclusion, the Bayesian spatially varying mixture model represents a novel method for modeling spatial variation in mixture effects.


Subject(s)
Case-Control Studies , Humans , Bayes Theorem , Computer Simulation , Epidemiologic Studies , Iowa
3.
Environ Sci Technol ; 58(5): 2384-2392, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38266236

ABSTRACT

Polychlorinated biphenyls (PCBs) are dioxin-like pollutants that cause persistent harm to life. Organohalide-respiring bacteria (OHRB) can detoxify PCBs via reductive dechlorination, but individual OHRB are potent in dechlorinating only specific PCB congeners, restricting the extent of PCB dechlorination. Moreover, the low biomass of OHRB frequently leads to the slow natural attenuation of PCBs at contaminated sites. Here we constructed defined microbial consortia comprising various combinations of PCB-dechlorinating Dehalococcoides strains (CG1, CG4, and CG5) to successfully enhance PCB dechlorination. Specifically, the defined consortia consisting of strains CG1 and CG4 removed 0.28-0.44 and 0.23-0.25 more chlorine per PCB from Aroclor1260 and Aroclor1254, respectively, compared to individual strains, which was attributed to the emergence of new PCB dechlorination pathways in defined consortia. Notably, different Dehalococcoides populations exhibited similar growth when cocultivated, but temporal differences in the expression of PCB reductive dehalogenase genes indicated their metabolic synergy. Bioaugmentation with individual strains (CG1, CG4, and CG5) or defined consortia led to greater PCB dechlorination in wetland sediments, and augmentation with the consortium comprising strains CG1 and CG4 resulted in the greatest PCB dechlorination. These findings collectively suggest that simultaneous application of multiple Dehalococcoides strains, which catalyze complementary dechlorination pathways, is an effective strategy to accelerate PCB dechlorination.


Subject(s)
Chloroflexi , Polychlorinated Biphenyls , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism , Dehalococcoides/metabolism , Chloroflexi/genetics , Chloroflexi/metabolism , Biodegradation, Environmental , Bacteria/metabolism , Geologic Sediments/microbiology
4.
Environ Sci Technol ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365877

ABSTRACT

Current understanding of atmospheric transport of semivolatile organic contaminants (SVOCs) in alpine areas is limited due to complex meteorology and topography. Salt Lake City, Utah borders protected wilderness areas in the Wasatch Mountains, exhibiting a useful model system in which an urban source of SVOCs, including polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), is located directly adjacent to an alpine sink. Our objective was to investigate the impacts of topographical features on the transport and deposition of SVOCs across an urban-alpine boundary. To do so, we measured PAHs and PCBs in soils along a transect starting at the urban-mountain interface and extending into an alpine wilderness, crossing several prominent ridgelines. Concentrations of PAHs and PCBs in soils were heavily influenced by soil organic carbon content, air temperature, and proximity to the urban boundary. However, the role of source proximity was only revealed after normalizing concentrations in soil to organic carbon content and air temperature. Further, we present evidence of SVOC emission/deposition cycles driven by diurnal alpine winds that do not extend past topographical features. Our results illustrate the roles of multiple competing processes on SVOC transport in alpine systems and their importance at an urban-alpine boundary.

5.
Environ Sci Technol ; 58(12): 5347-5356, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38478968

ABSTRACT

Dechlorination is one of the main processes for the natural degradation of polychlorinated biphenyls (PCBs) in an anaerobic environment. However, PCB dechlorination pathways and products vary with PCB congeners, types of functional dechlorinating bacteria, and environmental conditions. The present study develops a novel model for determining dechlorination pathways and fluxes by tracking redox potential variability, transforming the complex dechlorination process into a stepwise sequence. The redox potential is calculated via the Gibbs free energy of formation, PCB concentrations in reactants and products, and environmental conditions. Thus, the continuous change in the PCB congener composition can be tracked during dechlorination processes. The new model is assessed against four measurements from several published studies on PCB dechlorination. The simulation errors in all four measurements are calculated between 2.67 and 35.1% under minimum (n = 0) and maximum (n = 34) numbers of co-eluters, respectively. The dechlorination fluxes for para-dechlorination pathways dominate PCB dechlorination in all measurements. Furthermore, the model also considers multiple-step dechlorination pathways containing intermediate PCB congeners absent in both the reactants and the products. The present study indicates that redox potential might be an appropriate indicator for predicting PCB dechlorination pathways and fluxes even without prior knowledge of the functional dechlorinating bacteria.


Subject(s)
Polychlorinated Biphenyls , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism , Biodegradation, Environmental , Geologic Sediments/microbiology , Bacteria/metabolism , Oxidation-Reduction , Chlorine/metabolism
6.
Environ Sci Technol ; 58(1): 132-142, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38154032

ABSTRACT

Chemical pollution can degrade aquatic ecosystems. Chinook salmon in contaminated habitats are vulnerable to health impacts from toxic exposures. Few studies have been conducted on adverse health outcomes associated with current levels and mixtures of contaminants. Fewer still address effects specific to the juvenile life-stage of salmonids. The present study evaluated contaminant-related effects from dietary exposure to environmentally relevant concentrations and mixture profiles in juvenile Chinook salmon from industrialized waterways in the U.S. Pacific Northwest using two end points: growth assessment and disease susceptibility. The dose and chemical proportions were reconstituted based on environmental sampling and analysis using the stomach contents of juvenile Chinook salmon recently collected from contaminated, industrialized waterways. Groups of fish were fed a mixture with fixed proportions of 10 polychlorinated biphenyls (PCBs), 3 dichlorodiphenyltrichloroethanes (DDTs), and 13 polycyclic aromatic hydrocarbons (PAHs) at five concentrations for 35 days. These contaminant compounds were selected because of elevated concentrations and the widespread presence in sediments throughout industrialized waterways. Fork length and otolith microstructural growth indicators were significantly reduced in fish fed environmentally relevant concentrations of these contaminants. In addition, contaminant-exposed Chinook salmon were more susceptible to disease during controlled challenges with the pathogen Aeromonas salmonicida. Our results indicate that dietary exposure to contaminants impairs growth and immune function in juvenile Chinook salmon, thereby highlighting that current environmental exposure to chemicals of potential management concern threatens the viability of exposed salmon.


Subject(s)
Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Dietary Exposure/analysis , Salmon/metabolism , Ecosystem , Environmental Exposure/analysis , Polychlorinated Biphenyls/toxicity , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism , Water Pollutants, Chemical/analysis
7.
Mol Biol Rep ; 51(1): 624, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38710963

ABSTRACT

BACKGROUND: Thyroid hormones are primarily responsible for the brain development in perinatal mammals. However, this process can be inhibited by external factors such as environmental chemicals. Perinatal mammals are viviparous, which makes direct fetal examination difficult. METHODS: We used metamorphic amphibians, which exhibit many similarities to perinatal mammals, as an experimental system. Therefore, using metamorphic amphibians, we characterized the gene expression of matrix metalloproteinases, which play an important role in brain development. RESULTS: The expression of many matrix metalloproteinases (mmps) was characteristically induced during metamorphosis. We also found that the expression of many mmps was induced by T3 and markedly inhibited by hydroxylated polychlorinated biphenyls (PCBs). CONCLUSION: Overall, our findings suggest that hydroxylated PCBs disrupt normal brain development by disturbing the gene expression of mmps.


Subject(s)
Brain , Matrix Metalloproteinases , Metamorphosis, Biological , Polychlorinated Biphenyls , Thyroid Hormones , Xenopus laevis , Animals , Brain/metabolism , Brain/drug effects , Brain/growth & development , Xenopus laevis/metabolism , Xenopus laevis/genetics , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Polychlorinated Biphenyls/toxicity , Metamorphosis, Biological/drug effects , Metamorphosis, Biological/genetics , Thyroid Hormones/metabolism , Gene Expression Regulation, Developmental/drug effects , Hydroxylation
8.
Environ Res ; 252(Pt 2): 118912, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38615789

ABSTRACT

BACKGROUND: Polychlorinated biphenyls (PCBs), extensively used in various products, prompt ongoing concern despite reduced exposure since the 1970s. This systematic review explores prenatal PCB and hydroxylated metabolites (OH-PCBs) exposure's association with child neurodevelopment. Encompassing cognitive, motor development, behavior, attention, ADHD, and ASD risks, it also evaluates diverse methodological approaches in studies. METHODS: PubMed, Embase, PsycINFO, and Web of Science databases were searched through August 23, 2023, by predefined search strings. Peer-reviewed studies published in English were included. The inclusion criteria were: (i) PCBs/OH-PCBs measured directly in maternal and cord blood, placenta or breast milk collected in the perinatal period; (ii) outcomes of cognitive development, motor development, attention, behavior, attention-deficit/hyperactivity disorder (ADHD), and autism spectrum disorder (ASD) among children≤18 years old. Quality assessment followed the National Heart, Lung, and Blood Institute's tool. RESULTS: Overall, 87 studies were included in this review. We found evidence for the association between perinatal PCB exposure and adverse cognitive development and attention issues in middle childhood. There appeared to be no or negligible link between perinatal PCB exposure and early childhood motor development or the risk of ADHD/ASD. There was an indication of a sex-specific association with worse cognition and attention scores among boys. Some individual studies suggested a possible association between prenatal exposure to OH-PCBs and neurodevelopmental outcomes. There was significant heterogeneity between the studies in exposure markers, exposure assessment timing, outcome assessment, and statistical analysis. CONCLUSIONS: Significant methodological, clinical and statistical heterogeneity existed in the included studies. Adverse effects on cognitive development and attention were observed in middle childhood. Little or no apparent link on both motor development and risk of ADHD/ASD was observed in early childhood. Inconclusive evidence prevailed regarding other neurodevelopmental aspects due to limited studies. Future research could further explore sex-specific associations and evaluate associations at lower exposure levels post-PCB ban in the US. It should also consider OH-PCB metabolites, co-pollutants, mixtures, and their potential interactions.


Subject(s)
Environmental Pollutants , Polychlorinated Biphenyls , Prenatal Exposure Delayed Effects , Humans , Polychlorinated Biphenyls/toxicity , Female , Pregnancy , Environmental Pollutants/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Child , Child Development/drug effects , Child, Preschool , Attention Deficit Disorder with Hyperactivity/chemically induced , Neurodevelopmental Disorders/chemically induced , Neurodevelopmental Disorders/epidemiology , Maternal Exposure/adverse effects , Male , Cognition/drug effects , Infant
9.
Environ Res ; 262(Pt 2): 119943, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39276835

ABSTRACT

Understanding polychlorinated biphenyl (PCB) degradation in sequential anaerobic-aerobic remediation is crucial for effective remediation strategies. In this study, microcosm and greenhouse experiments were conducted to dissect the effects of organic amendments (carbon-based) and plant treatments (ryegrass) on soil PCB dissipation under oxic and sequential anoxic-oxic conditions. We analyzed the soil bacterial community in greenhouse experiments using high-throughput sequencing to explore plant-pollutant-microbe interactions. Microcosm results showed that organic amendments alone did not facilitate aerobic PCB removal, but significantly accelerated PCB dechlorination under anoxic conditions altering the profiles of PCB congeners. In standard greenhouses, plant treatments substantially increased PCB dissipation to 50.8 ± 3.9%, while organic amendments aided phytoremediation by promoting plant growth, increasing PCB removal to 65.9 ± 3.2%. In sequential anaerobic-aerobic greenhouses, plant growth was inhibited by flooding treatment while flooding stress was markedly alleviated by organic amendments. Plant treatments alone during sequential treatments did not lead to PCB dissipation; however, dissipation was significantly promoted following organic amendments, achieving a removal of 41.2 ± 5.7%. This PCB removal was primarily due to anaerobic dechlorination during flooding (27.8 ± 0.5% removal), rather than from plant growth stimulation in subsequent planting phase. Co-occurrence network and functional prediction analyses revealed that organic amendments recruited specific bacterial clusters with distinct functions under different conditions, especially stimulating plant-microbe interactions and xenobiotics biodegradation pathways in planted systems. The findings provide valuable guidance for the design of practical remediation strategies under various remedy scenarios, such as in arable or paddy fields.

10.
Environ Res ; 262(Pt 2): 119959, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39276833

ABSTRACT

Although the ovarian reserve is constituted in utero, the literature on the effects of persistent organic pollutants (POPs) during this vulnerable period on the ovarian reserve later in life is limited. We investigated whether cord blood concentrations of POPs were associated with decreased anti-Müllerian hormone (AMH, a marker of the ovarian reserve) levels in girls at the age of 12. We included 239 girls from the French mother-child PELAGIE cohort. POP concentrations of 14 organochlorine pesticides, 17 polychlorinated biphenyls (PCBs), 5 polybrominated diphenyl ethers, and 9 per-polyfluoroalkyl substances were measured on cord blood sampled at birth. During a follow-up study at 12 years old, blood samples were collected to measure AMH levels. Single-exposure associations were examined with multivariable linear regression models adjusted a priori for potential confounders. Stratification on menarche status was also performed. Mixture effects were investigated using quantile g-computation and Bayesian kernel machine regression. Overall, 16 POPs were measured in at least 30% of samples. No significant associations were found in multivariable linear regressions, except for the third tercile of exposure to PCB 180 which was statistically significantly associated with an increase in AMH levels at 12 years old (Tercile 2 v. Tercile 1: 0.13 ng/mL, 95% CI = -0.29, 0.56; Tercile 3 v. Tercile 1: 0.51 ng/mL, 95% CI = 0.02, 0.99). Additionally, in post-menarcheal girls (N = 104) only, the second tercile of p,p'-DDE was statistically significantly associated with decreased AMH levels at 12 years old (Tercile 2 v. Tercile 1: -0.61 ng/mL, 95% CI = -1.16, -0.05, Tercile 3 v. Tercile 1: 0.02 ng/mL, 95% CI = -0.51, 0.54). Both mixture models returned null associations. Despite the limited associations observed in this study, we recommend exploring these associations in larger mother-child cohorts and at older ages.

11.
Environ Res ; 244: 117832, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38056610

ABSTRACT

BACKGROUND: Persistent organic pollutants (POPs) are chemicals characterized by their environmental persistence. Evidence suggests that exposure to POPs, which is ubiquitous, is associated with microRNA (miRNA) dysregulation. miRNA are key regulators in many physiological processes. It is thus of public health concern to understand the relationships between POPs and miRNA as related to health outcomes. OBJECTIVES: This systematic review evaluated the relationship between widely recognized, intentionally manufactured, POPs, including per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (dichlorodiphenyltrichloroethane [DDT], dichlorodiphenyldichloroethylene [DDE], hexachlorobenzene [HCB]), with miRNA expression in both human and animal studies. METHODS: We used PubMed and Embase to systematically search the literature up to September 29th, 2023. Search results for human and animal studies were included if they incorporated at least one POP of interest in relation to at least one miRNA. Data were synthesized to determine the direction and significance of associations between POPs and miRNA. We utilized ingenuity pathway analysis to review disease pathways for miRNA that were associated with POPs. RESULTS: Our search identified 38 eligible studies: 9 in humans and 29 in model organisms. PFAS were associated with decreased expression of miR-19, miR-193b, and miR-92b, as well as increased expression of miR-128, miR-199a-3p, and miR-26b across species. PCBs were associated with increased expression of miR-15a, miR-1537, miR-21, miR-22-3p, miR-223, miR-30b, and miR-34a, as well as decreased expression of miR-130a and let-7b in both humans and animals. Pathway analysis for POP-associated miRNA identified pathways related to carcinogenesis. DISCUSSION: This is the first systematic review of the association of POPs with miRNA in humans and model organisms. Large-scale prospective human studies are warranted to examine the role of miRNA as mediators between POPs and health outcomes.


Subject(s)
Environmental Pollutants , Fluorocarbons , Hydrocarbons, Chlorinated , MicroRNAs , Pesticides , Polychlorinated Biphenyls , Animals , Humans , Polychlorinated Biphenyls/toxicity , Polychlorinated Biphenyls/analysis , Halogenated Diphenyl Ethers/toxicity , Halogenated Diphenyl Ethers/analysis , Prospective Studies , Hydrocarbons, Chlorinated/toxicity , Hydrocarbons, Chlorinated/analysis , Environmental Pollutants/toxicity , Environmental Pollutants/analysis , Pesticides/toxicity , Pesticides/analysis , Fluorocarbons/toxicity
12.
BMC Pregnancy Childbirth ; 24(1): 501, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054456

ABSTRACT

BACKGROUND: Controversy surrounds the impact of persistent organic pollutants (POPs) on fetal development. This study aimed to investigate levels of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in umbilical cord blood from Sanliurfa mothers in Turkey, exploring associations with gestational age and birth weight. METHODS: Participants included voluntary mothers pregnant with a single fetus, providing details on maternal factors. Cord blood samples were collected immediately after delivery. Samples were extracted with a modified QuEChERS method, and OCPs (17 pesticides) and PCBs (11 congeners) compound levels were analyzed with a gas chromatograph/mass spectrometry. Detection frequencies and levels of POPs by single pollutant type and pollutant groups were calculated and compared according to gestational duration and birth weight. We used partial least squares discriminant analysis to identify the key chemicals and distinguish their respective statuses. RESULTS: Among 120 infants, 35 were preterm but appropriate for gestational age, 35 were term but small for gestational age (SGA), and 50 were term and appropriate for gestational age (AGA). Beta HCH, Oxy-Chlordan, and PCB 28, were not detected in cord blood samples. Half of the samples contained at least 4 types of OCPs, with a median OCP level of 38.44 ng/g. Among the DDT, 2,4'-DDE was found at the highest concentration in cord plasma samples. The PCB congeners with a frequency exceeding 50% were ranked in the following order: 151, 149, 138, 146. The median level of ∑PCBs was 5.93 ng/g. Male infants born at term with SGA status exhibited lower levels of ∑DDTs, ∑OCPs compared to male infants born preterm or at term with AGA status. Di-ortho-substituted PCBs and hexachlorinated PCBs were higher in male infants born at term with SGA status than male infants born preterm with AGA status. CONCLUSION: Overall, exposure to DDT and PCBs demonstrates varying effects depending on gestational duration and birth weight, with exposure levels also differing by gender. This underscores the necessity for studies across diverse populations that investigate the combined effects of multiple pollutant exposures on gestational age, birth weight, and gender simultaneously.


Subject(s)
Birth Weight , Fetal Blood , Gestational Age , Hydrocarbons, Chlorinated , Infant, Small for Gestational Age , Persistent Organic Pollutants , Pesticides , Polychlorinated Biphenyls , Humans , Fetal Blood/chemistry , Female , Polychlorinated Biphenyls/blood , Turkey , Infant, Newborn , Adult , Pregnancy , Male , Pesticides/blood , Hydrocarbons, Chlorinated/blood , Persistent Organic Pollutants/blood , Infant, Small for Gestational Age/blood , Young Adult , Maternal Exposure/adverse effects , Maternal Exposure/statistics & numerical data
13.
Arch Toxicol ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136732

ABSTRACT

Despite extensive research on the metabolism of polychlorinated biphenyls (PCBs), knowledge gaps persist regarding their isoform-specific biotransformation pathways. This study aimed to elucidate the role of different cytochrome P450 enzymes in PCB metabolism, focusing on WHO-congeners 2,4,4'-trichlorobiphenyl (PCB28), 2,2',5,5'-tetrachlorobiphenyl (PCB52), and 2,2',4,5,5'-pentachlorobiphenyl (PCB101). Utilizing engineered HEK293 cell lines, we investigated the in vitro metabolism of these PCBs by CYP1A2, CYP2C8, CYP2C9, CYP3A4, CYP2A6, and CYP2E1, revealing robust production of hydroxylated metabolites. Our results show that CYP2A6 plays a major role in the metabolism of these congeners responsible for predominant formation of para-position hydroxylated metabolites, with concentrations reaching up to 1.61 µg/L (5,89 nM) for PCB28, 316.98 µg/L (1,03 µM) for PCB52, and 151.1 µg/L (441 nM) for PCB101 from a 20 µM parent PCB concentration. Moreover, concentration-dependent cytotoxic and cytostatic effects induced by reactive intermediates of the PCB hydroxylation pathway were observed in HEK293CYP2A6 cells, for all three congeners tested. CYP2A6 was specifically capable of activating PCBs 28 and 101 to genotoxic metabolites which produced genetic defects which were propagated to subsequent generations, potentially contributing to carcinogenesis. In a clinical study examining CYP2A6 enzyme activity in formerly exposed individuals with elevated internal PCB levels, a participant with increased enzyme activity showed a direct association between the phenotypic activity of CYP2A6 and the metabolism of PCB28, confirming the role of CYP2A6 in the in vivo metabolism of PCB28 also in humans. These results altogether reinforce the concept that CYP2A6 plays a pivotal role in PCB congener metabolism and suggest its significance in human health, particularly in the metabolism of lower chlorinated, volatile PCB congeners.

14.
Ecotoxicol Environ Saf ; 285: 117119, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342754

ABSTRACT

Microplastics (MPs) and polychlorinated biphenyls (PCBs) are known with high persistence and toxicity, posing urgent threats to food safety and human health. However, little is known about the synergistic effect of MPs on PCBs bioaccumulation on Crassostrea hongkongensis. In the present study, diverse types of MPs were analyzed on sea water and C. hongkongensis sampled from three distinct estuary sites, and film-shaped MPs were discovered to be preferentially ingested by the oysters. Interestingly, the content of MPs and PCBs showed negative correlation (R2 = 0.452, p< 0.001) in the oysters sampled from site 2. Upon MPs and PCBs co-treatment, the in vivo accumulation of PCBs in C. hongkongensis was inhibited by 25.90 % when compared to the group treated with PCBs solely. PCBs stresses significantly induced the expression of genes of CYP2C31, GST, SOD and HSP70 in C. hongkongensis, while, the elevated state was compromised when co-treated with PCBs. The present research alleviates concerns about the potential effects of MPs on promoting PCBs bioaccumulation and provide a better understanding of the combined impact of MPs and PCBs on C. hongkongensis.

15.
Ecotoxicol Environ Saf ; 272: 116091, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38340600

ABSTRACT

BACKGROUND: Whether and to what extent the impact of exposure to various polychlorinated biphenyls (PCBs) congeners on diabetes, as well as the important contributors, have remained unclear. OBJECTIVE: We aimed to investigate the association patterns between PCBs mixture and diabetes, identify the critical congeners, and explore the potential modifiers. METHODS: The present study included 5900 U.S. adults from the National Health and Nutrition Examination Survey (NHANES) conducted between 2007 and 2016. Weighted logistic regression, restricted cubic spline regression, weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were applied to estimate the linear and non-linear associations of single and mixed PCB exposure with diabetes. Subgroup analyses were also conducted to explore potential sex differences. RESULTS: In the weighted logistic regression model, total PCBs were positively associated with diabetes (OR = 1.33, P < 0.025), and significant non-linear associations were observed using RCS analyses. The non-linear positive association between PCBs mixed exposure and diabetes was likewise found in the WQS and BKMR results. PCB180, PCB194, PCB196, and PCB167 were with the highest weights in the WQS, and PCB209 and PCB66 were with the highest posterior inclusion probabilities in the BKMR. Additionally, exposure to total PCBs and most of individual PCB congeners were significantly associated with elevated risk of in females (OR = 1.74; P for trend < 0.001), while fewer significant associations were observed in males. CONCLUSION: The present study highlighted the importance of the long-term surveillance of PCBs and the need to enhance protective measures against them. Notably, these associations were non-linear, congener-specific, and significantly stronger in females than males, especially at relatively high levels of PCBs exposure. Further prospective and mechanistic studies were warranted to ascertain the causal effects between PCBs mixture and diabetes.


Subject(s)
Diabetes Mellitus , Environmental Pollutants , Polychlorinated Biphenyls , Adult , Female , Humans , Male , Polychlorinated Biphenyls/toxicity , Polychlorinated Biphenyls/analysis , Environmental Pollutants/toxicity , Environmental Pollutants/analysis , Environmental Exposure/analysis , Nutrition Surveys , Bayes Theorem , Diabetes Mellitus/epidemiology
16.
Ecotoxicol Environ Saf ; 282: 116697, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39002382

ABSTRACT

Persistent organic pollutants may negatively impact cognition; however, associations between persistent organic pollutants and changes in cognition among United States Hispanic/Latino adults have not been investigated. Herein, we examined the associations between 33 persistent organic pollutants and cognitive changes among 1837 Hispanic/Latino adults. At baseline (2008-2011; Visit 1), participants provided biospecimens in which we measured levels of 5 persistent pesticides or pesticide metabolites, 4 polybrominated diphenyl ethers and 2,2',4,4',5,5'-hexabromobiphenyl, and 24 polychlorinated biphenyls. At Visit 1 and again at Visit 2 (2015-2018), a battery of neurocognitive tests was administered which included the Brief-Spanish English Verbal Learning Test, Word Fluency Test, and Digit Symbol Substitution Test. To estimate the adjusted associations between changes in cognition and each POP, we used linear regression for survey data. Each doubling in plasma levels of polychlorinated biphenyls 146, 178, 194, 199/206, and 209 was associated with steeper declines in global cognition (ßs range:-0.053 to -0.061) with stronger associations for the Brief-Spanish English Verbal Learning Test. Persistent organic pollutants, in particular polychlorinated biphenyls, were associated with declines in cognition over 7 years and may be a concern for Hispanic/Latino adults.


Subject(s)
Cognitive Dysfunction , Hispanic or Latino , Persistent Organic Pollutants , Pesticides , Polychlorinated Biphenyls , Humans , Hispanic or Latino/psychology , Hispanic or Latino/statistics & numerical data , Male , Female , Middle Aged , Cognitive Dysfunction/chemically induced , Aged , Polychlorinated Biphenyls/blood , United States , Environmental Exposure/statistics & numerical data , Cognition/drug effects , Halogenated Diphenyl Ethers/blood , Adult , Environmental Pollutants/blood
17.
Ecotoxicol Environ Saf ; 270: 115923, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38171107

ABSTRACT

3,3',4',4',5-Polychlorinated biphenyls (PCB126) is classified as a persistent organic environmental pollutant that can cause liver damage by producing excessive reactive oxygen species (ROS). ROS also can stimulate neutrophil extracellular traps (NETs) formation, which cause damage to organism if NETs are produced in excess. Melatonin is generally considered to possess strong antioxidant and anti-inflammation prosperities, but it is unclear whether it can alleviate PCB126-induced injury. To explore whether PCB126-induced liver injury is related to the formation of NETs and whether melatonin has a potent protective effect, we established PCB126 exposure/ PCB126 and melatonin co-treatment mouse models by gavage. To further clarify the specific mechanism, we also cultured neutrophils and AML12 cells to replicate in vivo model. Here, we found PCB126 exposure resulted in an elevation in the activities of MDA, LPO, PCO, and 8-OHdG, and a reduction in the activities of CAT, GSH-PX and SOD. We found that PCB126 exposure led to an elevation in the expression levels of chemokines (CCL2, CCL3, CCL4, CXCL12, and CXCL8) and marker factors for NETs formation (MPO, NE, NOX2, PKCα, and PKCζ) in the PCB126 group. IF, SYTOX staining, and SEM results also revealed that PCB126 could stimulate NETs formation. In addition, results of a co-culture system of PBNs and AML12 cells revealed that the expression levels of inflammatory cytokines (IL-1ß, IL-6, and TNF-α) significantly decreased and the expression levels of metabolism factors (Fas, Acc, and Srebp) slightly decreased for scavenging NETs, indicating NETs formation aggravated PCB126-induced hepatic damages. Noteworthy, treatment with melatonin reversed these results. In summary, our findings revealed that melatonin alleviated hepatic damage aggravated by PCB126-induced ROS-dependent NETs formation through suppressing excessive ROS production. This finding not only enriches toxicological mechanism of PCB126, but more importantly extends biological effects of melatonin and its potential application values.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Extracellular Traps , Melatonin , Polychlorinated Biphenyls , Mice , Animals , Extracellular Traps/metabolism , Polychlorinated Biphenyls/toxicity , Polychlorinated Biphenyls/metabolism , Reactive Oxygen Species/metabolism , Melatonin/pharmacology , Melatonin/metabolism , Lipid Metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Neutrophils/metabolism
18.
Prev Sci ; 25(Suppl 2): 225-248, 2024 May.
Article in English | MEDLINE | ID: mdl-38108946

ABSTRACT

Exposure to certain chemicals prenatally and in childhood can impact development and may increase risk for attention-deficit/hyperactivity disorder (ADHD). Leveraging a larger set of literature searches conducted to synthesize results from longitudinal studies of potentially modifiable risk factors for childhood ADHD, we present meta-analytic results from 66 studies that examined the associations between early chemical exposures and later ADHD diagnosis or symptoms. Studies were eligible for inclusion if the chemical exposure occurred at least 6 months prior to measurement of ADHD diagnosis or symptomatology. Included papers were published between 1975 and 2019 on exposure to anesthetics (n = 5), cadmium (n = 3), hexachlorobenzene (n = 4), lead (n = 22), mercury (n = 12), organophosphates (n = 7), and polychlorinated biphenyls (n = 13). Analyses are presented for each chemical exposure by type of ADHD outcome reported (categorical vs. continuous), type of ADHD measurement (overall measures of ADHD, ADHD symptoms only, ADHD diagnosis only, inattention only, hyperactivity/impulsivity only), and timing of exposure (prenatal vs. childhood vs. cumulative), whenever at least 3 relevant effect sizes were available. Childhood lead exposure was positively associated with ADHD diagnosis and symptoms in all analyses except for the prenatal analyses (odds ratios (ORs) ranging from 1.60 to 2.62, correlation coefficients (CCs) ranging from 0.14 to 0.16). Other statistically significant associations were limited to organophosphates (CC = 0.11, 95% confidence interval (CI): 0.03-0.19 for continuous measures of ADHD outcomes overall), polychlorinated biphenyls (CC = 0.08, 95% CI: 0.02-0.14 for continuous measures of inattention as the outcome), and both prenatal and childhood mercury exposure (CC = 0.02, 95% CI: 0.00-0.04 for continuous measures of ADHD outcomes overall for either exposure window). Our findings provide further support for negative impacts of prenatal and/or childhood exposure to certain chemicals and raise the possibility that primary prevention and targeted screening could prevent or mitigate ADHD symptomatology. Furthermore, these findings support the need for regular review of regulations as our scientific understanding of the risks posed by these chemicals evolves.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Attention Deficit Disorder with Hyperactivity/chemically induced , Humans , Child , Environmental Exposure/adverse effects , Female , Prenatal Exposure Delayed Effects , Pregnancy
19.
Mikrochim Acta ; 191(9): 537, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143439

ABSTRACT

Methyltrimethoxysilane (MTMS) modified tin dioxide microspheres (MTMS/SnO2) were prepared by a facile hydrothermal method and heated reflux reaction strategy. The characterization results indicate that the modification of MTMS induced the formation of a hydrophobic network within the composites, while maintaining abundant adsorbed oxygen species. Subsequently, the MTMS/SnO2 microspheres were used as a solid-phase microextraction (SPME) coating for the efficient extraction and sensitive determination of trace polychlorinated biphenyls (PCBs) in aqueous solutions coupled to gas chromatography-mass spectrometry. MTMS/SnO2 coating exhibited superior extraction performances for PCBs compared with commercial SPME and pure SnO2 microspheres coatings, owing to the hydrophobic crosslinking and adsorbed oxygen-enhanced hydrogen bonding. The proposed analytical method presented respectable linearity in the concentration range 0.25-1000 ng L-1, with low limits of detection varying from 0.036 to 0.14 ng L-1 for seven PCBs and excellent precision, with relative standard deviations of 5.7-9.8% for a single fiber and 8.2-13.1% for five fibers. Finally, the proposed method was successfully used for determination of PCBs in real water with recoveries ranging from 75.8 to 115.6%. This study proposed a new type SPME coating of MTMS/SnO2 microspheres, which extended the potential of SnO2 in capturing and determining organic pollutants.

20.
Annu Rev Physiol ; 82: 177-202, 2020 02 10.
Article in English | MEDLINE | ID: mdl-31738670

ABSTRACT

Endocrine disrupting chemicals are common in our environment and act on hormone systems and signaling pathways to alter physiological homeostasis. Gestational exposure can disrupt developmental programs, permanently altering tissues with impacts lasting into adulthood. The brain is a critical target for developmental endocrine disruption, resulting in altered neuroendocrine control of hormonal signaling, altered neurotransmitter control of nervous system function, and fundamental changes in behaviors such as learning, memory, and social interactions. Human cohort studies reveal correlations between maternal/fetal exposure to endocrine disruptors and incidence of neurodevelopmental disorders. Here, we summarize the major literature findings of endocrine disruption of neurodevelopment and concomitant changes in behavior by four major endocrine disruptor classes:bisphenol A, polychlorinated biphenyls, organophosphates, and polybrominated diphenyl ethers. We specifically review studies of gestational and/or lactational exposure to understand the effects of early life exposure to these compounds and summarize animal studies that help explain human correlative data.


Subject(s)
Behavior/drug effects , Endocrine Disruptors/adverse effects , Nervous System/growth & development , Prenatal Exposure Delayed Effects/pathology , Adult , Animals , Behavior, Animal/drug effects , Benzhydryl Compounds/adverse effects , Female , Humans , Nervous System/drug effects , Phenols/adverse effects , Polybrominated Biphenyls/adverse effects , Polychlorinated Biphenyls/adverse effects , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL