Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 584
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Annu Rev Cell Dev Biol ; 39: 331-361, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37843925

ABSTRACT

Microtubules are essential dynamic polymers composed of α/ß-tubulin heterodimers. They support intracellular trafficking, cell division, cellular motility, and other essential cellular processes. In many species, both α-tubulin and ß-tubulin are encoded by multiple genes with distinct expression profiles and functionality. Microtubules are further diversified through abundant posttranslational modifications, which are added and removed by a suite of enzymes to form complex, stereotyped cellular arrays. The genetic and chemical diversity of tubulin constitute a tubulin code that regulates intrinsic microtubule properties and is read by cellular effectors, such as molecular motors and microtubule-associated proteins, to provide spatial and temporal specificity to microtubules in cells. In this review, we synthesize the rapidly expanding tubulin code literature and highlight limitations and opportunities for the field. As complex microtubule arrays underlie essential physiological processes, a better understanding of how cells employ the tubulin code has important implications for human disease ranging from cancer to neurological disorders.


Subject(s)
Microtubules , Tubulin , Humans , Tubulin/genetics , Tubulin/chemistry , Tubulin/metabolism , Microtubules/metabolism , Microtubule-Associated Proteins/metabolism , Protein Processing, Post-Translational/genetics , Cell Movement
2.
Annu Rev Biochem ; 90: 245-285, 2021 06 20.
Article in English | MEDLINE | ID: mdl-33848425

ABSTRACT

Protein lysine acetylation is an important posttranslational modification that regulates numerous biological processes. Targeting lysine acetylation regulatory factors, such as acetyltransferases, deacetylases, and acetyl-lysine recognition domains, has been shown to have potential for treating human diseases, including cancer and neurological diseases. Over the past decade, many other acyl-lysine modifications, such as succinylation, crotonylation, and long-chain fatty acylation, have also been investigated and shown to have interesting biological functions. Here, we provide an overview of the functions of different acyl-lysine modifications in mammals. We focus on lysine acetylation as it is well characterized, and principles learned from acetylation are useful for understanding the functions of other lysine acylations. We pay special attention to the sirtuins, given that the study of sirtuins has provided a great deal of information about the functions of lysine acylation. We emphasize the regulation of sirtuins to illustrate that their regulation enables cells to respond to various signals and stresses.


Subject(s)
Lysine/metabolism , Mammals/metabolism , Sirtuins/chemistry , Sirtuins/metabolism , Acetylation , Acylation , Animals , Chromatin/genetics , Chromatin/metabolism , Histone Acetyltransferases/metabolism , Humans , Protein Processing, Post-Translational
3.
Cell ; 180(4): 633-644.e12, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32032505

ABSTRACT

Tau aggregation into insoluble filaments is the defining pathological hallmark of tauopathies. However, it is not known what controls the formation and templated seeding of strain-specific structures associated with individual tauopathies. Here, we use cryo-electron microscopy (cryo-EM) to determine the structures of tau filaments from corticobasal degeneration (CBD) human brain tissue. Cryo-EM and mass spectrometry of tau filaments from CBD reveal that this conformer is heavily decorated with posttranslational modifications (PTMs), enabling us to map PTMs directly onto the structures. By comparing the structures and PTMs of tau filaments from CBD and Alzheimer's disease, it is found that ubiquitination of tau can mediate inter-protofilament interfaces. We propose a structure-based model in which cross-talk between PTMs influences tau filament structure, contributing to the structural diversity of tauopathy strains. Our approach establishes a framework for further elucidating the relationship between the structures of polymorphic fibrils, including their PTMs, and neurodegenerative disease.


Subject(s)
Protein Processing, Post-Translational , Tauopathies/metabolism , tau Proteins/chemistry , Aged , Cryoelectron Microscopy , Female , Humans , Male , Middle Aged , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Tauopathies/pathology , tau Proteins/metabolism
4.
Annu Rev Cell Dev Biol ; 35: 29-54, 2019 10 06.
Article in English | MEDLINE | ID: mdl-31394046

ABSTRACT

Microtubules are core components of the cytoskeleton and serve as tracks for motor protein-based intracellular transport. Microtubule networks are highly diverse across different cell types and are believed to adapt to cell type-specific transport demands. Here we review how the spatial organization of different subsets of microtubules into higher-order networks determines the traffic rules for motor-based transport in different animal cell types. We describe the interplay between microtubule network organization and motor-based transport within epithelial cells, oocytes, neurons, cilia, and the spindle apparatus.


Subject(s)
Microtubules/metabolism , Animals , Cell Polarity , Cytoskeleton/chemistry , Cytoskeleton/metabolism , Humans , Microtubule-Associated Proteins/metabolism , Microtubules/chemistry , Molecular Motor Proteins/metabolism , Protein Transport , Spindle Apparatus/chemistry , Spindle Apparatus/metabolism
5.
Annu Rev Cell Dev Biol ; 34: 357-379, 2018 10 06.
Article in English | MEDLINE | ID: mdl-30095291

ABSTRACT

Microbial nucleic acids are major signatures of invading pathogens, and their recognition by various host pattern recognition receptors (PRRs) represents the first step toward an efficient innate immune response to clear the pathogens. The nucleic acid-sensing PRRs are localized at the plasma membrane, the cytosol, and/or various cellular organelles. Sensing of nucleic acids and signaling by PRRs involve recruitment of distinct signaling components, and PRRs are intensively regulated by cellular organelle trafficking. PRR-mediated innate immune responses are also heavily regulated by posttranslational modifications, including phosphorylation, polyubiquitination, sumoylation, and glutamylation. In this review, we focus on our current understanding of recognition of microbial nucleic acid by PRRs, particularly on their regulation by organelle trafficking and posttranslational modifications. We also discuss how sensing of self nucleic acids and dysregulation of PRR-mediated signaling lead to serious human diseases.


Subject(s)
Host-Pathogen Interactions/genetics , Immunity, Innate/genetics , Nucleic Acids/genetics , Receptors, Pattern Recognition/genetics , Bacteria/genetics , Bacteria/pathogenicity , Cytoplasm/immunology , Cytoplasm/microbiology , DNA, Bacterial/genetics , Host-Pathogen Interactions/immunology , Humans , Nucleic Acids/immunology , Protein Processing, Post-Translational/genetics , Protein Processing, Post-Translational/immunology , Receptors, Pattern Recognition/immunology , Signal Transduction/genetics
6.
Annu Rev Biochem ; 85: 431-54, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-26844395

ABSTRACT

Recent developments indicate that macrodomains, an ancient and diverse protein domain family, are key players in the recognition, interpretation, and turnover of ADP-ribose (ADPr) signaling. Crucial to this is the ability of macrodomains to recognize ADPr either directly, in the form of a metabolic derivative, or as a modification covalently bound to proteins. Thus, macrodomains regulate a wide variety of cellular and organismal processes, including DNA damage repair, signal transduction, and immune response. Their importance is further indicated by the fact that dysregulation or mutation of a macrodomain is associated with several diseases, including cancer, developmental defects, and neurodegeneration. In this review, we summarize the current insights into macrodomain evolution and how this evolution influenced their structural and functional diversification. We highlight some aspects of macrodomain roles in pathobiology as well as their emerging potential as therapeutic targets.


Subject(s)
DNA Repair , Escherichia coli Proteins/chemistry , Neoplasms/enzymology , Poly(ADP-ribose) Polymerases/chemistry , Protein Processing, Post-Translational , Repressor Proteins/chemistry , Virus Diseases/enzymology , Adenosine Diphosphate Ribose/chemistry , Adenosine Diphosphate Ribose/metabolism , Animals , DNA Damage , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Evolution, Molecular , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Multigene Family , Neoplasms/chemistry , Neoplasms/genetics , Neoplasms/pathology , Phylogeny , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Protein Domains , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction , Structural Homology, Protein , Virus Diseases/genetics , Virus Diseases/pathology , Virus Diseases/virology
7.
Physiol Rev ; 104(3): 931-982, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38300522

ABSTRACT

Mass spectrometry-based proteomics is a sophisticated identification tool specializing in portraying protein dynamics at a molecular level. Proteomics provides biologists with a snapshot of context-dependent protein and proteoform expression, structural conformations, dynamic turnover, and protein-protein interactions. Cardiac proteomics can offer a broader and deeper understanding of the molecular mechanisms that underscore cardiovascular disease, and it is foundational to the development of future therapeutic interventions. This review encapsulates the evolution, current technologies, and future perspectives of proteomic-based mass spectrometry as it applies to the study of the heart. Key technological advancements have allowed researchers to study proteomes at a single-cell level and employ robot-assisted automation systems for enhanced sample preparation techniques, and the increase in fidelity of the mass spectrometers has allowed for the unambiguous identification of numerous dynamic posttranslational modifications. Animal models of cardiovascular disease, ranging from early animal experiments to current sophisticated models of heart failure with preserved ejection fraction, have provided the tools to study a challenging organ in the laboratory. Further technological development will pave the way for the implementation of proteomics even closer within the clinical setting, allowing not only scientists but also patients to benefit from an understanding of protein interplay as it relates to cardiac disease physiology.


Subject(s)
Cardiovascular Diseases , Proteomics , Animals , Humans , Proteomics/methods , Heart , Protein Processing, Post-Translational , Mass Spectrometry/methods
8.
Annu Rev Biochem ; 84: 765-90, 2015.
Article in English | MEDLINE | ID: mdl-26034893

ABSTRACT

Hydrogen peroxide (H2O2) is a prime member of the reactive oxygen species (ROS) family of molecules produced during normal cell function and in response to various stimuli, but if left unchecked, it can inflict oxidative damage on all types of biological macromolecules and lead to cell death. In this context, a major source of H2O2 for redox signaling purposes is the NADPH oxidase (Nox) family of enzymes, which were classically studied for their roles in phagocytic immune response but have now been found to exist in virtually all mammalian cell types in various isoforms with distinct tissue and subcellular localizations. Downstream of this tightly regulated ROS generation, site-specific, reversible covalent modification of proteins, particularly oxidation of cysteine thiols to sulfenic acids, represents a prominent posttranslational modification akin to phosphorylation as an emerging molecular mechanism for transforming an oxidant signal into a dynamic biological response. We review two complementary types of chemical tools that enable (a) specific detection of H2O2 generated at its sources and (b) mapping of sulfenic acid posttranslational modification targets that mediate its signaling functions, which can be used to study this important chemical signal in biological systems.


Subject(s)
Hydrogen Peroxide/metabolism , NADPH Oxidases/metabolism , Signal Transduction , Animals , Humans , Oxidation-Reduction , Sulfenic Acids/metabolism
9.
Physiol Rev ; 103(1): 31-276, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35435014

ABSTRACT

Over the last two decades, hydrogen sulfide (H2S) has emerged as an endogenous regulator of a broad range of physiological functions. H2S belongs to the class of molecules known as gasotransmitters, which typically include nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine γ-lyase (CSE), cystathionine ß-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MST). The present article reviews the regulation of these enzymes as well as the pathways of their enzymatic and nonenzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g., NO) and reactive oxygen species are also outlined. Next, the various biological targets and signaling pathways are outlined, with special reference to H2S or oxidative posttranscriptional modification (persulfidation or sulfhydration) of proteins and the effect of H2S on various channels and intracellular second messenger pathways, the regulation of gene transcription and translation, and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed, including the regulation of membrane potential, endo- and exocytosis, regulation of various cell organelles (endoplasmic reticulum, Golgi, mitochondria), regulation of cell movement, cell cycle, cell differentiation, and physiological aspects of regulated cell death. Next, the physiological roles of H2S in various cell types and organ systems are overviewed, including the role of H2S in red blood cells, immune cells, the central and peripheral nervous systems (with focus on neuronal transmission, learning, and memory formation), and regulation of vascular function (including angiogenesis as well as its specialized roles in the cerebrovascular, renal, and pulmonary vascular beds) and the role of H2S in the regulation of special senses, vision, hearing, taste and smell, and pain-sensing. Finally, the roles of H2S in the regulation of various organ functions (lung, heart, liver, kidney, urogenital organs, reproductive system, bone and cartilage, skeletal muscle, and endocrine organs) are presented, with a focus on physiology (including physiological aging) but also extending to some common pathophysiological conditions. From these data, a wide array of significant roles of H2S in the physiological regulation of all organ functions emerges and the characteristic bell-shaped biphasic effects of H2S are highlighted. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified.


Subject(s)
Gasotransmitters , Hydrogen Sulfide , Animals , Carbon Monoxide , Cystathionine beta-Synthase/metabolism , Cystathionine gamma-Lyase/metabolism , Gasotransmitters/metabolism , Humans , Hydrogen Sulfide/metabolism , Mammals/metabolism , Nitric Oxide/metabolism , Reactive Oxygen Species
10.
Immunity ; 54(4): 721-736.e10, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33725478

ABSTRACT

Hyperglycemia and hyperlipidemia are often observed in individuals with type II diabetes (T2D) and related mouse models. One dysmetabolic biochemical consequence is the non-enzymatic reaction between sugars, lipids, and proteins, favoring protein glycation, glycoxidation, and lipoxidation. Here, we identified oxidative alterations in key components of the major histocompatibility complex (MHC) class II molecule antigen processing and presentation machinery in vivo under conditions of hyperglycemia-induced metabolic stress. These modifications were linked to epitope-specific changes in endosomal processing efficiency, MHC class II-peptide binding, and DM editing activity. Moreover, we observed some quantitative and qualitative changes in the MHC class II immunopeptidome of Ob/Ob mice on a high-fat diet compared with controls, including changes in the presentation of an apolipoprotein B100 peptide associated previously with T2D and metabolic syndrome-related clinical complications. These findings highlight a link between glycation reactions and altered MHC class II antigen presentation that may contribute to T2D complications.


Subject(s)
Antigen Presentation/immunology , Histocompatibility Antigens Class II/immunology , Stress, Physiological/immunology , Animals , Antigen-Presenting Cells/immunology , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Type 2/immunology , Disease Models, Animal , Epitopes/immunology , Female , Male , Mice , Mice, Inbred C57BL , Peptides/immunology , Protein Binding/immunology
11.
EMBO J ; 42(5): e112101, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36636822

ABSTRACT

Tubulin posttranslational modifications have been predicted to control cytoskeletal functions by coordinating the molecular interactions between microtubules and their associating proteins. A prominent tubulin modification in neurons is polyglutamylation, the deregulation of which causes neurodegeneration. Yet, the underlying molecular mechanisms have remained elusive. Here, using in-vitro reconstitution, we determine how polyglutamylation generated by the two predominant neuronal polyglutamylases, TTLL1 and TTLL7, specifically modulates the activities of three major microtubule interactors: the microtubule-associated protein Tau, the microtubule-severing enzyme katanin and the molecular motor kinesin-1. We demonstrate that the unique modification patterns generated by TTLL1 and TTLL7 differentially impact those three effector proteins, thus allowing for their selective regulation. Given that our experiments were performed with brain tubulin from mouse models in which physiological levels and patterns of polyglutamylation were altered by the genetic knockout of the main modifying enzymes, our quantitative measurements provide direct mechanistic insight into how polyglutamylation could selectively control microtubule interactions in neurons.


Subject(s)
Tubulin , Animals , Mice , Cytoskeleton/metabolism , Kinesins/metabolism , Microtubules/metabolism , Tubulin/metabolism , Peptide Synthases , Microtubule-Associated Proteins
12.
Proc Natl Acad Sci U S A ; 121(38): e2400781121, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39259589

ABSTRACT

During homeostasis, the endoplasmic reticulum (ER) maintains productive transmembrane and secretory protein folding that is vital for proper cellular function. The ER-resident HSP70 chaperone, binding immunoglobulin protein (BiP), plays a pivotal role in sensing ER stress to activate the unfolded protein response (UPR). BiP function is regulated by the bifunctional enzyme filamentation induced by cyclic-AMP domain protein (FicD) that mediates AMPylation and deAMPylation of BiP in response to changes in ER stress. AMPylated BiP acts as a molecular rheostat to regulate UPR signaling, yet little is known about the molecular consequences of FicD loss. In this study, we investigate the role of FicD in mouse embryonic fibroblast (MEF) response to pharmacologically and metabolically induced ER stress. We find differential BiP AMPylation signatures when comparing robust chemical ER stress inducers to physiological glucose starvation stress and recovery. Wildtype MEFs respond to pharmacological ER stress by down-regulating BiP AMPylation. Conversely, BiP AMPylation in wildtype MEFs increases upon metabolic stress induced by glucose starvation. Deletion of FicD results in widespread gene expression changes under baseline growth conditions. In addition, FicD null MEFs exhibit dampened UPR signaling, altered cell stress recovery response, and unconstrained protein secretion. Taken together, our findings indicate that FicD is important for tampering UPR signaling, stress recovery, and the maintenance of secretory protein homeostasis.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Fibroblasts , Glucose , Unfolded Protein Response , Animals , Mice , Embryo, Mammalian/metabolism , Embryo, Mammalian/cytology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Chaperone BiP/metabolism , Fibroblasts/metabolism , Glucose/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Mice, Knockout , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Signal Transduction
13.
EMBO Rep ; 25(8): 3202-3220, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39095610

ABSTRACT

In eukaryotes, DNA is packaged into chromatin with the help of highly conserved histone proteins. Together with DNA-binding proteins, posttranslational modifications (PTMs) on these histones play crucial roles in regulating genome function, cell fate determination, inheritance of acquired traits, cellular states, and diseases. While most studies have focused on individual DNA-binding proteins, chromatin proteins, or histone PTMs in bulk cell populations, such chromatin features co-occur and potentially act cooperatively to accomplish specific functions in a given cell. This review discusses state-of-the-art techniques for the simultaneous profiling of multiple chromatin features in low-input samples and single cells, focusing on histone PTMs, DNA-binding, and chromatin proteins. We cover the origins of the currently available toolkits, compare and contrast their characteristic features, and discuss challenges and perspectives for future applications. Studying the co-occurrence of histone PTMs, DNA-binding proteins, and chromatin proteins in single cells will be central for a better understanding of the biological relevance of combinatorial chromatin features, their impact on genomic output, and cellular heterogeneity.


Subject(s)
Chromatin , DNA-Binding Proteins , Histones , Protein Processing, Post-Translational , Histones/metabolism , Chromatin/metabolism , Chromatin/genetics , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Animals , DNA/metabolism , DNA/genetics
14.
Semin Cell Dev Biol ; 140: 35-53, 2023 05 15.
Article in English | MEDLINE | ID: mdl-35710759

ABSTRACT

The establishment of neuronal connectivity relies on the microtubule (MT) cytoskeleton, which provides mechanical support, roads for axonal transport and mediates signalling events. Fine-tuned spatiotemporal regulation of MT functions by tubulin post-translational modifications and MT-associated proteins is critical for the coarse wiring and subsequent refinement of neuronal connectivity. The defective regulation of these processes causes a wide range of neurodevelopmental disorders associated with connectivity defects. This review focuses on recent studies unravelling how MT composition, post-translational modifications and associated proteins influence MT functions in axon guidance and/or pruning to build functional neuronal circuits. We here summarise experimental evidence supporting the key role of this network as a driving force for growth cone steering and branch-specific axon elimination. We further provide a global overview of the MT-interactors that tune developing axon behaviours, with a special emphasis on their emerging versatility in the regulation of MT dynamics/structure. Recent studies establishing the key and highly selective role of the tubulin code in the regulation of MT functions in axon pathfinding are also reported. Finally, our review highlights the emerging molecular links between these MT regulation processes and guidance signals that wire the nervous system.


Subject(s)
Axon Guidance , Tubulin , Tubulin/metabolism , Microtubules/metabolism , Microtubule-Associated Proteins/metabolism , Axons/metabolism
15.
Semin Cell Dev Biol ; 137: 26-37, 2023 03 15.
Article in English | MEDLINE | ID: mdl-35067438

ABSTRACT

Microtubules are cytoskeletal elements that play key roles throughout the different steps of sperm development. As an integral part of the sperm flagellum, the molecular machine that generates sperm motility, microtubules are also essential for the progressive swimming of sperm to the oocyte, which is a prerequisite for fertilisation. Given the central role of microtubules in all steps of spermatogenesis, their functions need to be tightly controlled. Recent work has showcased tubulin posttranslational modifications as key players in sperm development and function, with aberrations often leading to male infertility with a broad spectrum of sperm defects. Posttranslational modifications are part of the tubulin code, a mechanism that can control microtubule functions by modulating the properties of their molecular building blocks, the tubulin proteins. Here we review the current knowledge on the implications of the tubulin code in sperm development and functions and its importance for male fertility.


Subject(s)
Sperm Motility , Tubulin , Animals , Male , Tubulin/genetics , Tubulin/metabolism , Semen , Microtubules/metabolism , Protein Processing, Post-Translational , Spermatozoa/metabolism , Mammals/metabolism
16.
Semin Cell Dev Biol ; 137: 74-86, 2023 03 15.
Article in English | MEDLINE | ID: mdl-35144861

ABSTRACT

The organ of Corti, located in the cochlea within the inner ear is the receptor organ for hearing. It converts auditory signals into neuronal action potentials that are transmitted to the brain for further processing. The mature organ of Corti consists of a variety of highly differentiated sensory cells that fulfil unique tasks in the processing of auditory signals. The actin and microtubule cytoskeleton play essential function in hearing, however so far, more attention has been paid to the role of actin. Microtubules play important roles in maintaining cellular structure and intracellular transport in virtually all eukaryotic cells. Their functions are controlled by interactions with a large variety of microtubule-associated proteins (MAPs) and molecular motors. Current advances show that tubulin posttranslational modifications, as well as tubulin isotypes could play key roles in modulating microtubule properties and functions in cells. These mechanisms could have various effects on the stability and functions of microtubules in the highly specialised cells of the cochlea. Here, we review the current understanding of the role of microtubule-regulating mechanisms in the function of the cochlea and their implications for hearing, which highlights the importance of microtubules in the field of hearing research.


Subject(s)
Actins , Tubulin , Tubulin/metabolism , Actins/metabolism , Microtubules/metabolism , Microtubule-Associated Proteins , Protein Processing, Post-Translational , Hearing
17.
Semin Cell Dev Biol ; 135: 3-12, 2023 02 15.
Article in English | MEDLINE | ID: mdl-35365397

ABSTRACT

Chromatin, the functional organization of DNA with histone proteins in eukaryotic nuclei, is the tightly-regulated template for several biological processes, such as transcription, replication, DNA damage repair, chromosome stability and sister chromatid segregation. In order to achieve a reversible control of local chromatin structure and DNA accessibility, various interconnected mechanisms have evolved. One of such processes includes the deposition of functionally-diverse variants of histone proteins into nucleosomes, the building blocks of chromatin. Among core histones, the family of H2A histone variants exhibits the largest number of members and highest sequence-divergence. In this short review, we report and discuss recent discoveries concerning the biological functions of the animal histone variants H2A.B, H2A.X and H2A.Z and how dysregulation or mutation of the latter impacts the development of disease.


Subject(s)
Histones , Nucleosomes , Animals , Histones/genetics , Histones/metabolism , Nucleosomes/genetics , Chromatin/genetics , DNA Repair/genetics , DNA/genetics
18.
J Biol Chem ; 300(6): 107349, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718861

ABSTRACT

The dynamic and reversible modification of nuclear and cytoplasmic proteins by O-GlcNAcylation significantly impacts the function and dysfunction of the immune system. O-GlcNAcylation plays crucial roles under both physiological and pathological conditions in the biochemical regulation of all immune cell functions. Three and a half decades of knowledge acquired in this field is merely sufficient to perceive that what we know is just the prelude. This review attempts to mark out the known regulatory roles of O-GlcNAcylation in key signal transduction pathways and specific protein functions in the immune system and adumbrate ensuing questions toward the unknown functions.


Subject(s)
Acetylglucosamine , Signal Transduction , Humans , Animals , Acetylglucosamine/metabolism , Immune System/metabolism , Protein Processing, Post-Translational , Glycosylation
19.
Cell Mol Life Sci ; 81(1): 290, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970666

ABSTRACT

Pattern recognition receptors (PRRs) play a crucial role in innate immunity, and a complex network tightly controls their signaling cascades to maintain immune homeostasis. Within the modification network, posttranslational modifications (PTMs) are at the core of signaling cascades. Conventional PTMs, which include phosphorylation and ubiquitination, have been extensively studied. The regulatory role of unconventional PTMs, involving unanchored ubiquitination, ISGylation, SUMOylation, NEDDylation, methylation, acetylation, palmitoylation, glycosylation, and myristylation, in the modulation of innate immune signaling pathways has been increasingly investigated. This comprehensive review delves into the emerging field of unconventional PTMs and highlights their pivotal role in innate immunity.


Subject(s)
Immunity, Innate , Protein Processing, Post-Translational , Signal Transduction , Humans , Animals , Signal Transduction/immunology , Ubiquitination , Receptors, Pattern Recognition/metabolism , Receptors, Pattern Recognition/immunology , Acetylation , Methylation , Phosphorylation , Sumoylation , Glycosylation
20.
Mol Cell Proteomics ; 22(1): 100477, 2023 01.
Article in English | MEDLINE | ID: mdl-36496144

ABSTRACT

Liquid chromatography coupled with bottom-up mass spectrometry (LC-MS/MS)-based proteomics is increasingly used to detect changes in posttranslational modifications (PTMs) in samples from different conditions. Analysis of data from such experiments faces numerous statistical challenges. These include the low abundance of modified proteoforms, the small number of observed peptides that span modification sites, and confounding between changes in the abundance of PTM and the overall changes in the protein abundance. Therefore, statistical approaches for detecting differential PTM abundance must integrate all the available information pertaining to a PTM site and consider all the relevant sources of confounding and variation. In this manuscript, we propose such a statistical framework, which is versatile, accurate, and leads to reproducible results. The framework requires an experimental design, which quantifies, for each sample, both peptides with PTMs and peptides from the same proteins with no modification sites. The proposed framework supports both label-free and tandem mass tag-based LC-MS/MS acquisitions. The statistical methodology separately summarizes the abundances of peptides with and without the modification sites, by fitting separate linear mixed effects models appropriate for the experimental design. Next, model-based inferences regarding the PTM and the protein-level abundances are combined to account for the confounding between these two sources. Evaluations on computer simulations, a spike-in experiment with known ground truth, and three biological experiments with different organisms, modification types, and data acquisition types demonstrate the improved fold change estimation and detection of differential PTM abundance, as compared to currently used approaches. The proposed framework is implemented in the free and open-source R/Bioconductor package MSstatsPTM.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Proteomics/methods , Chromatography, Liquid , Protein Processing, Post-Translational , Proteins , Peptides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL