Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.131
Filter
Add more filters

Publication year range
1.
Mol Cell Proteomics ; 23(2): 100723, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38253182

ABSTRACT

Cerebral stroke is one of the leading causes of mortality and disability worldwide. Restoring the cerebral circulation following a period of occlusion and subsequent tissue oxygenation leads to reperfusion injury. Cerebral ischemic reperfusion (I/R) injury triggers immune and inflammatory responses, apoptosis, neuronal damage, and even death. However, the cellular function and molecular mechanisms underlying cerebral I/R-induced neuronal injury are incompletely understood. By integrating proteomic, phosphoproteomic, and transcriptomic profiling in mouse hippocampi after cerebral I/R, we revealed that the differentially expressed genes and proteins mainly fall into several immune inflammatory response-related pathways. We identified that Annexin 2 (Anxa2) was exclusively upregulated in microglial cells in response to cerebral I/R in vivo and oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro. RNA-seq analysis revealed a critical role of Anxa2 in the expression of inflammation-related genes in microglia via the NF-κB signaling. Mechanistically, microglial Anxa2 is required for nuclear translocation of the p65 subunit of NF-κB and its transcriptional activity upon OGD/R in BV2 microglial cells. Anxa2 knockdown inhibited the OGD/R-induced microglia activation and markedly reduced the expression of pro-inflammatory factors, including TNF-α, IL-1ß, and IL-6. Interestingly, conditional medium derived from Anxa2-depleted BV2 cell cultures with OGD/R treatment alleviated neuronal death in vitro. Altogether, our findings revealed that microglia Anxa2 plays a critical role in I/R injury by regulating NF-κB inflammatory responses in a non-cell-autonomous manner, which might be a potential target for the neuroprotection against cerebral I/R injury.


Subject(s)
Annexin A2 , Microglia , Reperfusion Injury , Animals , Mice , Annexin A2/metabolism , Microglia/metabolism , Multiomics , NF-kappa B/metabolism , Proteomics , Reperfusion Injury/metabolism
2.
FASEB J ; 38(11): e23681, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38814725

ABSTRACT

Ischemia-reperfusion (IR) injury is primarily characterized by the restoration of blood flow perfusion and oxygen supply to ischemic tissue and organs, but it paradoxically leads to tissue injury aggravation. IR injury is a challenging pathophysiological process that is difficult to avoid clinically and frequently occurs during organ transplantation, surgery, shock resuscitation, and other processes. The major causes of IR injury include increased levels of free radicals, calcium overload, oxidative stress, and excessive inflammatory response. Ghrelin is a newly discovered brain-intestinal peptide with anti-inflammatory and antiapoptotic effects that improve blood supply. The role and mechanism of ghrelin in intestinal ischemia-reperfusion (IIR) injury remain unclear. We hypothesized that ghrelin could attenuate IIR-induced oxidative stress and apoptosis. To investigate this, we established IIR by using a non-invasive arterial clip to clamp the root of the superior mesenteric artery (SMA) in mice. Ghrelin was injected intraperitoneally at a dose of 50 µg/kg 20 min before IIR surgery, and [D-Lys3]-GHRP-6 was injected intraperitoneally at a dose of 12 nmol/kg 20 min before ghrelin injection. We mimicked the IIR process with hypoxia-reoxygenation (HR) in Caco-2 cells, which are similar to intestinal epithelial cells in structure and biochemistry. Our results showed that ghrelin inhibited IIR/HR-induced oxidative stress and apoptosis by activating GHSR-1α. Moreover, it was found that ghrelin activated the GHSR-1α/Sirt1/FOXO1 signaling pathway. We further inhibited Sirt1 and found that Sirt1 was critical for ghrelin-mediated mitigation of IIR/HR injury. Overall, our data suggest that pretreatment with ghrelin reduces oxidative stress and apoptosis to attenuate IIR/HR injury by binding with GHSR-1α to further activate Sirt1.


Subject(s)
Apoptosis , Forkhead Box Protein O1 , Ghrelin , Mice, Inbred C57BL , Oxidative Stress , Receptors, Ghrelin , Reperfusion Injury , Sirtuin 1 , Ghrelin/pharmacology , Ghrelin/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Sirtuin 1/metabolism , Animals , Mice , Receptors, Ghrelin/metabolism , Humans , Male , Forkhead Box Protein O1/metabolism , Apoptosis/drug effects , Oxidative Stress/drug effects , Signal Transduction/drug effects , Intestines/drug effects , Caco-2 Cells
3.
Exp Cell Res ; 439(2): 114111, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38823471

ABSTRACT

Skeletal muscle ischemia-reperfusion (IR) injury poses significant challenges due to its local and systemic complications. Traditional studies relying on two-dimensional (2D) cell culture or animal models often fall short of faithfully replicating the human in vivo environment, thereby impeding the translational process from animal research to clinical applications. Three-dimensional (3D) constructs, such as skeletal muscle spheroids with enhanced cell-cell interactions from human pluripotent stem cells (hPSCs) offer a promising alternative by partially mimicking human physiological cellular environment in vivo processes. This study aims to establish an innovative in vitro model, human skeletal muscle spheroids based on sphere differentiation from hPSCs, to investigate human skeletal muscle developmental processes and IR mechanisms within a controlled laboratory setting. By eticulously recapitulating embryonic myogenesis through paraxial mesodermal differentiation of neuro-mesodermal progenitors, we successfully established 3D skeletal muscle spheroids that mirror the dynamic colonization observed during human skeletal muscle development. Co-culturing human skeletal muscle spheroids with spinal cord spheroids facilitated the formation of neuromuscular junctions, providing functional relevance to skeletal muscle spheroids. Furthermore, through oxygen-glucose deprivation/re-oxygenation treatment, 3D skeletal muscle spheroids provide insights into the molecular events and pathogenesis of IR injury. The findings presented in this study significantly contribute to our understanding of skeletal muscle development and offer a robust platform for in vitro studies on skeletal muscle IR injury, holding potential applications in drug testing, therapeutic development, and personalized medicine within the realm of skeletal muscle-related pathologies.


Subject(s)
Cell Differentiation , Muscle, Skeletal , Pluripotent Stem Cells , Reperfusion Injury , Spheroids, Cellular , Humans , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Muscle, Skeletal/cytology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Spheroids, Cellular/cytology , Muscle Development , Coculture Techniques/methods , Cells, Cultured , Cell Culture Techniques/methods
4.
Cancer Sci ; 115(1): 227-236, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37994570

ABSTRACT

Charged particle beams induce various biological effects by creating high-density ionization through the deposition of energy along the beam's trajectory. Charged particle beams composed of neon ions (20 Ne10+ ) hold great potential for biomedical applications, but their physiological effects on living organs remain uncertain. In this study, we demonstrate that neon-ion beams expedite the process of reoxygenation in tumor models. We simulated mouse SCCVII syngeneic tumors and exposed them to either X-ray or neon-ion beams. Through an in vivo radiobiological assay, we observed a reduction in the hypoxic fraction in tumors irradiated with 8.2 Gy of neon-ion beams 30 h after irradiation compared to 6 h post-irradiation. Conversely, no significant changes in hypoxia were observed in tumors irradiated with 8.2 Gy of X-rays. To directly quantify hypoxia in the irradiated living tumors, we utilized dynamic contrast-enhanced magnetic resonance imaging (MRI) and diffusion-weighted imaging. These combined MRI techniques revealed that the non-hypoxic fraction in neon-irradiated tumors was significantly higher than that in X-irradiated tumors (69.53% vs. 47.67%). Simultaneously, the hypoxic fraction in neon-ion-irradiated tumors (2.77%) was lower than that in X-irradiated tumors (4.27%) and non-irradiated tumors (32.44%). These results support the notion that accelerated reoxygenation occurs more effectively with neon-ion beam irradiation compared to X-rays. These findings shed light on the physiological effects of neon-ion beams on tumors and their microenvironment, emphasizing the therapeutic advantage of using neon-ion charged particle beams to manipulate tumor reoxygenation.


Subject(s)
Neoplasms , Mice , Animals , Neon , Ions , Hypoxia , Tumor Microenvironment
5.
Apoptosis ; 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39068624

ABSTRACT

The occurrence of acute kidney injury (AKI) is elevated, one of the main causes is ischemia-reperfusion (I/R). However, no specific therapy is currently available to treat I/R-induced AKI (I/R-AKI). Treg cells have been demonstrated to perform an anti-inflammatory role in a range of autoimmune and inflammatory illnesses. However, there is limited available information about the possible functions of CD8 + CD103 + iTregs in I/R-AKI. We utilized renal tubular epithelial cells (RTECs) subjected to hypoxia-reoxygenation (H/R) and I/R-AKI mouse model to investigate whether CD8 + CD103 + iTregs could attenuate AKI and the underlying mechanism. In vitro, co-cultured with CD8 + CD103 + iTregs alleviated H/R-induced cell injury. After treatment of CD8 + CD103 + iTregs rather than control cells, a significant improvement of I/R-AKI was observed in vivo, including decreased serum creatinine (sCr) and blood urea nitrogen (BUN) levels, reduced renal pathological injury, lowered tubular apoptosis and inhibition of the transition from AKI to chronic kidney disease (CKD). Mechanically, CD8 + CD103 + iTregs alleviated H/R-induced cell injury and I/R-AKI partly by suppressing RTECs pyroptosis via inhibiting the NLRP3/Caspase-1 axis. Our study provides a novel perspective on the possibility of CD8 + CD103 + iTregs for the treatment of I/R-AKI.

6.
Biochem Biophys Res Commun ; 704: 149712, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38408414

ABSTRACT

Astrocytes transfer extracellular functional mitochondria into neurons to rescue injured neurons after a stroke. However, there are no reports on drugs that interfere with intercellular mitochondrial transfer. Chrysophanol (CHR) was an effective drug for the treatment of cerebral ischemia-reperfusion injury (CIRI) and was selected as the test drug. The oxygen-glucose deprivation/reoxygenation (OGD/R) cell model and the middle cerebral artery occlusion animal model were established to investigate the effect of CHR on CIRI. The result showed that astrocytes could act as mitochondrial donors to ameliorate neuronal injury. Additionally, the neuroprotective effect of astrocytes was enhanced by CHR, the CHR improved the neuronal mitochondrial function, decreased the neurological deficit score and infarction volume, recovered cell morphology in ischemic penumbra. The mitochondrial fluorescence probe labeling technique has shown that the protective effect of CHR is associated with accelerated astrocytic mitochondrial transfer to neurons. The intercellular mitochondrial transfer may be an important way to ameliorate ischemic brain injury and be used as a key target for drug treatment.


Subject(s)
Anthraquinones , Brain Ischemia , Reperfusion Injury , Rats , Animals , Brain Ischemia/metabolism , Astrocytes/metabolism , Reperfusion Injury/metabolism , Neurons/metabolism , Mitochondria
7.
Dev Neurosci ; : 1-13, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710171

ABSTRACT

INTRODUCTION: Our laboratory has been exploring the MRI detection of fetal brain injury, which previously provided a prognostic biomarker for newborn hypertonia in an animal model of cerebral palsy (CP). The biomarker relies on distinct patterns of diffusion-weighted imaging-defined apparent diffusion coefficient (ADC) in fetal brains during uterine hypoxia-ischemia (H-I). Despite the challenges posed by small brains and tissue acquisition, our objective was to differentiate between left and right brain ADC changes. METHODS: A novel aspect involved utilizing three-dimensional rendering techniques to refine ADC measurements within spheroids encompassing fetal brain tissue. 25-day gestation age of rabbit fetuses underwent global hypoxia due to maternal uterine ischemia. RESULTS: Successful differentiation of left and right brain regions was achieved in 28% of the fetal brains. Ordinal analysis revealed predominantly higher ADC on the left side compared to the right at baseline and across the entire time series. During H-I and reperfusion-reoxygenation, the right side exhibited a favored percentage change. Among these fetal brains, 73% exhibited the ADC pattern predictive of hypertonia. No significant differences between left and right sides were observed in patterns predicting hypertonia, except for one timepoint during H-I. This study also highlights a balance between left-sided and right-sided alterations within the population. CONCLUSION: This study emphasizes the importance of investigating laterality and asymmetric hemispheric lesions for early diagnosis of brain injury, leading to CP. The technological limitations in obtaining a clear picture of the entire fetal brain for every fetus mirror the challenges encountered in human studies.

8.
Toxicol Appl Pharmacol ; 483: 116829, 2024 02.
Article in English | MEDLINE | ID: mdl-38246288

ABSTRACT

Aucubin (AU) is a naturally occurring iridoid glycoside known to possess a wide range of pharmacological properties and exhibit a notable protective effect against various pathological conditions. Studies have shown that AU has neuroprotective properties in different neurological diseases. However, its potential protective effects against cerebral ischemia-reperfusion (CIR) injury have not been thoroughly investigated. This study aimed to investigate the impact of AU on CIR injury and explore the underlying mechanism. Cultured neurons treated with AU showed a significant reduction in apoptosis, oxidative stress, and inflammation caused by oxygen-glucose deprivation and reoxygenation (OGD/R). In a rat model of CIR, treatment with AU resulted in a significant decrease in cerebral infarct size and neurological deficits. AU treatment also reversed the increased apoptosis, oxidative stress, and inflammation in the brains of CIR rats. Furthermore, AU was found to enhance the activation of nuclear factor-erythroid 2-related factor 2 (Nrf2), accompanied by increased phosphorylation of serine/threonine-protein kinase AKT and glycogen synthase kinase-3 beta (GSK-3ß). The activation of Nrf2 induced by AU was reversed when the AKT-GSK-3ß cascade was blocked. Additionally, the neuroprotective effect of AU was significantly reduced when Nrf2 was pharmacologically suppressed. In conclusion, these findings suggest that AU exerts a neuroprotective effect on CIR injury, and this effect is mediated by the activation of Nrf2 through the AKT-GSK-3ß axis. This work highlights the potential of AU as a drug candidate for the treatment of CIR injury.


Subject(s)
Iridoid Glucosides , Neuroprotective Agents , Reperfusion Injury , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , NF-E2-Related Factor 2/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Glycogen Synthase Kinase 3 beta , Signal Transduction , Oxidative Stress , Apoptosis , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Reperfusion Injury/pathology , Inflammation/drug therapy , Inflammation/prevention & control
9.
Arch Biochem Biophys ; 753: 109918, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301949

ABSTRACT

OBJECTIVE: Our previous study found that overexpression of uncoupling protein-2 (UCP2) had a protective effect on lipopolysaccharide (LPS)-induced sepsis cardiomyocytes. The aim of this study was to explore the effect and mechanism of uncoupling protein-2 (UCP2) on myocardial ischemia-reperfusion injury. METHODS: In this study, we established hypoxia-reoxygenation (HR) injury model in rats and isolated cardiomyocytes of newborn rats. We also carried out following methods which include virus transfection technology, cell counting Kit-8 (CCK8), flow cytometry, enzyme linked immunosorbent assay (ELISA), Western blot (WB), quantitative reverse transcription PCR (RT qPCR), transmission electron microscopy, fluorescence colocalization and immunoprecipitation. MAIN RESULTS: The results of this study showed that hypoxia-reoxygenation treatment in cardiomyocytes increased UCP2, myocardial enzyme and myocardial apoptosis and weakened cardiomyocyte viability. We observed increased cardiomyocyte viability and mitochondrial membrane potential, decreased myocardial enzyme and myocardial apoptosis, Inhibition of oxidative stress when UCP2 was overexpressed in cardiomyocytes. It also can Increase ATP and stabilize mitochondrial dynamics. Further studies founded that Sirtuin-3(SIRT3) changed with the expression of UCP2, which was confirmed by fluorescence co-localization and immunoprecipitation. CONCLUSIONS: Our findings revealed that UCP2 and SIRT3 were important targets of anti-myocardial injury by inhibiting cellular oxidative stress and stabilizing mitochondrial dynamics.


Subject(s)
Sirtuin 3 , Animals , Rats , Hypoxia , Mitochondrial Dynamics , Oxidative Stress , Sirtuin 3/genetics , Sirtuin 3/metabolism , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism
10.
Clin Sci (Lond) ; 138(3): 103-115, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38237016

ABSTRACT

High-altitude pulmonary hypertension (HAPH) is a severe and progressive disease that can lead to right heart failure. Intermittent short-duration reoxygenation at high altitude is effective in alleviating HAPH; however, the underlying mechanisms are unclear. In the present study, a simulated 5,000-m hypoxia rat model and hypoxic cultured pulmonary artery smooth muscle cells (PASMCs) were used to evaluate the effect and mechanisms of intermittent short-duration reoxygenation. The results showed that intermittent 3-h/per day reoxygenation (I3) effectively attenuated chronic hypoxia-induced pulmonary hypertension and reduced the content of H2O2 and the expression of NADPH oxidase 4 (NOX4) in lung tissues. In combination with I3, while the NOX inhibitor apocynin did not further alleviate HAPH, the mitochondrial antioxidant MitoQ did. Furthermore, in PASMCs, I3 attenuated hypoxia-induced PASMCs proliferation and reversed the activated HIF-1α/NOX4/PPAR-γ axis under hypoxia. Targeting this axis offset the protective effect of I3 on hypoxia-induced PASMCs proliferation. The present study is novel in revealing a new mechanism for preventing HAPH and provides insights into the optimization of intermittent short-duration reoxygenation.


Subject(s)
Altitude Sickness , Hypertension, Pulmonary , Animals , Rats , Altitude , Cell Proliferation , Cells, Cultured , Hydrogen Peroxide/metabolism , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/prevention & control , Hypertension, Pulmonary/metabolism , Hypoxia/metabolism , Myocytes, Smooth Muscle/metabolism , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , PPAR gamma/metabolism , Pulmonary Artery/metabolism , Signal Transduction
11.
FASEB J ; 37(2): e22788, 2023 02.
Article in English | MEDLINE | ID: mdl-36692424

ABSTRACT

Ischemic stroke is known to cause the accumulation of misfolded proteins and loss of calcium homeostasis, leading to impairment of endoplasmic reticulum (ER) function and activating the unfolded protein response (UPR). PARP16 is an active (ADP-ribosyl)transferase known tail-anchored ER transmembrane protein with a cytosolic catalytic domain. Here, we find PARP16 is highly expressed in ischemic cerebral hemisphere and oxygen-glucose deprivation/reoxygenation (OGD/R)-treated immortalized hippocampal neuronal cell HT22. Using an adeno-associated virus-mediated PARP16 knockdown approach in mice, we find PARP16 knockdown decreases infarct demarcations and has a better neurological outcome after ischemic stroke. Our data indicate PARP16 knockdown decreases ER stress and neuronal death caused by OGD/R, whereas PARP16 overexpression promotes ER stress-mediated cell damage in primary cortical neurons. Furthermore, PARP16 functions mechanistically as ADP-ribosyltransferase to modulate the level of ADP-ribosylation of the corresponding PERK and IRE1α arm of the UPR, and such modifications mediate activation of PERK and IRE1α. Indeed, pharmacological stimulation of the UPR using Brefeldin A partly counteracts PARP16 knockdown-mediated neuronal protection upon OGD/R treatment. In conclusion, PARP16 plays a crucial role in post-ischemic UPR and PARP16 knockdown alleviates brain injury after ischemic stroke. This study demonstrates the potential of the PARP16-PERK/IRE1α axis as a target for neuronal survival in ischemic stroke.


Subject(s)
Brain Ischemia , Ischemic Stroke , Poly(ADP-ribose) Polymerases , Reperfusion Injury , Animals , Mice , Apoptosis , Brain Ischemia/metabolism , Cerebral Infarction/metabolism , Endoplasmic Reticulum Stress , Endoribonucleases/metabolism , Ischemic Stroke/metabolism , Neurons/metabolism , Oxygen/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Reperfusion Injury/metabolism , Unfolded Protein Response
12.
Cell Commun Signal ; 22(1): 121, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38347637

ABSTRACT

OBJECTIVES: To explore whether the gap junction (GJ) composed by connexin32(Cx32) mediated pyroptosis in renal ischemia-reperfusion(I/R) injury via transmitting miR155-3p, with aim to provide new strategies for the prevention and treatment of acute kidney injury (AKI) after renal I/R. METHODS: 8-10 weeks of male C57BL/ 6 wild-type mice and Cx32 knockdown mice were divided into two groups respectively: control group and renal I/R group. MCC950 (50 mg/kg. ip.) was used to inhibit NLRP3 in vivo. Human kidney tubular epithelial cells (HK - 2) and rat kidney tubular epithelial cells (NRK-52E) were divided into high-density group and low-density group, and treated with hypoxia reoxygenation (H/R) to mimic I/R. The siRNA and plasmid of Cx32, mimic and inhibitor of miR155-3p were transfected into HK - 2 cells respectively. Kidney pathological and functional injuries were measured. Western Blot and immunofluorescent staining were used to observe the expression of NLRP3, GSDMD, GSDMD-N, IL - 18, and mature IL-18. The secretion of IL-18 and IL-1ß in serum, kidney tissue and cells supernatant were detected by enzyme-linked immuno sorbent assay (ELISA) kit, and the expression of NLPR3 and miR155-3p were detected by RT-qPCR and fluorescence in situ hybridization (FISH). RESULTS: Tubular pyroptosis were found to promote AKI after I/R in vivo and Cx32-GJ regulated pyroptosis by affecting the expression of miR155-3p after renal I/R injury. In vitro, H/R could lead to pyroptosis in HK-2 and NRK-52E cells. When the GJ channels were not formed, and Cx32 was inhibited or knockdown, the expression of miR155-3p was significantly reduced and the pyroptosis was obviously inhibited, leading to the reduction of injury and the increase of survival rate. Moreover, regulating the level of miR155-3p could affect survival rate and pyroptosis in vitro after H/R. CONCLUSIONS: The GJ channels composed of Cx32 regulated tubular pyroptosis in renal I/R injury by transmitting miR155-3p. Inhibition of Cx32 could reduce the level of miR155-3p further to inhibit pyroptosis, leading to alleviation of renal I/R injury which provided a new strategy for preventing the occurrence of AKI. Video Abstract.


Subject(s)
Acute Kidney Injury , MicroRNAs , Reperfusion Injury , Animals , Humans , Male , Mice , Rats , Acute Kidney Injury/genetics , Gap Junctions/metabolism , Hypoxia , In Situ Hybridization, Fluorescence , Interleukin-18/genetics , Kidney/metabolism , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Reperfusion Injury/metabolism
13.
J Surg Res ; 301: 413-422, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39042975

ABSTRACT

INTRODUCTION: In recent years, a number of studies have demonstrated that hypoxia reoxygenation (HR) induced by ischemia postconditioning (IPC) reduces endothelial barrier dysfunction and inflammation in various models. When HR occurs, the P38 mitogen-activated protein kinase (P38 MAPK) breaks down the endothelial barrier. But no study has clearly clarified the effect of hypoxia postconditioning (HPC) on P38 MAPK in human dermal microvascular endothelial cells. Therefore, we investigated the function of HPC on P38 MAPK during HR in vitro. METHODS: Human dermal microvascular endothelial cells were cultured in a hypoxic incubator for 8 h. Then cells were reperfused for 12 h (reoxygenation) or postconditioned by 5 min of reoxygenation and 5 min of re-hypoxia 3 times followed by 11.5 h reoxygenation. SB203580 was used as an inhibitor of P38 MAPK. Cell counting kit-8 assay kits were employed to detect cell activity. The corresponding levels of IL-6, IL-8 and IL-1ß were examined via Enzyme-Linked ImmunoSorbent Assay. The endothelial barrier was evaluated using fluorescein isothiocyanate-dextran leakage assay. Western blot was used to detect claudin-5, phosphorylation of P38 MAPK (P-P38 MAPK) and P38 MAPK expression. Claudin-5 localization was studied by immunofluorescence. RESULTS: HR induced endothelial barrier hyperpermeability, elevated inflammation levels, and increased the P-P38 MAPK. But HPC reduced cell injury and maintained the integrity of the endothelial barrier while inhibiting P-P38 MAPK and increasing expression of claudin-5. HPC redistributed claudin-5 in a continuous and linear pattern on the cell membrane. CONCLUSIONS: HPC protects against HR induced downregulation and redistribution of claudin-5 by inhibiting P-P38 MAPK.

14.
J Biochem Mol Toxicol ; 38(4): e23685, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38495002

ABSTRACT

Neurodegeneration is linked to the progressive loss of neural function and is associated with several diseases. Hypoxia is a hallmark in many of these diseases, and several therapies have been developed to treat this disease, including gene expression therapies that should be tightly controlled to avoid side effects. Cells experiencing hypoxia undergo a series of physiological responses that are induced by the activation of various transcription factors. Modulation of microRNA (miRNA) expression to alter transcriptional regulation has been demonstrated to be beneficial in treating multiple diseases, and in this study, we therefore explored potential miRNA candidates that could influence hypoxia-induced nerve cell death. Our data suggest that in mouse neuroblasts Neuro-2a cells with hypoxia/reoxygenation (H/R), miR-337-3p is downregulated to increase the expression of Potassium channel tetramerization domain containing 11 (KCTD11) and subsequently promote apoptosis. Here, we demonstrate for the first time that KCTD11 plays a role in the cellular response to hypoxia, and we also provide a possible regulatory mechanism by identifying the axis of miR-337-3p/KCTD11 as a promising candidate modulator of nerve cell survival after H/R exposure.


Subject(s)
MicroRNAs , Neuroblastoma , Animals , Mice , Down-Regulation , Gene Expression Regulation , Hypoxia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neuroblastoma/genetics
15.
BMC Cardiovasc Disord ; 24(1): 236, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705985

ABSTRACT

BACKGROUND: This study was designed to investigate the mechanism by which miR-30a-5p mediates cardiomyocyte apoptosis after acute myocardial infarction (AMI) induced by hypoxia/reoxygenation (H/R). METHODS: Differentially expressed miRNAs were analyzed by RNA high-throughput sequencing in acute myocardial infarction (ST-elevation myocardial infarction) patients versus healthy individuals (controls). The H/R model was used to assess the regulatory mechanism of miRNAs in AMI. Lentivirus-associated vectors were used to overexpress or knock down miR-30a-5p in cellular models. The pathological mechanisms of miR-30a-5p regulating the development of acute myocardial infarction were serially explored by qPCR, bioinformatics, target gene prediction, dual luciferase, enzyme-linked immunosorbent assays (ELISAs) and Western blotting. RESULTS: The results showed that the expression of miR-30a-5p was significantly increased in AMI patients and H9C2 cells. Hypoxia decreased cardiomyocyte survival over time, and reoxygenation further reduced cell survival. Bax and Phosphatase and tensin homolog (PTEN)were suppressed, while Bcl-2 was upregulated. Additionally, miR-30a-5p specifically targeted the PTEN gene. According to the GO and KEGG analyses, miR-30a-5p may participate in apoptosis by interacting with PTEN. The miR-30a-5p mimic decreased the expression of apoptosis-related proteins and the levels of the proinflammatory markers IL-1ß, IL-6, and TNF-α by activating the PTEN/PI3K/Akt signaling pathway. Conversely, anti-miR-30a-5p treatment attenuated these effects. Additionally, silencing PTEN and anti-miR-30a-5p had opposite effects on H/R-induced cell apoptosis. CONCLUSIONS: miR-30a-5p plays a crucial role in cardiomyocyte apoptosis after hypoxia-induced acute myocardial infarction. Our findings provide translational evidence that miR-30a-5p is a novel potential therapeutic target for AMI.


Subject(s)
Apoptosis , Cell Hypoxia , MicroRNAs , Myocytes, Cardiac , PTEN Phosphohydrolase , Signal Transduction , Animals , Female , Humans , Male , Middle Aged , Rats , Case-Control Studies , Cell Line , Gene Expression Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/enzymology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/enzymology , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics
16.
Exp Cell Res ; 426(1): 113552, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36914061

ABSTRACT

It is recognized that the cerebral ischemia/reperfusion (I/R) injury triggers inflammatory activation of microglia and supports microglia-driven neuronal damage. Our previous studies have shown that ginsenoside Rg1 had a significant protective effect on focal cerebral I/R injury in middle cerebral artery occlusion (MCAO) rats. However, the mechanism still needs further clarification. Here, we firstly reported that ginsenoside Rg1 effectively suppressed the inflammatory activation of brain microglia cells under I/R conditions depending on the inhibition of Toll-likereceptor4 (TLR4) proteins. In vivo experiments showed that the ginsenoside Rg1 administration could significantly improve the cognitive function of MCAO rats, and in vitro experimental data showed that ginsenoside Rg1 significantly alleviated neuronal damage via inhibiting the inflammatory response in microglia cells co-cultured under oxygen and glucose deprivation/reoxygenation (OGD/R) condition in gradient dependent. The mechanism study showed that the effect of ginsenoside Rg1 depends on the suppression of TLR4/MyD88/NF-κB and TLR4/TRIF/IRF-3 pathways in microglia cells. In a word, our research shows that ginsenoside Rg1 has great application potential in attenuating the cerebral I/R injury by targeting TLR4 protein in the microglia cells.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Reperfusion Injury , Rats , Animals , Microglia/metabolism , Toll-Like Receptor 4/metabolism , Neuroprotective Agents/pharmacology , Brain Ischemia/drug therapy , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism
17.
Zoolog Sci ; 41(1): 21-31, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38587514

ABSTRACT

Animal growth is blunted in adverse environments where catabolic metabolism dominates; however, when the adversity disappears, stunted animals rapidly catch up to age-equivalent body size. This phenomenon is called catch-up growth, which we observe in various animals. Since growth retardation and catch-up growth are sequential processes, catabolism or stress response molecules may remain active, especially immediately after growth resumes. Sirtuins (Sirt1-7) deacetylate target proteins in a nicotinamide adenine dinucleotide-dependent manner, and these enzymes govern diverse alleys of cellular functions. Here, we investigated the roles of Sirt1 and its close paralog Sirt2 in the hypoxia/reoxygenation-induced catch-up growth model using zebrafish embryos. Temporal blockade of Sirt1/2 significantly reduced the growth rate of the embryos in reoxygenation, but it was not evident in constant normoxia. Subsequent gene knockdown and chemical inhibition experiments demonstrated that Sirt1, but not Sirt2, was required for the catchup growth. Inhibition of Sirt1 significantly reduced the activity of mitogen-activated kinase (Mapk) of embryos in the reoxygenation condition. In addition, co-inhibition of Sirt1- and Igf-signaling did not further reduce the body growth or Mapk activation compared to those of the Igf-signaling-alone-inhibited embryos. Furthermore, in the reoxygenation condition, Sirt1- or Igf-signaling inhibition similarly blunted Mapk activity, especially in anterior tissues and trunk muscle, where the sirt1 expression was evident in the catching-up embryos. These results suggest that the catch-up growth requires Sirt1 action to activate the somatotropic Mapk pathway, likely by modifying the Igf-signaling.


Subject(s)
Mitogens , Zebrafish , Animals , Sirtuin 1/genetics , Signal Transduction , Hypoxia
18.
Biochemistry (Mosc) ; 89(5): 973-986, 2024 May.
Article in English | MEDLINE | ID: mdl-38880656

ABSTRACT

Ischemia/reperfusion (I/R) injury is one of the major causes of cardiovascular disease. Gypenoside A (GP), the main active component of Gynostemma pentaphyllum, alleviates myocardial I/R injury. Circular RNAs (circRNAs) and microRNAs (miRNAs) are involved in the I/R injury. We explored the protective effect of GP on human cardiomyocytes (HCMs) via the circ_0010729/miR-370-3p/RUNX1 axis. Overexpression of circ_0010729 abolished the effects of GP on HMC, such as suppression of apoptosis and increase in cell viability and proliferation. Overexpression of miR-370-3p reversed the effect of circ_0010729 overexpression, resulting in the stimulation of HMC viability and proliferation and inhibition of apoptosis. The knockdown of miR-370-3p suppressed the effects of GP in HCMs. RUNX1 silencing counteracted the effect of miR-370-3p knockdown and maintained GP-induced suppression of apoptosis and stimulation of HMC viability and proliferation. The levels of RUNX1 mRNA and protein were reduced in cells expressing miR-370-3p. In conclusion, this study confirmed that GP alleviated the I/R injury of myocardial cell via the circ_0010729/miR-370-3p/RUNX1 axis.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Gynostemma , MicroRNAs , Myocardial Reperfusion Injury , Myocytes, Cardiac , RNA, Circular , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Apoptosis/drug effects , Cell Survival/drug effects , Cell Proliferation/drug effects , Plant Extracts
19.
Article in English | MEDLINE | ID: mdl-38583741

ABSTRACT

The white shrimp Penaeus (Litopenaeus) vannamei is the most cultivated shrimp worldwide. Compared to other shrimp species, it has higher resistance to adverse conditions. During hypoxia, the shrimp reduces oxygen consumption and adjusts energy metabolism via anaerobic glycolysis, among other strategies. Hexokinase (HK) is the first enzyme of glycolysis and a key regulation point. In mammals and other vertebrates, there are several tissue-specific HK isoforms with differences in expression and enzyme activity. In contrast, crustacean HKs have been relatively little studied. We studied the P. vannamei HK isoforms during hypoxia and reoxygenation. We cloned two HK1 sequences named HK1-long (1455 bp) and HK1-short (1302 bp), and one HK2 (1344 bp). In normoxia, total HK1 expression is higher in hepatopancreas, while HK2 is higher in gills. Severe hypoxia (1 mg/L of DO) after 12 h exposure and 1 h of reoxygenation increased HK1 expression in both organs, but HK2 expression changed differentially. In hepatopancreas, HK2 expression increased in 6 and 12 h of hypoxia but diminished to normoxia levels after reoxygenation. In gills, HK2 expression decreased after 12 h of hypoxia. HK activity increased in hepatopancreas after 12 h hypoxia, opposite to gills. These results indicate that shrimp HK isoforms respond to hypoxia and reoxygenation in a tissue-specific manner. Intracellular glucose levels did not change in any case, showing the shrimp ability to maintain glucose homeostasis during hypoxia.


Subject(s)
Penaeidae , Animals , Penaeidae/metabolism , Hexokinase/genetics , Hexokinase/metabolism , Amino Acid Sequence , Hypoxia/metabolism , Oxygen/metabolism , Protein Isoforms/metabolism , Glucose/metabolism , Hepatopancreas/metabolism , Mammals/metabolism
20.
J Integr Neurosci ; 23(1): 14, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38287843

ABSTRACT

BACKGROUND: Heliox shows protective effects against acute focal ischemia-reperfusion injury in the brain. However, further research is needed to unveil the intricate molecular mechanisms involved. Determining how heliox affects ferroptosis caused by oxygen-glucose deprivation/reoxygenation (OGD/R) in SH-SY5Y cells as well as the underlying mechanism was the goal of the current work. METHODS: With the use of 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA), JC-1, and methyl thiazolyl tetrazolium, we assessed the survival, reactive oxygen species (ROS), and mitochondrial membrane potential in SH-SY5Y cells after they had been exposed to OGD/R and heliox. The expression of molecules associated with ferroptosis and the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway was analyzed using quantitative polymerase chain reaction (PCR) and immunoblotting, while malondialdehyde (MDA), oxidized glutathione disulfide (GSSG), ferrous ion (Fe2+), and reduced glutathione (GSH) levels were evaluated using biochemical kits. RESULTS: OGD/R treatment reduced the GSH to GSSG ratio; the potential of the mitochondrial membrane; the expression of the proteins GSH, SLC7A11, and glutathione peroxidase 4 (GPX4); and the ability of SH-SY5Y cells to survive. In contrast, OGD/R treatment increased the expression of cyclooxygenase-2 (COX2), ACSL4, and ferritin heavy chain 1 (FTH1) proteins, the production of MDA and GSSG, and the levels of ROS and Fe2+. However, heliox effectively mitigated all these OGD/R-induced effects. Furthermore, in OGD/R-treated SH-SY5Y cells, heliox administration stimulated the PI3K/AKT pathway while suppressing the nuclear factor-κB (NF-κB) pathway. When MK-2206, an AKT inhibitor, was applied concurrently to the cells, these outcomes were reversed. CONCLUSIONS: Heliox prevents OGD/R from causing ferroptosis in SH-SY5Y cells by activating the PI3K/AKT pathway. This suggests a promising therapeutic potential for heliox use in the management of ischemia/reperfusion injury.


Subject(s)
Ferroptosis , Helium , Neuroblastoma , Reperfusion Injury , Humans , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Glucose/metabolism , Glutathione Disulfide/therapeutic use , Oxygen/metabolism , Reperfusion Injury/metabolism , Reperfusion
SELECTION OF CITATIONS
SEARCH DETAIL