Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.677
Filter
Add more filters

Publication year range
1.
Curr Issues Mol Biol ; 46(6): 5551-5560, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38921003

ABSTRACT

Extensive research on medicinal herbs for bioactive compounds proposes that they could replace synthetic drugs, reducing side effects and economic burdens. Especially, interest in the synergistic benefits of natural products is increasing, implying that their combined use may enhance therapeutic effectiveness. This study aimed to explore the synergetic effects of turmeric (Curcuma longa L.) and black pepper (Piper nigrum L.) extract on lung normal (MRC-5) and cancer (A549 and NCI-H292) cell lines. The turmeric extract (TM) only affected the lung cancer cell lines, but it had no impact on the MRC-5 cell line. On the other hand, the black pepper extract (BP) did not cause any damage to either the lung normal or cancer cell lines, even at concentrations of up to 400 µg/mL. Response surface methodology was used to predict the ideal synergistic concentrations (EC50) of TM and BP, which were found to be 48.5 and 241.7 µg/mL, respectively. Notably, the selected condition resulted in higher cytotoxicity compared to the exposure to TM alone, indicating a potent synergetic effect. The rate of curcumin degradation under this combined treatment was significantly decreased to 49.72 ± 5.00 nmol/h/µg for A549 cells and 47.53 ± 4.78 nmol/h/µg for NCI-H292 cells, respectively, as compared to curcumin alone. Taken together, this study confirmed the potent synergistic effect of TM and BP on lung cancer cell lines. Further research is required to identify their specific synergetic mechanisms. Our findings provide crucial foundational data on the synergistic effects of TM and BP.

2.
Biochem Biophys Res Commun ; 733: 150704, 2024 Nov 12.
Article in English | MEDLINE | ID: mdl-39293335

ABSTRACT

Botryococcus braunii is a colonial alga recognized for its slow growth but high hydrocarbon accumulation. Although using genetic engineering to increase the growth rate and hydrocarbon yield of B. braunii is desirable, the presence of an extracellular matrix (ECM) significantly hinders the emergence of a homogeneous colony from a single DNA-transformed cell. Previously, we developed a method to isolate single cells without ECM from colonies. However, following the isolation of single cells, several months are required to regenerate colonies with a sufficient cell mass for subsequent analysis. To shorten the colony regeneration period, we investigated basal media and medium components, along with growth-promoting additives, in a series of single-factor experiments and optimized the concentrations of the medium constituents via response surface methodology (RSM). The results of the single-factor experiments revealed that the nitrogen source (a mixture of NaNO3 and NH4NO3), 1-naphthylacetic acid (NAA) and Fe(III)-citrate significantly increased the growth of B. braunii single cells into colonies. The optimal medium composition identified by RSM included 151.6 mg/L nitrogen source, 2.419 mg/L NAA and 15.3 mg/L Fe(III)-citrate. Verification experiments showed that the optimized medium resulted in a 1.75-fold increase in colony size compared with that of colonies grown in nonoptimized AF6 medium. This is the first report of the optimal medium composition for the regeneration of B. braunii colonies from single cells.


Subject(s)
Chlorophyta , Culture Media , Chlorophyta/growth & development , Chlorophyta/metabolism , Chlorophyta/cytology , Culture Media/chemistry , Culture Media/pharmacology , Nitrogen/metabolism , Regeneration/drug effects
3.
BMC Biotechnol ; 24(1): 49, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010004

ABSTRACT

This study used conservative one variable-at-a-time study and statistical surface response methods to increase the yields of an extracellular thermostable protease secreted by a newly identified thermophilic Bacillus subtilis BSP strain. Using conventional optimization techniques, physical parameters in submerged fermentation were adjusted at the shake flask level to reach 184 U/mL. These physicochemical parameters were further optimized by statistical surface response methodology using Box Behnken design, and the protease yield increased to 295 U/mL. The protease was purified and characterized biochemically. Both Ca2+ and Fe2+ increased the activity of the 36 kDa protease enzyme. Based on its strong inhibition by ethylenediaminetetracetate (EDTA), the enzyme was confirmed to be a metalloprotease. The protease was also resistant to various organic solvents (benzene, ethanol, methanol), surfactants (Triton X-100), sodium dodecyl sulfate (SDS), Tween 20, Tween-80 and oxidants hydrogen per oxide (H2O2). Characteristics, such as tolerance to high SDS and H2O2 concentrations, indicate that this protease has potential applications in the pharmaceutical and detergent industries.


Subject(s)
Bacillus subtilis , Enzyme Stability , Bacillus subtilis/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Hydrogen Peroxide/metabolism , Fermentation , Peptide Hydrolases/metabolism , Peptide Hydrolases/chemistry , Hydrogen-Ion Concentration , Solvents/chemistry , Temperature
4.
BMC Plant Biol ; 24(1): 527, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38858674

ABSTRACT

BACKGROUND: Angelica Gigas (Purple parsnip) is an important medicinal plant that is cultivated and utilized in Korea, Japan, and China. It contains bioactive substances especially coumarins with anti-inflammatory, anti-platelet aggregation, anti-cancer, anti-diabetic, antimicrobial, anti-obesity, anti-oxidant, immunomodulatory, and neuroprotective properties. This medicinal crop can be genetically improved, and the metabolites can be obtained by embryonic stem cells. In this context, we established the protoplast-to-plant regeneration methodology in Angelica gigas. RESULTS: In the present investigation, we isolated the protoplast from the embryogenic callus by applying methods that we have developed earlier and established protoplast cultures using Murashige and Skoog (MS) liquid medium and by embedding the protoplast in thin alginate layer (TAL) methods. We supplemented the culture medium with growth regulators namely 2,4-dichlorophenoxyaceticacid (2,4-D, 0, 0.75, 1.5 mg L- 1), kinetin (KN, 0, 0.5, and 1.0 mg L- 1) and phytosulfokine (PSK, 0, 50, 100 nM) to induce protoplast division, microcolony formation, and embryogenic callus regeneration. We applied central composite design (CCD) and response surface methodology (RSM) for the optimization of 2,4-D, KN, and PSK levels during protoplast division, micro-callus formation, and induction of embryogenic callus stages. The results revealed that 0.04 mg L- 1 2,4-D + 0.5 mg L- 1 KN + 2 nM PSK, 0.5 mg L- 1 2,4-D + 0.9 mg L- 1 KN and 90 nM PSK, and 1.5 mg L- 1 2,4-D and 1 mg L- 1 KN were optimum for protoplast division, micro-callus formation and induction embryogenic callus. MS basal semi-solid medium without growth regulators was good for the development of embryos and plant regeneration. CONCLUSIONS: This study demonstrated successful protoplast culture, protoplast division, micro-callus formation, induction embryogenic callus, somatic embryogenesis, and plant regeneration in A. gigas. The methodologies developed here are quite useful for the genetic improvement of this important medicinal plant.


Subject(s)
Angelica , Plant Growth Regulators , Plant Somatic Embryogenesis Techniques , Protoplasts , Angelica/embryology , Plant Growth Regulators/pharmacology , Plant Somatic Embryogenesis Techniques/methods , Protoplasts/drug effects , Cell Division/drug effects
5.
Small ; 20(25): e2306054, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38299478

ABSTRACT

Nanosized drug crystals have been reported with enhanced apparent solubility, bioavailability, and therapeutic efficacy compared to microcrystal materials, which are not suitable for parenteral administration. However, nanocrystal design and development by bottom-up approaches are challenging, especially considering the non-standardized process parameters in the injection step. This work aims to present a systematic step-by-step approach through Quality-by-Design (QbD) and Design of Experiments (DoE) for synthesizing drug nanocrystals by a semi-automated nanoprecipitation method. Curcumin is used as a drug model due to its well-known poor water solubility (0.6 µg mL-1, 25 °C). Formal and informal risk assessment tools allow identifying the critical factors. A fractional factorial 24-1 screening design evaluates their impact on the average size and polydispersity of nanocrystals. The optimization of significant factors is done by a Central Composite Design. This response surface methodology supports the rational design of the nanocrystals, identifying and exploring the design space. The proposed joint approach leads to a reproducible, robust, and stable nanocrystalline preparation of 316 nm with a PdI of 0.217 in compliance with the quality profile. An orthogonal approach for particle size and polydispersity characterization allows discarding the formation of aggregates. Overall, the synergy between advanced data analysis and semi-automated standardized nanocrystallization of drugs is highlighted.


Subject(s)
Nanoparticles , Nanoparticles/chemistry , Pharmaceutical Preparations/chemistry , Particle Size , Automation , Crystallization , Curcumin/chemistry
6.
IUBMB Life ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283051

ABSTRACT

This current investigation explored the thermal conversion process of castor wood into biochar, which was subsequently harnessed for removing naproxen from pharmaceutical industrial effluent via adsorption. Surface composition analyses conducted through scanning electron microscopy-energy dispersive X-ray, laser-induced breakdown spectroscopy, and Fourier-transform infrared studies unveiled the presence of nano MgO particles within the adsorbent material. Employing optimization techniques such as response surface methodology facilitated a refined approach to batch study. The optimized conditions for batch naproxen sodium (NPX) adsorption on nano-MgO-modified biochar were identified as pH 4, 1.5 g/L adsorbent dosage, and a 120-min contact time maintaining a constant NPX concentration of 10 mg/L. The adsorption capacity was calculated to be 123.34 mg/g for a nano-magnesium oxide-modified castor wood biochar (modified biochar) and 99.874 mg/g for pristine castor wood biochar (pristine biochar). Fenton's reagents comprising 15 mM of FeSO4 (7H2O) and 25 mM of H2O2 have been scrutinized under conditions of pH 3.0, a reaction time of 30 min, a temperature of 30°C, and stirring at 120 rpm, followed by batch adsorption treatment. The COD, NH3-N, NO3 -, PO4 3-, and NPX removal percentages was found to be 90%, 87%, 79%, 80%, and 90%, respectively. Thus nano MgO-modified biochar holds promise of treatment of pharmaceutical effluent.

7.
BMC Microbiol ; 24(1): 120, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582825

ABSTRACT

BACKGROUND: Chrysomycin A (CA) is a promising antibiotic for treatment of Gram-positive bacterial infections and cancers. In order to enhance CA yield, optimization of fermentation conditions and medium components was carried out on strain Streptomyces sp. 891-B6, an UV-induced mutant with improved CA titer compared with its wide-type marine strain 891. RESULTS: Using one-way experiment, the optimal fermentation conditions for CA production in 1-L shake flask were obtained as follows: 12 days of fermentation time, 5 days of seed age, 5% of inoculum volume ratio, 200 mL of loading volume and 6.5 of initial pH. By response surface methodology, the optimal medium components determined as glucose (39.283 g/L), corn starch (20.662 g/L), soybean meal (15.480 g/L) and CaCO3 (2.000 g/L). CONCLUSION: Validation tests showed that the maximum yield of CA reached 1601.9 ± 56.7 mg/L, which was a 60% increase compared to the initial yield (952.3 ± 53.2 mg/L). These results provided an important basis for scale-up production of CA by strain 891-B6.


Subject(s)
Streptomyces , Fermentation , Streptomyces/genetics , Aminoglycosides , Anti-Bacterial Agents , Culture Media
8.
Cancer Invest ; 42(4): 319-332, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38695671

ABSTRACT

Glioblastoma multiforme (GBM), is a frequent class of malignant brain tumors. Epigenetic therapy, especially with synergistic combinations is highly paid attention for aggressive solid tumors like GBM. Here, RSM optimization has been used to increase the efficient arrest of U87 and U251 cell lines due to synergistic effects. Cell lines were treated with SAHA, 5-Azacytidine, GSK-126, and PTC-209 individually and then RSM was used to find most effective combinations. Results showed that optimized combinations significantly reduce cell survival and induce cell cycle arrest and apoptosis in both cell lines. Expression of cyclin B1 and cyclin D1 were decreased while caspase3 increased expression.


Subject(s)
Apoptosis , Drug Synergism , Epigenesis, Genetic , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Cell Line, Tumor , Apoptosis/drug effects , Epigenesis, Genetic/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Azacitidine/pharmacology , Azacitidine/administration & dosage , Cell Survival/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Cycle Checkpoints/drug effects , Vorinostat/pharmacology , Vorinostat/administration & dosage , Cell Proliferation/drug effects , Cyclin D1/genetics , Cyclin D1/metabolism
9.
Biopolymers ; 115(5): e23585, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38847141

ABSTRACT

The pollution caused by petroleum-derived plastic materials has become a major environmental problem that has encouraged the development of new compostable and environmentally friendly materials for food packaging based on biomodified polymers with household residues. This study aims to design, synthesize, and characterize a biobased polymeric microstructure film from polyvinyl alcohol and chitosan reinforced with holocellulose from spent coffee grounds for food-sustainable packaging. Chemical isolation with a chlorite-based solution was performed to obtain the reinforced holocellulose from the spent coffee ground, and the solvent casting method was used to obtain the films to study. Physicochemical and microscopic characterizations were conducted to identify and select the best formulations using a simplex-centroid design analysis. The response surface methodology results indicate that the new packaging material obtained with equal amounts of polymers and reinforced material (1:1:1) possesses the appropriate barrier properties and microstructural character to prevent water attack and hydrophobic behavior and thus could be used as an alternative for food packaging materials.


Subject(s)
Chitosan , Coffee , Food Packaging , Polyvinyl Alcohol , Food Packaging/methods , Coffee/chemistry , Chitosan/chemistry , Polyvinyl Alcohol/chemistry , Cellulose/chemistry , Biopolymers/chemistry , Hydrophobic and Hydrophilic Interactions
10.
Biopolymers ; : e23629, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39319745

ABSTRACT

Triply periodic minimal surface (TPMS) scaffolds have gained attention in additive manufacturing due to their unique porous structures, which are useful in biomedical applications. Unlike metallic implants that can cause stress shielding, polymeric scaffolds offer a safer alternative. This study is focused on enhancing the compressive strength of additive-manufactured polylactic acid (PLA) scaffolds with a diamond structure. The response surface methodology (RSM)-based experimental design was developed to study the influence of printing parameters. The fused deposition modeling (FDM) process parameters were optimized, achieving a compressive strength of 56.2 MPa. Subsequently, the scaffolds were fabricated at optimized parameters and underwent ultrasonic-assisted polydopamine coating. With the utilization of the RSM approach, the study examined the effects of ultrasonic vibration power, coating solution concentration, and submersion time on compressive strength. The optimal coating conditions led to a maximum compressive strength of 92.77 MPa-a 65.1% improvement over the uncoated scaffold. This enhancement is attributed to the scaffold's porous structure, which enables uniform coating deposition. Energy-dispersive x-ray spectroscopy confirmed the successful polydopamine coating, with 10.64 wt% nitrogen content. These findings demonstrate the potential of ultrasonic-assisted coating in improving the mechanical properties of PLA scaffolds, making them suitable for biomedical applications.

11.
Microb Cell Fact ; 23(1): 236, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192338

ABSTRACT

INTRODUCTION: With rapid elevation in population, urbanization and industrialization, the environment is exposed to uncontrolled discharge of effluents filled with broad-spectrum toxicity, persistence and long-distance transmission anthropogenic compounds, among them heavy metals. That put our ecosystem on the verge or at a stake of drastic ecological deterioration, which eventually adversely influence on public health. Therefore, this study employed marine fungal strain Rhodotorula sp. MZ312369 for Zn2+ and Cr6+ remediation using the promising calcium carbonate (CaCO3) bioprecipitation technique, for the first time. RESULTS: Initially, Plackett-Burman design followed by central composite design were applied to optimize carbonic anhydrase enzyme (CA), which succeeded in enhancing its activity to 154 U/mL with 1.8-fold increase comparing to the basal conditions. The potentiality of our biofactory in remediating Zn2+ (50 ppm) and Cr6+ (400 ppm) was monitored through dynamic study of several parameters including microbial count, CA activity, CaCO3 weight, pH fluctuation, changing the soluble concentrations of Ca2+ along with Zn2+ and Cr6+. The results revealed that 9.23 × 107 ± 2.1 × 106 CFU/mL and 10.88 × 107 ± 2.5 × 106 CFU/mL of cells exhibited their maximum CA activity by 124.84 ± 1.24 and 140 ± 2.5 U/mL at 132 h for Zn2+ and Cr6+, respectively. Simultaneously, with pH increase to 9.5 ± 0.2, a complete removal for both metals was observed at 168 h; Ca2+ removal percentages recorded 78.99% and 85.06% for Zn2+ and Cr6+ remediating experiments, respectively. Further, the identity, elemental composition, functional structure and morphology of bioremediated precipitates were also examined via mineralogical analysis. EDX pattern showed the typical signals of C, O and Ca accompanying with Zn2+ and Cr6+ peaks. SEM micrographs depicted spindle, spherical and cubic shape bioliths with size range of 1.3 ± 0.5-23.7 ± 3.1 µm. Meanwhile, XRD difractigrams unveiled the prevalence of vaterite phase in remediated samples. Besides, FTIR profiles emphasized the presence of vaterite spectral peaks along with metals wavenumbers. CONCLUSION: CA enzyme mediated Zn2+ and Cr6+ immobilization and encapsulation inside potent vaterite trap through microbial biomineralization process, which deemed as surrogate ecofriendly solution to mitigate heavy metals toxicity and restrict their mobility in soil and wastewater.


Subject(s)
Biodegradation, Environmental , Calcium Carbonate , Carbonic Anhydrases , Chromium , Rhodotorula , Zinc , Zinc/metabolism , Carbonic Anhydrases/metabolism , Chromium/metabolism , Calcium Carbonate/metabolism , Calcium Carbonate/chemistry , Rhodotorula/enzymology , Hydrogen-Ion Concentration , Water Pollutants, Chemical/metabolism
12.
Anal Bioanal Chem ; 416(22): 4999-5012, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39093417

ABSTRACT

Oat products have gained widespread recognition as a health food due to their rich and balanced nutritional profile and convenience. However, the unique matrix composition of oats, which differs significantly from other cereals, presents specific challenges for mycotoxin analysis. This study presents an ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method enhanced with an innovative egg white gel pretreatment for the simultaneous analysis of 13 regulated and unregulated trichothecenes in oats. The method demonstrated excellent performance with high accuracy (> 87.5%), repeatability (< 5.7%), and reproducibility (< 8.1%). Analysis of 100 commercial oat products revealed a concerning detection rate (78%) for at least one of the 11 trichothecenes investigated. Notably, deoxynivalenol, exceeding the standard limit in 2% of samples, exhibited the highest detection rate (62%). Additionally, concerning co-occurrence patterns and positive correlations were observed, highlighting potential synergistic effects. The first-time detection of unregulated mycotoxins (T-2 triol, 4,15-diacetoxyscirpenol, 15-acetoxyscirpenol, and neosolaniol) underscores the need for comprehensive monitoring. This method, while developed for oats, shows potential for broader application to other cereals, though further investigation and confirmation are necessary. These findings suggest a potentially underestimated risk of trichothecenes in oats, necessitating continuous monitoring to ensure consumer safety.


Subject(s)
Avena , Food Contamination , Limit of Detection , Tandem Mass Spectrometry , Trichothecenes , Avena/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Trichothecenes/analysis , Food Contamination/analysis , Gels/chemistry , Reproducibility of Results
13.
J Appl Microbiol ; 135(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38308506

ABSTRACT

An efficient microbial conversion for simultaneous synthesis of multiple high-value compounds, such as biosurfactants and enzymes, is one of the most promising aspects for an economical bioprocess leading to a marked reduction in production cost. Although biosurfactant and enzyme production separately have been much explored, there are limited reports on the predictions and optimization studies on simultaneous production of biosurfactants and other industrially important enzymes, including lipase, protease, and amylase. Enzymes are suited for an integrated production process with biosurfactants as multiple common industrial processes and applications are catalysed by these molecules. However, the complexity in microbial metabolism complicates the production process. This study details the work done on biosurfactant and enzyme co-production and explores the application and scope of various statistical tools and methodologies in this area of research. The use of advanced computational tools is yet to be explored for the optimization of downstream strategies in the co-production process. Given the complexity of the co-production process and with various new methodologies based on artificial intelligence (AI) being invented, the scope of AI in shaping the biosurfactant-enzyme co-production process is immense and would lead to not only efficient and rapid optimization, but economical extraction of multiple biomolecules as well.


Subject(s)
Artificial Intelligence , Surface-Active Agents , Surface-Active Agents/metabolism , Fermentation , Lipase/metabolism , Endopeptidases
14.
Environ Res ; 242: 117762, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38029812

ABSTRACT

The objective of this research is to conduct a comprehensive characterization of chitosan while also improving its attributes by crosslinking with malonic acid, with a focus on its efficacy in removing hexavalent chromium, arsenite and fluoride ions. Crosslinking chitosan in 1:0.5 mass ratio forming a film led to substantial enhancement in confiscation of these target pollutants. The characterization of the adsorbent involved several techniques, including FT-IR, TGA-DSC, SEM-EDX, XRD, and BET surface area analysis. In batch adsorption experiments, Chitosan-malonic acid (CMA) was employed to remove CrVI, AsIII and F- from aqueous solutions. These experiments were conducted while varying conditions such as pH, dosage, concentration, temperature, and time. Through the implementation of response surface methodology (RSM), parameters were optimized, resulting in over 95% removal of CrVI, AsIII and F- ions. The isotherm and kinetics data demonstrated a good fit with the Langmuir isotherm model and pseudo second-order kinetics, respectively. According to the Langmuir isotherm, the maximum adsorption capacities on CMA for CrVI, AsIII and F- were determined to be 687.05 mg g-1, 26.72 mg g-1 and 51.38 mg g-1 respectively under optimum pH of 4.0, 7.0 and 5.0 respectively under ambient temperature of 303 K. Thermodynamic analysis indicated that the adsorption process was spontaneous and driven by enthalpy. The regenerability of the adsorbent was validated through five adsorption-desorption cycles, signifying its reusability. An assessment of the adsorbent's sustainability indicated an eco-friendly synthesis, as reflected by the low E-factor value of 0.0028.


Subject(s)
Chitosan , Malonates , Water Pollutants, Chemical , Water Purification , Chitosan/chemistry , Spectroscopy, Fourier Transform Infrared , Adsorption , Water Pollutants, Chemical/chemistry , Water Purification/methods , Thermodynamics , Chromium/chemistry , Kinetics , Ions , Hydrogen-Ion Concentration
15.
Environ Res ; 261: 119698, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39074773

ABSTRACT

One of the few elements that can have negative health impacts in both conditions, when consumed in excess or insufficiency is fluoride. In current study, aluminium magnetite alginate composite (AMA) was fabricated and applied using batch adsorption of fluoride as well as by using statistical modelling. Heterogeneous surface as revealed from scanning electron micrograph, thermal stability shown by thermal studies, high surface area of 29.77 m2 g-1, pore volume 0.1987 cm3 g-1 with mesoporous structure having average pore radius of 133 Å shown by BET analysis, fare degree of magnetization from VSM analysis were the important features of this material. Screening experiments and batch trials were carried out to obtain optimum working conditions. pH of 3.0, dosage of 50 mg, interaction period of 60 min and concentration of 50 mg L-1 depicted maximum defluoridation efficacy of about 94%. The adsorption capacity was found to be 60.08 mg g-1 in accordance with Langmuir adsorption isotherm, while pseudo second order kinetics was followed. Overall effects of various factors on sorption process were optimized using response surface methodology (RSM). Regeneration potential of AMA has been demonstrated for 10 adsorption-desorption cycles, showing more than 60% efficiency in tenth cycle. The AMA composite shows E-factor value 0.004 depicting it is sustainable in environment. In short, this novel composite showed excellent morphological, magnetic, functional properties that led to enhanced adsorption efficiency in short span of time that can be regenerated and reused in multiple cycles.


Subject(s)
Alginates , Aluminum , Ferrosoferric Oxide , Fluorides , Water Pollutants, Chemical , Water Purification , Alginates/chemistry , Fluorides/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Water Purification/methods , Aluminum/chemistry , Ferrosoferric Oxide/chemistry , Kinetics , Porosity
16.
Environ Res ; 241: 117657, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37980988

ABSTRACT

In this study, the manganese oxide/biochar composites (Mn@BC) were synthesized from Phytolacca acinosa Roxb. The Mn@BC was analyzed via techniques of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction analysis (XRD). The results show that MnOx is successfully loaded on the surface of BC, and the load of MnOx can increase the number of surface functional groups of BC. X-ray photoelectron spectroscopy (XPS) shows that MnOx loaded on BC mainly exists in three valence forms: Mn(Ⅱ), Mn(Ⅲ), and Mn(Ⅳ). The ability of Mn@BC to activate periodate (PI) was studied by simulating the degradation of methylene blue (MB) dye. The degradation experiment results showed that the MB removal rate by the Mn@BC/PI system reached 97.4% within 30 min. The quenching experiment and electron paramagnetic resonance (EPR) analysis confirmed that Mn@BC can activate PI to produce iodate (IO3•), singlet oxygen (1O2), and hydroxyl radical (•OH), which can degrade MB during the reaction. Response surface methodology (RSM) based on Box-Behnken Design (BBD) was used to determine the interaction between pH, Mn@BC and PI concentration in the Mn@BC/PI system, and the optimum technological parameters were determined. When pH = 5.4, Mn@BC concentration 0.56 mg/L, PI concentration 1.1 mmol/L, MB removal rate can reach 98.05%. The cyclic experiments show that Mn@BC can be reused. After four consecutive runs, the removal rate of MB by the Mn@BC/PI system is still 82%, and the Mn@BC/PI system also shows high performance in treating MB in actual water bodies and degrading other pollutants. This study provides a practical method for degrading dyes in natural sewage.


Subject(s)
Manganese , Water Pollutants, Chemical , Manganese/analysis , Methylene Blue/analysis , Water Pollutants, Chemical/analysis , Adsorption
17.
Environ Res ; 242: 117741, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38007075

ABSTRACT

Several energy-related strategies and scenarios have been suggested to address concerns about rising global temperatures. In addition to using renewable energy, the improvement in energy efficiency of conventional systems is also in focus. Policies are already in place in many countries, including India, to address the energy needs of rural and small-scale enterprises by gasifying locally available, diverse agricultural leftovers. Although rice husk and groundnut shell are two commonly used agricultural leftovers in the southern part of India, their appropriate blending must be studied to improve their conversion efficiency in co-gasification. Therefore, the primary objective of this research is to construct a statistical model utilizing response surface methodology (RSM) to analyze the thermochemical co-gasification of the aforementioned biomass materials. Since RSM can predict optimum performance with limited experimental data, this could contribute to the identification of the performance and operating parameters of an open-core gasifier. The model predicts that the mixture containing 20% rice husk and working at an ER of 0.25 and a reduction zone inlet temperature of 879.9 °C will be CO-23.53%, H2-13.97%, and CH4-3.56%. In addition, the lower heating value and gas yield can be as high as 6.17 MJ/Nm3 and 2.369 m3/kg, respectively. This outcome can contribute to the effective utilization of biomass for energy supply in rural areas. However, the economic parameters must be analyzed to implement the same in any region.


Subject(s)
Oryza , Gases , Temperature , Biomass , India
18.
Environ Res ; 251(Pt 2): 118714, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38518916

ABSTRACT

Disposal and recycling of heavy metal-enriched biomass is the key to measure the success of phytoremediation. This study employed innovative approach to use Aspergillus niger (A. niger) for the treatment of Cd-contaminated Helianthus annuus L. (sunflower) stalk after phytoremediation. Single-factor results showed that the removal of Cd at an initial pH of 3 was superior to sucrose and inoculation amount. 67.67% of Cd was removed by A. niger leaching system after 11 days based on response surface methodology optimum conditions (sucrose: 76.266 g L-1; inoculation amount: 10%; initial pH: 3), while the concentrations of nitrogen, phosphorus and potassium (N, P and K) of sunflower stalk were unaffected. While physicochemical pretreatment effectively enhanced the bioleaching efficiency, it also resulted in significant loss of P and K elements, thereby reducing the value of biomass for recycling and utilization. Therefore, the direct A. niger leaching method without pretreatment is more advantageous for the safe treatment and recycling of Cd-contaminated sunflower stalks.


Subject(s)
Aspergillus niger , Biodegradation, Environmental , Cadmium , Helianthus , Helianthus/metabolism , Aspergillus niger/metabolism , Cadmium/metabolism , Soil Pollutants/metabolism , Biomass
19.
Environ Res ; 252(Pt 1): 118764, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38527722

ABSTRACT

The primary aim of this research is to comprehensively assess the applicability of chitosan biopolymer towards water treatment application and to enhance its adsorption capacity towards Remazol brilliant blue R-19 dye. This has been achieved through physical modification to obtain the material in hydrogel form and chemical modification by crosslinking it with barbituric acid. The characterization of the resulting Chitosan-barbituric acid hydrogel (CBH) was carried out using various analytical techniques such as SEM-EDX, FT-IR, TGA-DTA, XRD, and BET. CBH was employed as the adsorbent to eliminate R-19 dye from aqueous media. Utilizing response surface methodology (RSM), the parameters were fine-tuned, leading to the achievement of more than a 95% removal for R-19 dye. The adsorption behavior closely adhered to the Langmuir isotherm and pseudo-second-order kinetics. An interesting observation indicated that the rise in temperature leads to rise in adsorption capacity of CBH. The maximum adsorption capacities evaluated at 301.15 K, 313.15 K, 318.15 K, and 323.15 K were 566.6 mg g-1, 624.7 mg g-1, 671.3 mg g-1, and 713.5 mg g-1 respectively, in accordance with the Langmuir isotherm model. Examining the thermodynamics of the adsorption process revealed its spontaneous nature (ΔG = -21.14 to -27.09 kJ mol-1) across the entire temperature range. Furthermore, the assessment of the isosteric heat of adsorption (ΔHads) was conducted using the Clausius-Clapeyron equation, with results indicating an increase in ΔHads from 1.85 to 2.16 kJ mol-1 with temperature rise from 301.15 K to 323.15 K due to augmented surface loading. This suggested the existence of lateral interactions between the adsorbed dye molecules. The potential of adsorbent for regeneration was investigated, demonstrating the ability to reuse the material. Sustainability parameter calculated for synthesis process reflected a notably low E-factor value of 0.32 demonstrated the synthesis is environment friendly.


Subject(s)
Chitosan , Water Pollutants, Chemical , Chitosan/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Hydrogels/chemistry , Anthraquinones/chemistry , Kinetics , Barbiturates/chemistry , Water Purification/methods , Coloring Agents/chemistry
20.
Environ Res ; 245: 117972, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38141913

ABSTRACT

Metal-organic framework (MOF)--based composites have received significant attention in a variety of applications, including pollutant adsorption processes. The current investigation was designed to model, forecast, and optimize heavy metal (Cu2+) removal from wastewater using a MOF nanocomposite. This work has been modeled by response surface methodology (RSM) and artificial neural network (ANN) algorithms. In addition, the optimization of the mentioned factors has been performed through the RSM method to find the optimal conditions. The findings show that RSM and ANN can accurately forecast the adsorption process's the Cu2+ removal efficiency (RE). The maximum values of RE are achieved at the highest value of time (150 min), the highest value of adsorbent dosage (0.008 g), and the highest value of pH (=6). The R2 values obtained were 0.9995, 0.9992, and 0.9996 for ANN modeling of adsorption capacity based on different adsorbent dosages, Cu2+ solution pHs, and different ion concentrations, respectively. The ANN demonstrated a high level of accuracy in predicting the local minima of the graph. In addition, the RSM optimization results showed that the optimum mode for RE occurred at an adsorbent dosage value of 0.007 g and a time value of 144.229 min.


Subject(s)
Metal-Organic Frameworks , Metals, Heavy , Water Pollutants, Chemical , Wastewater , Neural Networks, Computer , Algorithms , Adsorption , Kinetics , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL