Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Acta Crystallogr C Struct Chem ; 80(Pt 10): 612-619, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39226422

ABSTRACT

In this study, we report the results of continuous rotation electron diffraction studies of single DyPO4·nH2O (rhabdophane) nanocrystals. The diffraction patterns can be fit to a trigonal lattice (P3121) with lattice parameters a = 7.019 (5) and c = 6.417 (5) Å. However, there is also a set of diffuse background scattering features present that are associated with a disordered superstructure that is double these lattice parameters and fits with an arrangement of water molecules present in the structure pore. Pair distribution function (PDF) maps based on the diffuse background allowed the extent of the water correlation to be estimated, with 2-3 nm correlation along the c axis and ∼5 nm along the a/b axis.

2.
Environ Sci Pollut Res Int ; 28(44): 62662-62676, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34215980

ABSTRACT

In this study, Fe-La binary (hydr)oxides were prepared by a co-precipitation method for phosphate removal. Various techniques, including secondary electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), powder X-ray diffraction (p-XRD), and Brunauer-Emmett-Teller (BET) surface area analysis, were employed to characterize the synthesized Fe-La binary (hydr)oxides. Batch experiments indicated that the performance of phosphate removal by Fe-La binary (hydr)oxides was excellent and increased with increasing the concentrations of La. The kinetics study showed that the adsorption was rapid and described better by the pseudo-second-order equation. The maximum adsorption capacities of Fe/La 3:1, Fe/La 1:1, and Fe/La 1:3 binary (hydr)oxides at pH 4.0 calculated by Langmuir model were 49.02, 69.44, and 136.99 mg/g, respectively. The uptake of phosphate was highly affected by solution pH and significantly reduced with the increase of pH value. The analyses of p-XRD, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) suggested that the predominant mechanisms of phosphate removal involved surface hydroxyl exchange reactions and co-precipitation of released La3+ and phosphate ions, which resulted into the formation of amorphous phase of rhabdophane (LaPO4·0.5H2O). The results show great potential for the application on the treatment of phosphate decontamination for their high efficiency of phosphate removal.


Subject(s)
Oxides , Water Pollutants, Chemical , Adsorption , Hydrogen-Ion Concentration , Kinetics , Phosphates , Spectroscopy, Fourier Transform Infrared
3.
Gels ; 3(2)2017 Jun 10.
Article in English | MEDLINE | ID: mdl-30920520

ABSTRACT

A novel and simple transcription strategy has been designed for the template-synthesis of CePO4·xH2O nanofibers having an improved nanofibrous morphology using a pH-sensitive nanofibrous hydrogel (glycine-alanine lipodipeptide) as structure-directing scaffold. The phosphorylated hydrogel was employed as a template to direct the mineralization of high aspect ratio nanofibrous cerium phosphate, which in-situ formed by diffusion of aqueous CeCl3 and subsequent drying (60 °C) and annealing treatments (250, 600 and 900 °C). Dried xerogels and annealed CePO4 powders were characterized by conventional thermal and thermogravimetric analysis (DTA/TG), and Wide-Angle X-ray powder diffraction (WAXD) and X-ray powder diffraction (XRD) techniques. A molecular packing model for the formation of the fibrous xerogel template was proposed, in accordance with results from Fourier-Transformed Infrarred (FTIR) and WAXD measurements. The morphology, crystalline structure and composition of CePO4 nanofibers were characterized by electron microscopy techniques (Field-Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy/High-Resolution Transmission Electron Microscopy (TEM/HRTEM), and Scanning Transmission Electron Microscopy working in High Angle Annular Dark-Field (STEM-HAADF)) with associated X-ray energy-dispersive detector (EDS) and Scanning Transmission Electron Microscopy-Electron Energy Loss (STEM-EELS) spectroscopies. Noteworthy, this templating approach successfully led to the formation of CePO4·H2O nanofibrous bundles of rather co-aligned and elongated nanofibers (10⁻20 nm thick and up to ca. 1 µm long). The formed nanofibers consisted of hexagonal (P6222) CePO4 nanocrystals (at 60 and 250 °C), with a better-grown and more homogeneous fibrous morphology with respect to a reference CePO4 prepared under similar (non-templated) conditions, and transformed into nanofibrous monoclinic monazite (P21/n) around 600 °C. The nanofibrous morphology was highly preserved after annealing at 900 °C under N2, although collapsed under air conditions. The nanofibrous CePO4 (as-prepared hexagonal and 900 °C-annealed monoclinic) exhibited an enhanced UV photo-luminescent emission with respect to non-fibrous homologues.

SELECTION OF CITATIONS
SEARCH DETAIL