Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Proc Natl Acad Sci U S A ; 119(18): e2202382119, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35476529

ABSTRACT

SignificanceSeawater is one of the most abundant resources on Earth. Direct electrolysis of seawater is a transformative technology for sustainable hydrogen production without causing freshwater scarcity. However, this technology is severely impeded by a lack of robust and active oxygen evolution reaction (OER) electrocatalysts. Here, we report a highly efficient OER electrocatalyst composed of multimetallic layered double hydroxides, which affords superior catalytic performance and long-term durability for high-performance seawater electrolysis. To the best of our knowledge, this catalyst is among the most active for OER and it advances the development of seawater electrolysis technology.

2.
Proc Natl Acad Sci U S A ; 119(36): e2206946119, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36037378

ABSTRACT

Overall seawater electrolysis is an important direction for the development of hydrogen energy conversion. The key issues include how to achieve high selectivity, activity, and stability in seawater electrolysis reactions. In this report, the heterostructures of graphdiyne-RhOx-graphdiyne (GDY/RhOx/GDY) were constructed by in situ-controlled growth of GDY on RhOx nanocrystals. A double layer interface of sp-hybridized carbon-oxide-Rhodium (sp-C∼O-Rh) was formed in this system. The microstructures at the interface are composed of active sites of sp-C∼O-Rh. The obvious electron-withdrawing surface enhances the catalytic activity with orders of magnitude, while the GDY outer of the metal oxides guarantees the stability. The electron-donating and withdrawing sp-C∼O-Rh structures enhance the catalytic activity, achieving high-performance overall seawater electrolysis with very small cell voltages of 1.42 and 1.52 V at large current densities of 10 and 500 mA cm-2 at room temperatures and ambient pressures, respectively. The compositional and structural superiority of the GDY-derived sp-C-metal-oxide active center offers great opportunities to engineer tunable redox properties and catalytic performance for seawater electrolysis and beyond. This is a typical successful example of the rational design of catalytic systems.

3.
Nano Lett ; 24(19): 5920-5928, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38708934

ABSTRACT

A significant challenge in direct seawater electrolysis is the rapid deactivation of the cathode due to the large scaling of Mg(OH)2. Herein, we synthesized a Pt-coated highly disordered NiCu alloy (Pt-NiCu alloy) electrode with superior solidophobic behavior, enabling stable hydrogen generation (100 mA cm-2, >1000 h durability) and simultaneous production of Mg(OH)2 (>99.0% purity) in electrolyte enriched with Mg2+ and Ca2+. The unconventional solidophobic property primarily stems from the high surface energy of the NiCu alloy substrate, which facilitates the adsorption of surface water and thereby compels the bulk formation of Mg(OH)2 via homogeneous nucleation. The discovery of this solidophobic electrode will revolutionarily simplify the existing techniques for seawater electrolysis and increase the economic viability for seawater electrolysis.

4.
Small ; 20(28): e2311431, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38366284

ABSTRACT

Renewable electricity-driven seawater splitting presents a green, effective, and promising strategy for building hydrogen (H2)-based energy systems (e.g., storing wind power as H2), especially in many coastal cities. The abundance of Cl- in seawater, however, will cause severe corrosion of anode catalyst during the seawater electrolysis, and thus affect the long-term stability of the catalyst. Herein, seawater oxidation performances of NiFe layered double hydroxides (LDH), a classic oxygen (O2) evolution material, can be boosted by employing tungstate (WO4 2-) as the intercalated guest. Notably, insertion of WO4 2- to LDH layers upgrades the reaction kinetics and selectivity, attaining higher current densities with ≈100% O2 generation efficiency in alkaline seawater. Moreover, after a 350 h test at 1000 mA cm-2, only trace active chlorine can be detected in the electrolyte. Additionally, O2 evolution follows lattice oxygen mechanism on NiFe LDH with intercalated WO4 2-.

5.
Small ; : e2405784, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39072920

ABSTRACT

The development of efficient, high-performance catalysts for hydrogen evolution reaction (HER) remains a significant challenge, especially in seawater media. Here, RuIr alloy catalysts are prepared by the polyol reduction method. Compared with single-metal catalysts, the RuIr alloy catalysts exhibited higher activity and stability in seawater electrolysis due to their greater number of reactive sites and solubility resistance. The RuIr alloy has an overpotential of 75 mV@10 mA cm-2, which is similar to that of Pt/C (73 mV), and can operate stably for 100 hours in alkaline seawater. Density functional theory (DFT) calculations indicate that hydrogen atoms adsorbed at the top sites of Ru and Ir atoms are more favorable for HER and are most likely to be the reactive sites. This work provides a reference for developing highly efficient and stable catalysts for seawater electrolysis.

6.
Small ; 20(14): e2306631, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37988645

ABSTRACT

Developing abundant Earth-element and high-efficient electrocatalysts for hydrogen production is crucial in effectively reducing the cost of green hydrogen production. Herein, a strategy by comprehensively considering the computational chemical indicators for H* adsorption/desorption and dehydrogenation kinetics to evaluate the hydrogen evolution performance of electrocatalysts is proposed. Guided by the proposed strategy, a series of catalysts are constructed through a dual transition metal doping strategy. Density Functional Theory (DFT) calculations and experimental chemistry demonstrate that cobalt-vanadium co-doped Ni3N is an exceptionally ideal catalyst for hydrogen production from electrolyzed alkaline water. Specifically, Co,V-Ni3N requires only 10 and 41 mV in alkaline electrolytes and alkaline seawater, respectively, to achieve a hydrogen evolution current density of 10 mA cm-2. Moreover, it can operate steadily at a large industrial current density of 500 mA cm-2 for extended periods. Importantly, this evaluation strategy is extended to single-metal-doped Ni3N and found that it still exhibits significant universality. This study not only presents an efficient non-precious metal-based electrocatalyst for water/seawater electrolysis but also provides a significant strategy for the design of high-performance catalysts of electrolyzed water.

7.
Small ; 20(13): e2307294, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37963858

ABSTRACT

The pursuit of stable and efficient electrocatalysts toward seawater oxidation is of great interest, yet it poses considerable challenges. Herein, the utilization of Cr-doped CoFe-layered double hydroxide nanosheet array is reported on nickel-foam (Cr-CoFe-LDH/NF) as an efficient electrocatalyst for oxygen evolution reaction in alkaline seawater. The Cr-CoFe-LDH/NF catalyst can achieve current densities of 500 and 1000 mA cm -2 with remarkably low overpotentials of only 334 and 369 mV, respectively. Furthermore, it maintains at least 100 h stability when operated at 500 mA cm-2.

8.
Small ; 20(30): e2310666, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38409581

ABSTRACT

Fine-tuning nanoscale structures, morphologies, and electronic states are crucial for creating efficient water-splitting electrocatalysts. In this study, a method for electronic structure engineering to enhance overall water splitting in a corrosion-resistant electrocatalyst matrix by integrating Pt, P dual-doped Ni4Mo electrocatalysts onto a Ti4O7 nanorod grown on carbon cloth (Pt, P-Ni4Mo-Ti4O7/CC) is introduced. By optimizing platinum and phosphorus concentrations to 1.18% and 2.42%, respectively, low overpotentials are achieved remarkably: 24 mV at 10 mA cm-2 for the hydrogen evolution reaction and 290 mV at 20 mA cm-2 for the oxygen evolution reaction in 1.0 m KOH. These values approach or surpass those of benchmark Pt-C and IrO2 catalysts. Additionally, the Pt, P-Ni4Mo-Ti4O7/CC bifunctional electrocatalyst displays low cell potentials across various mediums, maintaining excellent current retention (96% stability after 40 h in mimic seawater at 20 mA cm-2) and demonstrating strong corrosion resistance and suitability for seawater  electrolysis. As a cathode in magnesium/seawater batteries, it achieves a power density of 7.2 mW cm-2 and maintains stability for 100 h. Density functional theory simulations confirm that P, Pt doping-assisted electronic structure modifications augment electrical conductivity and active sites in the hybrid electrocatalysts.

9.
Small ; 20(30): e2310535, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38420898

ABSTRACT

The exploiting electrocatalysts for water/seawater electrolysis with remarkable activity and outstanding durability at industrial grade current density remains a huge challenge. Herein, CoMoNx and Fe-doped CoMoNx nanosheet arrays are in-situ grown on Ni foam, which possess plentiful holes, multilevel heterostructure, and lavish Co5.47N/MoN@NF and Fe-Co5.47N/MoN@NF interfaces. They require low overpotentials of 213 and 296 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) under alkaline media to achieve current density of 800 mA cm-2, respectively, and both possess low Tafel slopes (51.1 and 49.1 mV dec-1) and undiminished stability over 80 h. Moreover, the coupled Co5.47N/MoN@NF and Fe-Co5.47N/MoN@NF electrolyzer requires low voltages of 1.735 V to yield 500 mA cm-2 in alkaline water. Notably, they also exhibit exceptional electrocatalytic properties in alkaline seawater (1.833 V@500 mA cm-2). The experimental studies and theoretical calculations verify that Fe doping does reduce the energy barrier from OH* to O* intermediates during OER process after catalyst reconstruction, and the non-metallic N site from MoN exhibits the lowest theoretical overpotential. The splendid catalytic performance is attributed to the optimized local electron configuration and porous structure. This discovery provides a new design method toward low-cost and excellent catalysts for water/seawater splitting to produce hydrogen.

10.
Small ; 20(2): e2305220, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37658516

ABSTRACT

Herein, it is found that 3D transition metal dichalcogenide (TMD)-MoS2 nanoflowers-grown on 2D tungsten oxide-anchored graphene nanosheets (MoS2 @W-G) functions as a superior catalyst for the hydrogen evolution reaction (HER) under both acidic and alkaline conditions. The optimized weight ratio of MoS2 @W-G (MoS2 :W-G/1.5:1) in 0.5 M H2 SO4 achieves a low overpotential of 78 mV at 10 mA cm-2 , a small Tafel slope of 48 mV dec-1 , and a high exchange current density (0.321 mA cm⁻2 ). Furthermore, the same MoS2 @W-G composite exhibits stable HER performance when using real seawater, with Faradaic efficiencies of 96 and 94% in acidic and alkaline media, respectively. Density functional theory calculations based on the hybrid MoS2 @W-G structure model confirm that suitable hybridization of 3D MoS2 and 2D W-G nanosheets can lower the hydrogen adsorption: Gibbs free energy (∆GH* ) from 1.89 eV for MoS2 to -0.13 eV for the MoS2 @W-G composite. The excellent HER activity of the 3D/2D hybridized MoS2 @W-G composite arises from abundance of active heterostructure interfaces, optimizing the electrical configuration, thereby accelerating the adsorption and dissociation of H2 O. These findings suggest a new approach for the rational development of alternative 3D/2D TMD/graphene electrocatalysts for HER applications using seawater.

11.
Small ; 20(26): e2309655, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38243851

ABSTRACT

Bifunctional catalysts have inherent advantages in simplifying electrolysis devices and reducing electrolysis costs. Developing efficient and stable bifunctional catalysts is of great significance for industrial hydrogen production. Herein, a bifunctional catalyst, composed of nitrogen and sulfur co-doped carbon-coated trinickel disulfide (Ni3S2)/molybdenum dioxide (MoO2) nanowires (NiMoS@NSC NWs), is developed for seawater electrolysis. The designed NiMoS@NSC exhibited high activity in alkaline electrolyte with only 52 and 191 mV overpotential to attain 10 mA cm-2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Significantly, the electrolyzer (NiMoS@NSC||NiMoS@NSC) based on this bifunctional catalyst drove 100 mA cm-2 at only 1.71 V along with a robust stability over 100 h in alkaline seawater, which is superior to a platinum/nickel-iron layered double hydroxide couple (Pt||NiFe LDH). Theoretical calculations indicated that interfacial interactions between Ni3S2 and MoO2 rearranged the charge at interfaces and endowed Mo sites at the interfaces with Pt-like HER activity, while Ni sites on Ni3S2 surfaces at non-interfaces are the active centers for OER. Meanwhile, theoretical calculations and experimental results also demonstrated that interfacial interactions improved the electrical conductivity, boosting reaction kinetics for both HER and OER. This study presented a novel insight into the design of high-performance bifunctional electrocatalysts for seawater splitting.

12.
Environ Sci Technol ; 58(25): 10969-10978, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38860863

ABSTRACT

Affordable thin-film composite (TFC) membranes are a potential alternative to more expensive ion exchange membranes in saltwater electrolyzers used for hydrogen gas production. We used a solution-friction transport model to study how the induced potential gradient controls ion transport across the polyamide (PA) active layer and support layers of TFC membranes during electrolysis. The set of parameters was simplified by assigning the same size-related partition and friction coefficients for all salt ions through the membrane active layer. The model was fit to experimental ion transport data from saltwater electrolysis with 600 mM electrolytes at a current density of 10 mA cm-2. When the electrolyte concentration and current density were increased, the transport of major charge carriers was successfully predicted by the model. Ion transport calculated using the model only minimally changed when the negative active layer charge density was varied from 0 to 600 mM, indicating active layer charge was not largely responsible for controlling ion crossover during electrolysis. Based on model simulations, a sharp pH gradient was predicted to occur within the supporting layer of the membrane. These results can help guide membrane design and operation conditions in water electrolyzers using TFC membranes.


Subject(s)
Electrolysis , Ion Transport , Membranes, Artificial , Water/chemistry
13.
Environ Sci Technol ; 58(1): 391-399, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38147515

ABSTRACT

Low-cost polyamide thin-film composite membranes are being explored as alternatives to expensive cation exchange membranes for seawater electrolysis. However, transport of chloride from seawater to the anode chamber must be reduced to minimize the production of chlorine gas. A double-polyamide composite structure was created that reduced the level of chloride transport. Adding five polyamide layers on the back of a conventional polyamide composite membrane reduced the chloride ion transport by 53% and did not increase the applied voltage. Decreased chloride permeation was attributed to enhanced electrostatic and steric repulsion created by the new polyamide layers. Charge was balanced through increased sodium ion transport (52%) from the anolyte to the catholyte rather than through a change in the transport of protons and hydroxides. As a result, the Nernstian loss arising from the pH difference between the anolyte and catholyte remained relatively constant during electrolysis despite membrane modifications. This lack of a change in pH showed that transport of protons and hydroxides during electrolysis was independent of salt ion transport. Therefore, only sodium ion transport could compensate for the reduction of chloride flux to maintain the set current. Overall, these results prove the feasibility of using a double-polyamide structure to control chloride permeation during seawater electrolysis without sacrificing energy consumption.


Subject(s)
Chlorides , Nylons , Nylons/chemistry , Protons , Electrolysis , Seawater/chemistry , Hydroxides , Sodium , Membranes, Artificial
14.
Angew Chem Int Ed Engl ; 63(32): e202405943, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38769621

ABSTRACT

Electrocatalytic acetylene hydrogenation to ethylene (E-AHE) is a promising alternative for thermal-catalytic process, yet it suffers from low current densities and efficiency. Here, we achieved a 71.2 % Faradaic efficiency (FE) of E-AHE at a large partial current density of 1.0 A cm-2 using concentrated seawater as an electrolyte, which can be recycled from the brine waste (0.96 M NaCl) of alkaline seawater electrolysis (ASE). Mechanistic studies unveiled that cation of concentrated seawater dynamically prompted unsaturated interfacial water dissociation to provide protons for enhanced E-AHE. As a result, compared with freshwater, a twofold increase of FE of E-AHE was achieved on concentrated seawater-based electrolysis. We also demonstrated an integrated system of ASE and E-AHE for hydrogen and ethylene production, in which the obtained brine output from ASE was directly fed into E-AHE process without any further treatment for continuously cyclic operations. This innovative system delivered outstanding FE and selectivity of ethylene surpassed 97.0 % and 97.5 % across wide-industrial current density range (≤ 0.6 A cm-2), respectively. This work provides a significant advance of electrocatalytic ethylene production coupling with brine refining of seawater electrolysis.

15.
Angew Chem Int Ed Engl ; 63(15): e202319798, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38353370

ABSTRACT

Direct saline (seawater) electrolysis is a well-recognized system to generate active chlorine species for the chloride-mediated electrosynthesis, environmental remediation and sterilization over the past few decades. However, the large energy consumption originated from the high cell voltage of traditional direct saline electrolysis system, greatly restricts its practical application. Here, we report an acid-saline hybrid electrolysis system for energy-saving co-electrosynthesis of active chlorine and H2. We demonstrate that this system just requires a low cell voltage of 1.59 V to attain 10 mA cm-2 with a large energy consumption decrease of 27.7 % compared to direct saline electrolysis system (2.20 V). We further demonstrate that such acid-saline hybrid electrolysis system could be extended to realize energy-saving and sustainable seawater electrolysis. The acidified seawater in this system can absolutely avoid the formation of Ca/Mg-based sediments that always form in the seawater electrolysis system. We also prove that this system in the half-flow mode can realize real-time preparation of active chlorine used for sterilization and pea sprout production.

16.
Small ; 19(14): e2206949, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36599619

ABSTRACT

Ruthenium (Ru)-based catalysts have displayed compelling hydrogen evolution activities, which hold the promising potential to substitute platinum in alkaline H2 -evolution. In the challenging alkaline electrolytes, the water-dissociation process involves multistep reactions, while the profound origin and intrinsic factors of diverse Ru species on water-dissociation pathways and reaction principles remain ambiguous. Here the fundamental origin of water-dissociation pathways of Ru-based catalysts in alkaline media to be from their unique electronic structures in complex coordination environments are disclosed. These theoretical results validate that the modulated electronic structures with delocalization-localization coexistence at their boundaries between the Ru nanocluster and single-atom site have a profound influence on water-dissociation pathways, which push H2 O* migration and binding orientation during the splitting process, thus enhancing the dissociation kinetics. By creating Ru catalysts with well-defined nanocluster, single-atom site, and also complex site, the electrocatalytic data shows that both the nanocluster and single-atom play essential roles in water-dissociation, while the complex site possesses synergistically enhanced roles in alkaline electrolytes. This study discloses a new electronic structure-dependent water-dissociation pathway and reaction principle in Ru-based catalysts, thus offering new inspiration to design efficient and durable catalysts for the practical production of H2 in alkaline electrolytes.

17.
Small ; 19(27): e2300194, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36965012

ABSTRACT

Versatile electrocatalysis at higher current densities for natural seawater splitting to produce hydrogen demands active and robust catalysts to overcome the severe chloride corrosion, competing chlorine evolution, and catalyst poisoning. Hereto, the core-shell-structured heterostructures composed of amorphous NiFe hydroxide layer capped Ni3 S2 nanopyramids which are directly grown on nickel foam skeleton (NiS@LDH/NF) are rationally prepared to regulate cooperatively electronic structure and mass transport for boosting oxygen evolution reaction (OER) performance at larger current densities. The prepared NiS@LDH/NF delivers the anodic current density of 1000 mA cm-2 at the overpotential of 341 mV in 1.0 m KOH seawater. The feasible surface reconstruction of Ni3 S2 -FeNi LDH interfaces improves the chemical stability and corrosion resistance, ensuring the robust electrocatalytic activity in seawater electrolytes for continuous and stable oxygen evolution without any hypochlorite production. Meanwhile, the designed Ni3 S2 nanopyramids coated with FeNi2 P layer (NiS@FeNiP/NF) still exhibit the improved hydrogen evolution reaction (HER) activity in 1.0 m KOH seawater. Furthermore, the NiS@FeNiP/NF||NiS@LDH/NF pair requires cell voltage of 1.636 V to attain 100 mA cm-2 with a 100% Faradaic efficiency, exhibiting tremendous potential for hydrogen production from seawater.

18.
Small ; : e2305694, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38078786

ABSTRACT

A nano-micro heterostructure has been established to address the challenges of selectivity, stress, pitting corrosion, and long-term durability of anodes in unpurified seawater. The heterostructure comprised NiOOH nanosheets embedded within a high surface area Ni(OH)2 microarray, and the surface structure is further functionalized with sulfate (SOx ). This cation-selective protective layer impedes chloride (Cl- ) diffusion and abstracts H from reaction intermediates, leading to enhanced selectivity and corrosion resistance of the anode. The multilevel porosity within the randomly oriented nanosheets and the underlying support provide short diffusion channels for ions and mass migration, ensuring efficient ion transport and long-term structural and mechanical durability of the active sites, even at high current density. Remarkably, the catalyst requires a small input voltage of 400 mV to deliver a current density of 1 A cm-2 and maintains it for over 168 h without noticeable degradation or hypochlorite formation. Spectroscopic analysis and density functional theory (DFT) calculations reveal that the Ni electronic structure in the +3 valence state, its strong structural interaction with the underlying microarray, and the functionality of SOx significantly reduce the required potential for O-O coupling.

19.
Small ; 19(15): e2207527, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36651013

ABSTRACT

Achieving single-atom catalysts (SACs) with high metal content and outstanding performance as well as robust stability is critically needed for clean and sustainable energy. However, most of the synthesized SACs are undesired on the loading content of the metal due to the anchored metals and the supports as well as the synthesizing methods. Herein, a Rh-SAC with high accessibility by loading it on the metal nodes of metal-porphyrin-based PCN MOFs (PCN-224) as supporting material is reported. Significantly, the PCN-Rh15.9 /KB catalyst with a high Rh content of 15.9 wt% exhibits excellent hydrogen evolution activity with a low overpotential of 25 mV at a current density of 10 mA cm-2 and a mass activity of 7.7 A mg-1 Rh at overpotential of 150 mV, which is much better than that of the commercial Rh/C. Various characterizations reveal the Rh species is stabilized by the metal nodes bearing -O/OHx in MOFs, which is of importance for the high loading amount and the good activity. This work establishes an efficient approach to synthesize high content SACs on the nodes of MOFs for wide catalyst design.

20.
Environ Sci Technol ; 57(39): 14569-14578, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37722004

ABSTRACT

Low-cost polyamide thin-film composite (TFC) membranes are being explored as alternatives to cation exchange membranes for seawater electrolysis. An optimal membrane should have a low electrical resistance to minimize applied potentials needed for water electrolysis and be able to block chloride ions present in a seawater catholyte from reaching the anode. The largest energy loss associated with a TFC membrane was the Nernstian overpotential of 0.74 V (equivalent to 37 Ω cm2 at 20 mA cm-2), derived from the pH difference between the anolyte and catholyte and not the membrane ohmic overpotential. Based on analysis using electrochemical impedance spectroscopy, the pristine TFC membrane contributed only 5.00 Ω cm2 to the ohmic resistance. Removing the polyester support layer reduced the resistance by 79% to only 1.04 Ω cm2, without altering the salt ion transport between the electrolytes. Enlarging the pore size (∼5 times) in the polyamide active layer minimally impacted counterion transport across the membrane during electrolysis, but it increased the total concentration of chloride transported by 60%. Overall, this study suggests that TFC membranes with thinner but mechanically strong supporting layers and size-selective active layers should reduce energy consumption and the potential for chlorine generation for seawater electrolyzers.

SELECTION OF CITATIONS
SEARCH DETAIL