Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.563
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35110408

ABSTRACT

Domoic acid (DA), the causative agent of amnesic shellfish poisoning, is produced by select organisms within two distantly related algal clades: planktonic diatoms and red macroalgae. The biosynthetic pathway to isodomoic acid A was recently solved in the harmful algal bloom-forming diatom Pseudonitzschia multiseries, establishing the genetic basis for the global production of this potent neurotoxin. Herein, we sequenced the 507-Mb genome of Chondria armata, the red macroalgal seaweed from which DA was first isolated in the 1950s, identifying several copies of the red algal DA (rad) biosynthetic gene cluster. The rad genes are organized similarly to the diatom DA biosynthesis cluster in terms of gene synteny, including a cytochrome P450 (CYP450) enzyme critical to DA production that is notably absent in red algae that produce the simpler kainoid neurochemical, kainic acid. The biochemical characterization of the N-prenyltransferase (RadA) and kainoid synthase (RadC) enzymes support a slightly altered DA biosynthetic model in C. armata via the congener isodomoic acid B, with RadC behaving more like the homologous diatom enzyme despite higher amino acid similarity to red algal kainic acid synthesis enzymes. A phylogenetic analysis of the rad genes suggests unique origins for the red macroalgal and diatom genes in their respective hosts, with native eukaryotic CYP450 neofunctionalization combining with the horizontal gene transfer of N-prenyltransferases and kainoid synthases to establish DA production within the algal lineages.


Subject(s)
Dimethylallyltranstransferase/genetics , Dimethylallyltranstransferase/metabolism , Kainic Acid/analogs & derivatives , Neurotoxins/metabolism , Rhodophyta/metabolism , Biological Evolution , Biosynthetic Pathways/genetics , Diatoms/genetics , Diatoms/metabolism , Harmful Algal Bloom/physiology , Kainic Acid/metabolism , Multigene Family/genetics , Neurotoxins/genetics , Phylogeny , Shellfish Poisoning/metabolism
2.
BMC Plant Biol ; 24(1): 765, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39123105

ABSTRACT

The present study focused on the physiological and biochemical aspects of Tricleocarpa fragilis, red seaweed belonging to the phylum Rhodophyta, along the South Andaman coast, with particular attention given to its symbiotic relationships with associated flora and fauna. The physicochemical parameters of the seawater at the sampling station, such as its temperature, pH, and salinity, were meticulously analyzed to determine the optimal harvesting period for T. fragilis. Seaweeds attach to rocks, dead corals, and shells in shallow areas exposed to moderate wave action because of its habitat preferences. Temporal variations in biomass production were estimated, revealing the highest peak in March, which was correlated with optimal seawater conditions, including a temperature of 34 ± 1.1 °C, a pH of 8 ± 0.1, and a salinity of 32 ± 0.8 psu. GC‒MS analysis revealed n-hexadecanoic acid as the dominant compound among the 36 peaks, with major bioactive compounds identified as fatty acids, diterpenes, phenolic compounds, and hydrocarbons. This research not only enhances our understanding of ecological dynamics but also provides valuable insights into the intricate biochemical processes of T. fragilis. The established antimicrobial potential and characterization of bioactive compounds from T. fragilis lay a foundation for possible applications in the pharmaceutical industry and other industries.


Subject(s)
Rhodophyta , Seaweed , Rhodophyta/physiology , Rhodophyta/metabolism , Seaweed/physiology , Seaweed/metabolism , Seawater/chemistry , Ecosystem , Biomass , Fatty Acids/metabolism , Symbiosis/physiology , Animals
3.
Proc Biol Sci ; 291(2021): 20240415, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38628122

ABSTRACT

Artificial light at night (ALAN) is a growing threat to coastal habitats, and is likely to exacerbate the impacts of other stressors. Kelp forests are dominant habitats on temperate reefs but are declining due to ocean warming and overgrazing. We tested the independent and interactive effects of ALAN (dark versus ALAN) and warming (ambient versus warm) on grazing rates and gonad index of the sea urchin Centrostephanus rodgersii. Within these treatments, urchins were fed either 'fresh' kelp or 'treated' kelp. Treated kelp (Ecklonia radiata) was exposed to the same light and temperature combinations as urchins. We assessed photosynthetic yield, carbon and nitrogen content and C : N ratio of treated kelp to help identify potential drivers behind any effects on urchins. Grazing increased with warming and ALAN for urchins fed fresh kelp, and increased with warming for urchins fed treated kelp. Gonad index was higher in ALAN/ambient and dark/warm treatments compared to dark/ambient treatments for urchins fed fresh kelp. Kelp carbon content was higher in ALAN/ambient treatments than ALAN/warm treatments at one time point. This indicates ocean warming and ALAN may increase urchin grazing pressure on rocky reefs, an important finding for management strategies.


Subject(s)
Food Chain , Kelp , Animals , Light Pollution , Ecosystem , Sea Urchins , Carbon
4.
New Phytol ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137959

ABSTRACT

In the marine environment, seaweeds (i.e. marine macroalgae) provide a wide range of ecological services and economic benefits. Like land plants, seaweeds do not provide these services in isolation, rather they rely on their associated microbial communities, which together with the host form the seaweed holobiont. However, there is a poor understanding of the mechanisms shaping these complex seaweed-microbe interactions, and of the evolutionary processes underlying these interactions. Here, we identify the current research challenges and opportunities in the field of seaweed holobiont biology. We argue that identifying the key microbial partners, knowing how they are recruited, and understanding their specific function and their relevance across all seaweed life history stages are among the knowledge gaps that are particularly important to address, especially in the context of the environmental challenges threatening seaweeds. We further discuss future approaches to study seaweed holobionts, and how we can apply the holobiont concept to natural or engineered seaweed ecosystems.

5.
Glob Chang Biol ; 30(4): e17249, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572713

ABSTRACT

Warming as well as species introductions have increased over the past centuries, however a link between cause and effect of these two phenomena is still unclear. Here we use distribution records (1813-2023) to reconstruct the invasion histories of marine non-native macrophytes, macroalgae and seagrasses, in the Mediterranean Sea. We defined expansion as the maximum linear rate of spread (km year-1) and the accumulation of occupied grid cells (50 km2) over time and analyzed the relation between expansion rates and the species' thermal conditions at its native distribution range. Our database revealed a marked increase in the introductions and spread rates of non-native macrophytes in the Mediterranean Sea since the 1960s, notably intensifying after the 1990s. During the beginning of this century species velocity of invasion has increased to 26 ± 9 km2 year-1, with an acceleration in the velocity of invasion of tropical/subtropical species, exceeding those of temperate and cosmopolitan macrophytes. The highest spread rates since then were observed in macrophytes coming from native regions with minimum SSTs two to three degrees warmer than in the Mediterranean Sea. In addition, most non-native macrophytes in the Mediterranean (>80%) do not exceed the maximum temperature of their range of origin, whereas approximately half of the species are exposed to lower minimum SST in the Mediterranean than in their native range. This indicates that tropical/subtropical macrophytes might be able to expand as they are not limited by the colder Mediterranean SST due to the plasticity of their lower thermal limit. These results suggest that future warming will increase the thermal habitat available for thermophilic species in the Mediterranean Sea and continue to favor their expansion.


Subject(s)
Introduced Species , Seaweed , Mediterranean Sea , Ecosystem , Temperature
6.
BMC Cancer ; 24(1): 1060, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39192214

ABSTRACT

BACKGROUND: It is challenging to improve the effects of chemotherapy and reduce its adverse impact on the ovaries. Our previous study suggested that the combination of galaxamide could enhance the antitumor effect of cisplatin (CIS) in HeLa cell xenograft mice. However, their potential effects on ovarian tissues remain unknown. METHODS: The Hela tumor-bearing female BALB/c mice model was established and randomly divided into three groups: control group (PBS group), CIS group (0.3 mg/kg CIS group) and galaxamide group (0.3 mg/kg CIS + 3 mg/kg galaxamide-treated group). The serum sex hormones levels, ovarian morphology, functional and molecular characterisation were determined and compared with those of the control group. RESULTS: The hormonal effects indicated premature ovarian insufficiency (POI) associated with CIS-induced tumor-bearing mice. CIS induces the apoptosis in primordial and developing follicles and subsequently increases follicular atresia, eventually leading to follicle loss. After cotreatment, galaxamide significantly increased anti-Mullerian hormone (AMH) and follicle-stimulating hormone receptor (FSHR) expression and prevented the CIS-induced PI3K pathway, which triggers follicle activation, apoptosis or atresia. CONCLUSION: These findings demonstrate that galaxamide could attenuate CIS-induced follicle loss by acting on the PI3K signaling pathway by stimulating AMH and/or FSHR and thus provides promising therapeutic options for patients with cervical cancer.


Subject(s)
Cisplatin , Phosphatidylinositol 3-Kinases , Primary Ovarian Insufficiency , Signal Transduction , Animals , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/drug therapy , Primary Ovarian Insufficiency/metabolism , Female , Humans , Mice , Cisplatin/adverse effects , Signal Transduction/drug effects , HeLa Cells , Phosphatidylinositol 3-Kinases/metabolism , Mice, Inbred BALB C , Apoptosis/drug effects , Xenograft Model Antitumor Assays , Anti-Mullerian Hormone/blood , Anti-Mullerian Hormone/metabolism , Antineoplastic Agents/pharmacology , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Receptors, FSH/metabolism , Receptors, FSH/genetics
7.
Hum Genomics ; 17(1): 71, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37525271

ABSTRACT

BACKGROUND: Marine seaweeds are considered as a rich source of health-promoting compounds by the food and pharmaceutical industry. Hypnea musciformis is a marine red macroalga (seaweed) that is widely distributed throughout the world, including the Mediterranean Sea. It is known to contain various bioactive compounds, including sulfated polysaccharides, flavonoids, and phlorotannins. Recent studies have investigated the potential anticancer effects of extracts from H. musciformis demonstrating their cytotoxic effects on various cancer cell lines. The anticancer effects of these extracts are thought to be due to the presence of bioactive compounds, particularly sulfated polysaccharides, which have been shown to have anticancer and immunomodulatory effects. However, further studies are needed to fully understand the molecular mechanisms that underlie their anticancer effects and to determine their potential as therapeutic agents for cancer treatment. METHODS: H. musciformis was collected from the Aegean Sea (Greece) and used for extract preparation. Transcriptome and proteome analysis was performed in liver and colon cancer human cell lines following treatment with H. musciformis seaweed extracts to characterize its anticancer effect in detail at the molecular level and to link transcriptome and proteome responses to the observed phenotypes in cancer cells. RESULTS: We have identified that treatment with the seaweed extract triggers a p53-mediated response at the transcriptional and protein level in liver cancer cells, in contrast to colon cancer cells in which the effects are more associated with metabolic changes. Furthermore, we show that in treated HepG2 liver cancer cells, p53 interacts with the chromatin of several target genes and facilitates their upregulation possibly through the recruitment of the p300 co-activator. CONCLUSIONS: Overall, the available evidence suggests that extracts from H. musciformis have the potential to serve as a source of anticancer agents in liver cancer cells mainly through activation of a p53-mediated anti-tumor response that is linked to inhibition of cellular proliferation and induction of cell death.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Intestinal Neoplasms , Liver Neoplasms , Seaweed , Humans , Proteome , Transcriptome , Tumor Suppressor Protein p53/genetics , Antineoplastic Agents/pharmacology , Polysaccharides , Plant Extracts/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics
8.
Chemphyschem ; 25(17): e202400173, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38845571

ABSTRACT

Raman spectroscopy was used to study the complex interactions and morphogenesis of the green seaweed Ulva (Chlorophyta) and its associated bacteria under controlled conditions in a reductionist model system. Integrating multiple imaging techniques contributes to a more comprehensive understanding of these biological processes. Therefore, Raman spectroscopy was introduced as a non-invasive, label-free tool for examining chemical information of the tripartite community Ulva mutabilis-Roseovarius sp.-Maribacter sp. The study explored cell differentiation, cell wall protrusion, and bacterial-macroalgae interactions of intact algal thalli. Using Raman spectroscopy, the analysis of the CHx-stretching wavenumber region distinguished spatial regions in Ulva germination and cellular malformations under axenic conditions and upon inoculation with a specific bacterium in bipartite communities. The spectral information was used to guide in-depth analyses within the fingerprint region and to identify substance classes such as proteins, lipids, and polysaccharides, including evidence for ulvan found in cell wall protrusions.


Subject(s)
Biofilms , Spectrum Analysis, Raman , Ulva , Seaweed/microbiology
9.
Arch Microbiol ; 206(3): 100, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353773

ABSTRACT

Three Gram-reaction-positive bacterial strains, designated KSW-18T, KSW2-22, and KSW4-11T, were isolated from seawater, and two dried seaweed samples collected at Gwakji Beach in Jeju, Republic of Korea, respectively, and their taxonomic positions were examined by a polyphasic approach. The 16S rRNA gene phylogeny showed that strain KSW4-11T was tightly associated with Microbacterium oleivorans NBRC 103075T, while strains KSW-18T and KSW2-22 formed a distinctive subline at the base of a clade including the above two strains. The three isolates showed high sequence similarity with one another (99.7-99.9%; 1-4 nt differences) and Microbacterium oleivorans (99.8-99.9%; 1-3 nt differences). The chemotaxonomic features were typical for the genus Microbacterium; Lysine as the diagnostic diamino acid and N-glycolylated muramic acid of the peptidoglycans, the predominant menaquinones of MK-11, MK-10 and MK-12, the major fatty acids of anteiso-C15:0 and anteiso-C17:0, and the major polar lipids including diphosphatidylglycerol, phosphatidylglycerol, and two or three unidentified glycolipids. In core genome-based phylogenetic tree, strains KSW-18T and KSW2-22 were closely associated with Microbacterium oleivorans NBRC 103075T, while strain KSW4-11T formed a distinctive subline at the base of a clade including the above three strains, in contrast to the 16S rRNA gene tree. Strains KSW-18T and KSW2-22 shared an OrthoANIu of 98.6% and a digital DNA-DNA hybridization of 87.6% with each other, representing that they were strains of a species, while the OrthoANIu and digital DNA-DNA hybridization values between strains KSW-18T and KSW4-11T, and between both of these isolates and all members of the genus Microbacterium were ≤86.5% and ≤30.7%, respectively. The analyses of overall genomic relatedness indices and phenotypic distinctness support that the three isolates represent two new species of the genus Microbacterium. Based on the results obtained here, Microbacterium aquilitoris sp. nov. (type strain KSW-18T = KCTC 49623T = NBRC 115222T) and Microbacterium gwkjiense sp. nov. (type strain KSW4-11T = KACC 23321T = DSM 116380T) are proposed.


Subject(s)
Actinomycetales , Microbacterium , Phylogeny , RNA, Ribosomal, 16S/genetics , Actinomycetales/genetics , DNA
10.
Crit Rev Food Sci Nutr ; : 1-36, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979936

ABSTRACT

Ulva, a genus of green macroalgae commonly known as sea lettuce, has long been recognized for its nutritional benefits for food and feed. As the demand for sustainable food and feed sources continues to grow, so does the interest in alternative, plant-based protein sources. With its abundance along coastal waters and high protein content, Ulva spp. have emerged as promising candidates. While the use of Ulva in food and feed has its challenges, the utilization of Ulva in other industries, including in biomaterials, biostimulants, and biorefineries, has been growing. This review aims to provide a comprehensive overview of the current status, challenges and opportunities associated with using Ulva in food, feed, and beyond. Drawing on the expertise of leading researchers and industry professionals, it explores the latest knowledge on Ulva's nutritional value, processing methods, and potential benefits for human nutrition, aquaculture feeds, terrestrial feeds, biomaterials, biostimulants and biorefineries. In addition, it examines the economic feasibility of incorporating Ulva into aquafeed. Through its comprehensive and insightful analysis, including a critical review of the challenges and future research needs, this review will be a valuable resource for anyone interested in sustainable aquaculture and Ulva's role in food, feed, biomaterials, biostimulants and beyond.

11.
Ann Bot ; 133(1): 51-60, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-37946547

ABSTRACT

BACKGROUND AND AIMS: Marine heatwaves (MHWs) are widely recognized as pervasive drivers of ecosystem change, yet our understanding of how different MHW properties mediate ecological responses remains largely unexplored. Understanding MHW impacts on foundation species is particularly important, given their structural role in communities and ecosystems. METHODS: We simulated a series of realistic MHWs with different levels of intensity (Control: 14 °C, Moderate: 18 °C, Extreme: 22 °C) and duration (14 or 28 d) and examined responses of two habitat-forming kelp species in the southwest UK. Here, Laminaria digitata reaches its trailing edge and is undergoing a range contraction, whereas Laminaria ochroleuca reaches its leading edge and is undergoing a range expansion. KEY RESULTS: For both species, sub-lethal stress responses induced by moderate-intensity MHWs were exacerbated by longer duration. Extreme-intensity MHWs caused dramatic declines in growth and photosynthetic performance, and elevated bleaching, which were again exacerbated by longer MHW duration. Stress responses were most pronounced in L. ochroleuca, where almost complete tissue necrosis was observed by the end of the long-duration MHW. This was unexpected given the greater thermal safety margins assumed with leading edge populations. It is likely that prolonged exposure to sub-lethal thermal stress exceeded a physiological tipping point for L. ochroleuca, presumably due to depletion of internal reserves. CONCLUSIONS: Overall, our study showed that exposure to MHW profiles projected to occur in the region in the coming decades can have significant deleterious effects on foundation kelp species, regardless of their thermal affinities and location within respective latitudinal ranges, which would probably have consequences for entire communities and ecosystems.


Subject(s)
Edible Seaweeds , Kelp , Laminaria , Ecosystem
12.
Ann Bot ; 133(1): 145-152, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-37971357

ABSTRACT

BACKGROUND AND AIMS: Marine macroalgae ('seaweeds') are critical to coastal ecosystem structure and function, but also vulnerable to the many environmental changes associated with anthropogenic climate change (ACC). The local habitat conditions underpinning observed and predicted ACC-driven changes in intertidal macroalgal communities are complex and probably site-specific and operate in addition to more commonly reported regional factors such as sea surface temperatures. METHODS: We examined how the composition and functional trait expression of macroalgal communities in SW England varied with aspect (i.e. north-south orientation) at four sites with opposing Equator- (EF) and Pole-facing (PF) surfaces. Previous work at these sites had established that average annual (low tide) temperatures vary by 1.6 °C and that EF-surfaces experience six-fold more frequent extremes (i.e. >30 °C). KEY RESULTS: PF macroalgal communities were consistently more taxon rich; 11 taxa were unique to PF habitats, with only one restricted to EF. Likewise, functional richness and dispersion were greater on PF-surfaces (dominated by algae with traits linked to rapid resource capture and utilization, but low desiccation tolerance), although differences in both taxon and functional richness were probably driven by the fact that less diverse EF-surfaces were dominated by desiccation-tolerant fucoids. CONCLUSIONS: Although we cannot disentangle the influence of temperature variation on algal ecophysiology from the indirect effects of aspect on species interactions (niche pre-emption, competition, grazing, etc.), our study system provides an excellent model for understanding how environmental variation at local scales affects community composition and functioning. By virtue of enhanced taxonomic diversity, PF-aspects supported higher functional diversity and, consequently, greater effective functional redundancy. These differences may imbue PF-aspects with resilience against environmental perturbation, but if predicted increases in global temperatures are realized, some PF-sites may shift to a depauperate, desiccation-tolerant seaweed community with a concomitant loss of functional diversity and redundancy.


Subject(s)
Ecosystem , Seaweed , Plants , Phenotype , England , Biodiversity
13.
Ann Bot ; 133(1): 1-16, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-37996092

ABSTRACT

BACKGROUND: Marine macroalgae ('seaweeds') are a diverse and globally distributed group of photosynthetic organisms that together generate considerable primary productivity, provide an array of different habitats for other organisms, and contribute many important ecosystem functions and services. As a result of continued anthropogenic stress on marine systems, many macroalgal species and habitats face an uncertain future, risking their vital contribution to global productivity and ecosystem service provision. SCOPE: After briefly considering the remarkable taxonomy and ecological distribution of marine macroalgae, we review how the threats posed by a combination of anthropogenically induced stressors affect seaweed species and communities. From there we highlight five critical avenues for further research to explore (long-term monitoring, use of functional traits, focus on early ontogeny, biotic interactions and impact of marine litter on coastal vegetation). CONCLUSIONS: Although there are considerable parallels with terrestrial vascular plant responses to the many threats posed by anthropogenic stressors, we note that the impacts of some (e.g. habitat loss) are much less keenly felt in the oceans than on land. Nevertheless, and in common with terrestrial plant communities, the impact of climate change will inevitably be the most pernicious threat to the future persistence of seaweed species, communities and service provision. While understanding macroalgal responses to simultaneous environmental stressors is inevitably a complex exercise, our attempt to highlight synergies with terrestrial systems, and provide five future research priorities to elucidate some of the important trends and mechanisms of response, may yet offer some small contribution to this goal.


Subject(s)
Seaweed , Seaweed/physiology , Ecosystem , Photosynthesis , Climate Change
14.
Ann Bot ; 133(1): 183-212, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38109285

ABSTRACT

BACKGROUND: The sugar kelp Saccharina latissima is a Laminariales species widely distributed in the Northern Hemisphere. Its physiology and ecology have been studied since the 1960s, given its ecological relevance on western temperate coasts. However, research interest has been rising recently, driven mainly by reports of negative impacts of anthropogenically induced environmental change and by the increased commercial interest in cultivating the species, with several industrial applications for the resulting biomass. SCOPE: We used a variety of sources published between 2009 to May 2023 (but including some earlier literature where required), to provide a comprehensive review of the ecology, physiology, biochemical and molecular biology of S. latissima. In so doing we aimed to better understand the species' response to stressors in natural communities, but also inform the sustainable cultivation of the species. CONCLUSION: Due to its wide distribution, S. latissima has developed a variety of physiological and biochemical mechanisms to adjust to environmental changes, including adjustments in photosynthetic parameters, modulation of osmolytes and antioxidants, reprogramming of gene expression and epigenetic modifications, among others summarized in this review. This is particularly important because massive changes in the abundance and distribution of S. latissima have already been observed. Namely, presence and abundance of S. latissima has significantly decreased at the rear edges on both sides of the Atlantic, and increased in abundance at the polar regions. These changes were mainly caused by climate change and will therefore be increasingly evident in the future. Recent developments in genomics, transcriptomics and epigenomics have clarified the existence of genetic differentiation along its distributional range with implications in the fitness at some locations. The complex biotic and abiotic interactions unraveled here demonstrated the cascading effects the disappearance of a kelp forest can have in a marine ecosystem. We show how S. latissima is an excellent model to study acclimation and adaptation to environmental variability and how to predict future distribution and persistence under climate change.


Subject(s)
Edible Seaweeds , Kelp , Laminaria , Kelp/genetics , Ecosystem , Sugars , Climate Change
15.
Ann Bot ; 133(7): 1025-1040, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38502708

ABSTRACT

BACKGROUND AND AIMS: Maerl-associated communities have received considerable attention due to their uniqueness, biodiversity and functional importance. Although the impacts of human activities are well documented for maerl-associated macrofauna, the spatio-temporal variations of macroalgae have comparatively been neglected, and the drivers that influence their dynamics are poorly known. We investigate the links between maerl-associated macroalgal communities, anthropogenic pressures and environmental conditions, and hypothesize that sites under human pressure would exhibit different dynamics when compared to reference sites. METHODS: To better understand community variation through space and time, four subtidal maerl beds under different pressures were consistently monitored over one year in the bay of Brest, Brittany, France. Both macroalgae community monitoring and environmental data were acquired through field sampling and available models. KEY RESULTS: Higher macroalgal biomass was observed within eutrophic sites, especially in summer (more than ten times higher than in the Unimpacted site), caused by free-living forms of opportunistic red macroalgae. The Dredged site also exhibited distinct macroalgal communities during summer from the Unimpacted site. Nutrient concentrations and seasonality proved to be key factors affecting the macroalgal community composition, although dredging and its effects on granulometry also had a strong influence. Over the long term, fewer than half of the species identified during historical surveys were found, indicating major temporal changes. CONCLUSIONS: Human pressures have strong impacts on maerl-associated macroalgal communities. Nutrient concentrations and dredging pressure appear as the main anthropogenic factors shaping maerl-associated macroalgal communities. Additionally, our results suggest historical changes in maerl-associated macroalgal communities over 25 years in response to changes in local human pressure management. This study suggests that maerl-associated macroalgal communities could be used as indicators of anthropogenically driven changes in this habitat.


Subject(s)
Seaweed , Seaweed/physiology , France , Humans , Ecosystem , Seasons , Biodiversity , Anthropogenic Effects , Biomass , Population Dynamics , Eutrophication , Human Activities
16.
Article in English | MEDLINE | ID: mdl-38995183

ABSTRACT

Three actinobacterial strains, KSW2-21T, KSW2-29T and KSW4-17T, were isolated from dried seaweeds collected around Gwakji Beach in Jeju, Republic of Korea. Their taxonomic positions were determined based on genomic, physiological and morphological characteristics. The isolates were Gram-positive, aerobic, non-motile, rod-shaped bacteria characterized by the following chemotaxonomic features: ornithine as the cell wall diamino acid, the N-glycolyl type of murein, MK-11 as the predominant menaquinone, polar lipids including diphosphatidylglycerol, phosphatidylglycerol, two unidentified glycolipids and four unidentified phospholipids, with anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0 as the the major fatty acids. The 16S rRNA gene phylogeny showed that the novel strains formed three distinct sublines within the genus Microbacterium. Strain KSW4-17T formed a tight cluster with the type strain of Microbacterium hydrothermale, while strains KSW2-21T and KSW2-29T occupied distinct positions between the type strains of M. hydrothermale and Microbacterium testaceum. Strains KSW4-17T and KSW2-29T showed 99.9 % rRNA gene sequence similarity to M. hydrothermale CGMCC 1.12512T, while strain KSW2-21T revealed 99.4 % 16S rRNA gene sequence similarity to the type strains of M. hydrothermale and M. testaceum. The genome sizes and genomic G+C contents of the three isolates ranged from 3.44 to 3.74 Mbp and from 70.3 to 70.8 mol%, respectively. The phylogenomic tree based on 92 core gene sequences exhibited similar topologies to the 16S rRNA gene phylogeny. The comparison of overall genomic relatedness indices, such as average nucleotide indentity and digital DNA-DNA hybridization, supported that the isolates represent three new species of the genus Microbacterium. Based on the results obtained here, Microbacterium algihabitans sp. nov. (type strain, KSW2-21T=KACC 23322T=DSM 116381T), Microbacterium phycohabitans sp. nov. (type strain KSW2-29T=KACC 22350T=NBRC 115221T) and Microbacterium galbum sp. nov. (type strain, KSW4-17T=KACC 23323T=DSM 116383T) are proposed.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Microbacterium , Phylogeny , RNA, Ribosomal, 16S , Seaweed , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , Seaweed/microbiology , Republic of Korea , Fatty Acids/chemistry , DNA, Bacterial/genetics , Microbacterium/genetics , Microbacterium/classification , Phospholipids , Nucleic Acid Hybridization , Vitamin K 2/analogs & derivatives
17.
Br J Nutr ; 131(7): 1259-1267, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38012847

ABSTRACT

This study aimed to identify the longitudinal association between seaweed and type 2 diabetes mellitus (T2DM) in the Korean population. Data from 148 404 Korean adults aged 40 years and older without a history of T2DM, cardiovascular disease or cancer at baseline were obtained from the Korean Genome and Epidemiology Study data. The participants' seaweed intake was obtained using a validated semi-quantitative food frequency questionnaire, and the diagnosis of T2DM was surveyed through a self-reported questionnaire during follow-up. The hazard ratio (HR) and 95 % confidence interval (CI) for T2DM were calculated using the Cox proportional hazard regression, and the dose-response relationship was analysed using a restricted cubic spline regression. Participants had a mean follow-up period of 5 years. Participants with the highest seaweed intake had a 7 % lower risk of T2DM compared with the group with the lowest intake (95 % CI (0·87, 0·99)). Interestingly, this association was stronger in those with normal weight (HR: 0·88, 95 % CI (0·81, 0·95)), while no association was observed in participants with obesity. Spline regression revealed an inverse linear relationship between seaweed intake and T2DM risk in participants with normal weight, showing a trend where increased seaweed intake is related to lower instances of T2DM (Pfor nonlinearity = 0·48). Seaweed intake is inversely associated with the onset of T2DM in Korean adults with normal weight.


Subject(s)
Diabetes Mellitus, Type 2 , Adult , Humans , Middle Aged , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Risk Factors , Prospective Studies , Diet/adverse effects , Surveys and Questionnaires , Vegetables , Incidence
18.
Physiol Plant ; 176(4): e14503, 2024.
Article in English | MEDLINE | ID: mdl-39191702

ABSTRACT

Worldwide, where the demand for novel and greener solutions for sustainable agricultural production is increasing, the use of eco-friendly products such as seaweed-derived biostimulants as pre-sowing treatment represent a promising and important approach for the future. Cystoseira barbata, a brown seaweed species abundant in the Mediterranean Region, was collected from the Marmara Sea and subjected to water, alkali, and acidic extractions, and the biostimulant activity of these extracts was tested on wheat (Triticum durum cv. Saricanak-98) using different rates through application to the seeds or germination medium (substrate) applications. The different extracts were characterized by mineral, total phenolic, free amino acid, mannitol, polysaccharide, antioxidant concentrations and hormone-like activity. The effects of the extracts on growth parameters, root morphology, esterase activity, and mineral nutrient concentrations of wheat seedlings were investigated. Our results suggest that the substrate application was more effective in enhancing the seedling performance compared to the seed treatment. High rates of seaweed extracts applied to substrates increased the shoot length and fresh weight of wheat seedlings by up to 20 and 25%, respectively. The substrate applications enhanced the root fresh weights of wheat seedlings by up to 25% when compared to control plants. Among the biostimulant extract applications, the water extract at the highest rate yielded the most promising results in terms of the measured parameters. Cystoseira barbata extracts with different compositions can be used as effective biostimulants to boost seedling growth. The local seaweed biomass affected by mucilage problems, has great potential as a bioeconomy resource and can contribute to sustainable practices for agriculture.


Subject(s)
Seaweed , Seedlings , Triticum , Triticum/growth & development , Triticum/drug effects , Triticum/physiology , Seedlings/drug effects , Seedlings/growth & development , Seaweed/growth & development , Germination/drug effects , Phaeophyceae/growth & development , Phaeophyceae/physiology , Phaeophyceae/drug effects , Antioxidants/metabolism , Seeds/drug effects , Seeds/growth & development , Plant Roots/growth & development , Plant Roots/drug effects , Plant Extracts/pharmacology
19.
Environ Sci Technol ; 58(40): 17999-18008, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39322975

ABSTRACT

Iodine derived from edible seaweed significantly enhances the formation of iodinated disinfection byproducts (I-DBPs) during household cooking. Reactions of chlorine with monoiodotyrosine (MIT) and diiodotyrosine (DIT) derived from seaweed were investigated. Species-specific second-order rate constants (25 °C) for the reaction of hypochlorous acid with neutral and anionic MIT were calculated to be 23.87 ± 5.01 and 634.65 ± 75.70 M-1 s-1, respectively, while the corresponding rate constants for that with neutral and anionic DIT were determined to be 12.51 ± 19.67 and 199.12 ± 8.64 M-1 s-1, respectively. Increasing temperature facilitated the reaction of chlorine with MIT and DIT. Based on the identification of 59 transformation products/DBPs from iodotyrosines by HPLC/Q-Orbitrap HRMS, three dominant reaction pathways were proposed. Thermodynamic results of computational modeling using density functional theory revealed that halogen exchange reaction follows a stepwise addition-elimination pathway. Among these DBPs, 3,5-diiodo-4-hydroxy-benzaldehyde and 3,5-diiodo-4-hydroxy-benzacetonitrle exhibited high toxic risk. During chlorination of MIT and DIT, iodinated trihalomethanes and haloacetic acids became dominant species at common cooking temperature (80 °C). These results provide insight into the mechanisms of halogen exchange reaction and imply important implications for the toxic risk associated with the exposure of I-DBPs from household cooking with iodine-containing food.


Subject(s)
Disinfection , Halogenation , Seaweed , Seaweed/chemistry , Iodine/chemistry
20.
Anal Bioanal Chem ; 416(12): 3033-3044, 2024 May.
Article in English | MEDLINE | ID: mdl-38520589

ABSTRACT

Seaweed is becoming increasingly popular in the Western diet as consumers opt for more sustainable food sources. However, seaweed is known to accumulate high levels of arsenic-which may be in the form of carcinogenic inorganic arsenic (iAs). Here we propose a fast method for the routine measurement of iAs in seaweed using HPLC-ICP-MS without coelution of arsenosugars that may complicate quantification. The developed method was optimised using design of experiments (DOE) and tested on a range of reference materials including TORT-3 (0.36 ± 0.03 mg kg-1), DORM-5 (0.02 ± 0.003 mg kg-1), and DOLT-5 (0.07 ± 0.007 mg kg-1). The use of nitric acid in the extraction solution allowed for the successful removal of interferences from arsenosugars by causing degradation to an unretained arsenosugar species, and a recovery of 99 ± 9% was obtained for iAs in Hijiki 7405-b when compared with the certified value. The method was found to be suitable for high-throughput analysis of iAs in a range of food and feed matrices including Asparagopsis taxiformis seaweed, grass silage, and insect proteins, and offers a cost-effective, fast, and robust option for routine analysis that requires minimal sample preparation. The method may be limited with regards to the quantification of dimethylarsenate (DMA) in seaweed, as the acidic extraction may lead to overestimation of this analyte by causing degradation of lipid species that are typically more abundant in seaweed than other marine matrices (i.e. arsenophospholipids). However, the concentrations of DMA quantified using this method may provide a better estimation with regard to exposure after ingestion and subsequent digestion of seaweed.


Subject(s)
Arsenates , Arsenic , Mass Spectrometry , Seaweed , Seaweed/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Arsenic/analysis , Food Contamination/analysis , Limit of Detection , Monosaccharides/analysis
SELECTION OF CITATIONS
SEARCH DETAIL