ABSTRACT
Determining the structure and mechanisms of all individual functional modules of cells at high molecular detail has often been seen as equal to understanding how cells work. Recent technical advances have led to a flush of high-resolution structures of various macromolecular machines, but despite this wealth of detailed information, our understanding of cellular function remains incomplete. Here, we discuss present-day limitations of structural biology and highlight novel technologies that may enable us to analyze molecular functions directly inside cells. We predict that the progression toward structural cell biology will involve a shift toward conceptualizing a 4D virtual reality of cells using digital twins. These will capture cellular segments in a highly enriched molecular detail, include dynamic changes, and facilitate simulations of molecular processes, leading to novel and experimentally testable predictions. Transferring biological questions into algorithms that learn from the existing wealth of data and explore novel solutions may ultimately unveil how cells work.
Subject(s)
Biology , Computational Biology , Macromolecular Substances/chemistryABSTRACT
Tissue folds are structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, finger-like protrusions that enable nutrient absorption. However, the molecular and mechanical processes driving villus morphogenesis remain unclear. Here, we identify an active mechanical mechanism that simultaneously patterns and folds the intestinal epithelium to initiate villus formation. At the cellular level, we find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. This symmetry-breaking process requires altered cell and extracellular matrix interactions that are enabled by matrix metalloproteinase-mediated tissue fluidization. Computational models, together with in vitro and in vivo experiments, revealed that these cellular features manifest at the tissue level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active dewetting of a thin liquid film.
Subject(s)
Extracellular Matrix , Intestinal Mucosa , Animals , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Extracellular Matrix/metabolism , Myosin Type II/metabolism , Mesoderm/metabolism , Mesoderm/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Morphogenesis , Matrix Metalloproteinases/metabolismABSTRACT
During vertebrate embryogenesis, cell collectives engage in coordinated behavior to form tissue structures of increasing complexity. In the avian skin, assembly into follicles depends on intrinsic mechanical forces of the dermis, but how cell mechanics initiate pattern formation is not known. Here, we reconstitute the initiation of follicle patterning ex vivo using only freshly dissociated avian dermal cells and collagen. We find that contractile cells physically rearrange the extracellular matrix (ECM) and that ECM rearrangement further aligns cells. This exchange transforms a mechanically unlinked collective of dermal cells into a continuum, with coherent, long-range order. Combining theory with experiment, we show that this ordered cell-ECM layer behaves as an active contractile fluid that spontaneously forms regular patterns. Our study illustrates a role for mesenchymal dynamics in generating cell-level ordering and tissue-level patterning through a fluid instability-processes that may be at play across morphological symmetry-breaking contexts.
Subject(s)
Extracellular Matrix , Hair Follicle , Animals , Collagen , Skin , VertebratesABSTRACT
Animal tissues are made up of multiple cell types that are increasingly well-characterized, yet our understanding of the core principles that govern tissue organization is still incomplete. This is in part because many observable tissue characteristics, such as cellular composition and spatial patterns, are emergent properties, and as such, they cannot be explained through the knowledge of individual cells alone. Here we propose a complex systems theory perspective to address this fundamental gap in our understanding of tissue biology. We introduce the concept of cell categories, which is based on cell relations rather than cell identity. Based on these notions we then discuss common principles of tissue modularity, introducing compositional, structural, and functional tissue modules. Cell diversity and cell relations provide a basis for a new perspective on the underlying principles of tissue organization in health and disease.
Subject(s)
Biology , AnimalsABSTRACT
Organoids capable of forming tissue-like structures have transformed our ability to model human development and disease. With the notable exception of the human heart, lineage-specific self-organizing organoids have been reported for all major organs. Here, we established self-organizing cardioids from human pluripotent stem cells that intrinsically specify, pattern, and morph into chamber-like structures containing a cavity. Cardioid complexity can be controlled by signaling that instructs the separation of cardiomyocyte and endothelial layers and by directing epicardial spreading, inward migration, and differentiation. We find that cavity morphogenesis is governed by a mesodermal WNT-BMP signaling axis and requires its target HAND1, a transcription factor linked to developmental heart chamber defects. Upon cryoinjury, cardioids initiated a cell-type-dependent accumulation of extracellular matrix, an early hallmark of both regeneration and heart disease. Thus, human cardioids represent a powerful platform to mechanistically dissect self-organization, congenital heart defects and serve as a foundation for future translational research.
Subject(s)
Heart/embryology , Organogenesis , Organoids/embryology , Activins/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Bone Morphogenetic Proteins/metabolism , Calcium/metabolism , Cell Line , Cell Lineage , Chickens , Endothelial Cells/cytology , Extracellular Matrix Proteins/metabolism , Female , Fibroblasts/cytology , Homeobox Protein Nkx-2.5/metabolism , Humans , Male , Mesoderm/embryology , Models, Biological , Myocardium/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Wnt Proteins/metabolismABSTRACT
Genomes have complex three-dimensional architectures. The recent convergence of genetic, biochemical, biophysical, and cell biological methods has uncovered several fundamental principles of genome organization. They highlight that genome function is a major driver of genome architecture and that structural features of chromatin act as modulators, rather than binary determinants, of genome activity. The interplay of these principles in the context of self-organization can account for the emergence of structural chromatin features, the diversity and single-cell heterogeneity of nuclear architecture in cell types and tissues, and explains evolutionarily conserved functional features of genomes, including plasticity and robustness.
Subject(s)
Chromatin/genetics , Genome/genetics , Genome/physiology , Animals , Cell Nucleus/metabolism , Chromatin/metabolism , Chromosomes , Gene Expression/genetics , Gene Expression Regulation/genetics , Humans , Structure-Activity RelationshipABSTRACT
The purpose of this review is to explore self-organizing mechanisms that pattern microtubules (MTs) and spatially organize animal cell cytoplasm, inspired by recent experiments in frog egg extract. We start by reviewing conceptual distinctions between self-organizing and templating mechanisms for subcellular organization. We then discuss self-organizing mechanisms that generate radial MT arrays and cell centers in the absence of centrosomes. These include autocatalytic MT nucleation, transport of minus ends, and nucleation from organelles such as melanosomes and Golgi vesicles that are also dynein cargoes. We then discuss mechanisms that partition the cytoplasm in syncytia, in which multiple nuclei share a common cytoplasm, starting with cytokinesis, when all metazoan cells are transiently syncytial. The cytoplasm of frog eggs is partitioned prior to cytokinesis by two self-organizing modules, protein regulator of cytokinesis 1 (PRC1)-kinesin family member 4A (KIF4A) and chromosome passenger complex (CPC)-KIF20A. Similar modules may partition longer-lasting syncytia, such as early Drosophila embryos. We end by discussing shared mechanisms and principles for the MT-based self-organization of cellular units.
Subject(s)
Centrosome , Microtubules , Animals , Centrosome/metabolism , Cytokinesis , Cytoskeleton , Golgi Apparatus , Microtubules/metabolismABSTRACT
One of the most common bacterial shapes is a rod, yet we have a limited understanding of how this simple shape is constructed. While only six proteins are required for rod shape, we are just beginning to understand how they self-organize to build the micron-sized enveloping structures that define bacterial shape out of nanometer-sized glycan strains. Here, we detail and summarize the insights gained over the last 20 years into this complex problem that have been achieved with a wide variety of different approaches. We also explain and compare both current and past models of rod shape formation and maintenance and then highlight recent insights into how the Rod complex might be regulated.
Subject(s)
Bacteria , Bacterial Proteins , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/geneticsABSTRACT
Morphogenesis is one of the most remarkable examples of biological pattern formation. Despite substantial progress in the field, we still do not understand the organizational principles responsible for the robust convergence of the morphogenesis process across scales to form viable organisms under variable conditions. Achieving large-scale coordination requires feedback between mechanical and biochemical processes, spanning all levels of organization and relating the emerging patterns with the mechanisms driving their formation. In this review, we highlight the role of mechanics in the patterning process, emphasizing the active and synergistic manner in which mechanical processes participate in developmental patterning rather than merely following a program set by biochemical signals. We discuss the value of applying a coarse-grained approach that considers the large-scale dynamics and feedback and complements the reductionist approach focused on molecular detail. A central challenge in this approach is identifying relevant coarse-grained variables and developing effective theories that can serve as a basis for an integrated framework toward understanding this remarkable pattern-formation process.
Subject(s)
Morphogenesis , AnimalsABSTRACT
The synchronous cleavage divisions of early embryogenesis require coordination of the cell-cycle oscillator, the dynamics of the cytoskeleton, and the cytoplasm. Yet, it remains unclear how spatially restricted biochemical signals are integrated with physical properties of the embryo to generate collective dynamics. Here, we show that synchronization of the cell cycle in Drosophila embryos requires accurate nuclear positioning, which is regulated by the cell-cycle oscillator through cortical contractility and cytoplasmic flows. We demonstrate that biochemical oscillations are initiated by local Cdk1 inactivation and spread through the activity of phosphatase PP1 to generate cortical myosin II gradients. These gradients cause cortical and cytoplasmic flows that control proper nuclear positioning. Perturbations of PP1 activity and optogenetic manipulations of cortical actomyosin disrupt nuclear spreading, resulting in loss of cell-cycle synchrony. We conclude that mitotic synchrony is established by a self-organized mechanism that integrates the cell-cycle oscillator and embryo mechanics.
Subject(s)
CDC2 Protein Kinase/metabolism , Cell Cycle/physiology , Cell Nucleus Division/physiology , Drosophila Proteins/metabolism , Actomyosin/metabolism , Animals , Cell Nucleus/metabolism , Cytokinesis/physiology , Cytoplasm , Cytoskeleton/metabolism , Drosophila melanogaster/embryology , Embryo, Nonmammalian/metabolism , Embryonic Development/physiology , Microtubules/metabolism , Mitosis , Myosin Type II/metabolism , Phosphoric Monoester Hydrolases/metabolismABSTRACT
Tight junctions are cell-adhesion complexes that seal tissues and are involved in cell polarity and signaling. Supra-molecular assembly and positioning of tight junctions as continuous networks of adhesion strands are dependent on the membrane-associated scaffolding proteins ZO1 and ZO2. To understand how zona occludens (ZO) proteins organize junction assembly, we performed quantitative cell biology and in vitro reconstitution experiments. We discovered that ZO proteins self-organize membrane-attached compartments via phase separation. We identified the multivalent interactions of the conserved PDZ-SH3-GuK supra-domain as the driver of phase separation. These interactions are regulated by phosphorylation and intra-molecular binding. Formation of condensed ZO protein compartments is sufficient to specifically enrich and localize tight-junction proteins, including adhesion receptors, cytoskeletal adapters, and transcription factors. Our results suggest that an active-phase transition of ZO proteins into a condensed membrane-bound compartment drives claudin polymerization and coalescence of a continuous tight-junction belt.
Subject(s)
Tight Junctions/genetics , Zonula Occludens Proteins/genetics , Zonula Occludens-1 Protein/genetics , Zonula Occludens-2 Protein/genetics , Animals , Binding Sites/genetics , Cell Adhesion/genetics , Cell Polarity/genetics , Dogs , HEK293 Cells , Humans , Madin Darby Canine Kidney Cells , Membrane Proteins/genetics , PDZ Domains/genetics , Phosphoproteins/genetics , Phosphorylation/genetics , Protein Binding/genetics , Signal Transduction/genetics , Tight Junctions/metabolism , Zonula Occludens Proteins/chemistry , Zonula Occludens Proteins/ultrastructure , Zonula Occludens-1 Protein/chemistry , Zonula Occludens-1 Protein/ultrastructure , Zonula Occludens-2 Protein/chemistry , Zonula Occludens-2 Protein/ultrastructure , src Homology Domains/geneticsABSTRACT
Many fundamental cellular processes such as division, polarization, endocytosis, and motility require the assembly, maintenance, and disassembly of filamentous actin (F-actin) networks at specific locations and times within the cell. The particular function of each network is governed by F-actin organization, size, and density as well as by its dynamics. The distinct characteristics of different F-actin networks are determined through the coordinated actions of specific sets of actin-binding proteins (ABPs). Furthermore, a cell typically assembles and uses multiple F-actin networks simultaneously within a common cytoplasm, so these networks must self-organize from a common pool of shared globular actin (G-actin) monomers and overlapping sets of ABPs. Recent advances in multicolor imaging and analysis of ABPs and their associated F-actin networks in cells, as well as the development of sophisticated in vitro reconstitutions of networks with ensembles of ABPs, have allowed the field to start uncovering the underlying principles by which cells self-organize diverse F-actin networks to execute basic cellular functions.
Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Humans , Microfilament Proteins/metabolism , Models, Biological , Schizosaccharomyces/metabolismABSTRACT
Synthetic multicellular systems hold promise as models for understanding natural development of biofilms and higher organisms and as tools for engineering complex multi-component metabolic pathways and materials. However, such efforts require tools to adhere cells into defined morphologies and patterns, and these tools are currently lacking. Here, we report a 100% genetically encoded synthetic platform for modular cell-cell adhesion in Escherichia coli, which provides control over multicellular self-assembly. Adhesive selectivity is provided by a library of outer membrane-displayed nanobodies and antigens with orthogonal intra-library specificities, while affinity is controlled by intrinsic adhesin affinity, competitive inhibition, and inducible expression. We demonstrate the resulting capabilities for quantitative rational design of well-defined morphologies and patterns through homophilic and heterophilic interactions, lattice-like self-assembly, phase separation, differential adhesion, and sequential layering. Compatible with synthetic biology standards, this adhesion toolbox will enable construction of high-level multicellular designs and shed light on the evolutionary transition to multicellularity.
Subject(s)
Cell Adhesion/physiology , Metabolic Engineering/methods , Synthetic Biology/methods , Bacterial Physiological Phenomena , Biological Evolution , Cell Adhesion/genetics , Cell Differentiation/genetics , Cell Differentiation/physiology , Escherichia coli/genetics , Gene Library , Metabolic Networks and Pathways , Single-Domain Antibodies/genetics , Single-Domain Antibodies/immunology , Single-Domain Antibodies/physiologyABSTRACT
During cell division, mitotic motors organize microtubules in the bipolar spindle into either polar arrays at the spindle poles or a "nematic" network of aligned microtubules at the spindle center. The reasons for the distinct self-organizing capacities of dynamic microtubules and different motors are not understood. Using in vitro reconstitution experiments and computer simulations, we show that the human mitotic motors kinesin-5 KIF11 and kinesin-14 HSET, despite opposite directionalities, can both organize dynamic microtubules into either polar or nematic networks. We show that in addition to the motor properties the natural asymmetry between microtubule plus- and minus-end growth critically contributes to the organizational potential of the motors. We identify two control parameters that capture system composition and kinetic properties and predict the outcome of microtubule network organization. These results elucidate a fundamental design principle of spindle bipolarity and establish general rules for active filament network organization.
Subject(s)
Kinesins/metabolism , Microtubules/metabolism , Molecular Dynamics Simulation , Spindle Apparatus/metabolism , Animals , Humans , Kinesins/chemistry , Microtubules/chemistry , Sf9 Cells , Spindle Apparatus/chemistry , SpodopteraABSTRACT
The morphogenesis of branched organs remains a subject of abiding interest. Although much is known about the underlying signaling pathways, it remains unclear how macroscopic features of branched organs, including their size, network topology, and spatial patterning, are encoded. Here, we show that, in mouse mammary gland, kidney, and human prostate, these features can be explained quantitatively within a single unifying framework of branching and annihilating random walks. Based on quantitative analyses of large-scale organ reconstructions and proliferation kinetics measurements, we propose that morphogenesis follows from the proliferative activity of equipotent tips that stochastically branch and randomly explore their environment but compete neutrally for space, becoming proliferatively inactive when in proximity with neighboring ducts. These results show that complex branched epithelial structures develop as a self-organized process, reliant upon a strikingly simple but generic rule, without recourse to a rigid and deterministic sequence of genetically programmed events.
Subject(s)
Kidney/growth & development , Mammary Glands, Human/growth & development , Models, Biological , Morphogenesis , Prostate/growth & development , Animals , Female , Humans , Kidney/embryology , Male , Mammary Glands, Human/embryology , Mice , Prostate/embryologyABSTRACT
We present an overview of symmetry breaking in early mammalian development as a continuous process from compaction to specification of the body axes. While earlier studies have focused on individual symmetry-breaking events, recent advances enable us to explore progressive symmetry breaking during early mammalian development. Although we primarily discuss embryonic development of the mouse, as it is the best-studied mammalian model system to date, we also highlight the shared and distinct aspects between different mammalian species. Finally, we discuss how insights gained from studying mammalian development can be generalized in light of self-organization principles. With this review, we hope to highlight new perspectives in studying symmetry breaking and self-organization in multicellular systems.
Subject(s)
Blastocyst/cytology , Body Patterning/genetics , Embryo, Mammalian , Embryonic Development/genetics , Cell Lineage/genetics , HumansABSTRACT
Cell polarity networks are defined by quantitative features of their constituent feedback circuits, which must be tuned to enable robust and stable polarization, while also ensuring that networks remain responsive to dynamically changing cellular states and/or spatial cues during development. Using the PAR polarity network as a model, we demonstrate that these features are enabled by the dimerization of the polarity protein PAR-2 via its N-terminal RING domain. Combining theory and experiment, we show that dimer affinity is optimized to achieve dynamic, selective, and cooperative binding of PAR-2 to the plasma membrane during polarization. Reducing dimerization compromises positive feedback and robustness of polarization. Conversely, enhanced dimerization renders the network less responsive due to kinetic trapping of PAR-2 on internal membranes and reduced sensitivity of PAR-2 to the anterior polarity kinase, aPKC/PKC-3. Thus, our data reveal a key role for a dynamically oligomeric RING domain in optimizing interaction affinities to support a robust and responsive cell polarity network, and highlight how optimization of oligomerization kinetics can serve as a strategy for dynamic and cooperative intracellular targeting.
Subject(s)
Cell Membrane , Cell Polarity , Protein Kinase C , Protein Multimerization , Cell Membrane/metabolism , Protein Kinase C/metabolism , Animals , Protein BindingABSTRACT
During mouse development, presomitic mesoderm cells synchronize Wnt and Notch oscillations, creating sequential phase waves that pattern somites. Traditional somitogenesis models attribute phase waves to a global modulation of the oscillation frequency. However, increasing evidence suggests that they could arise in a self-organizing manner. Here, we introduce the Sevilletor, a novel reaction-diffusion system that serves as a framework to compare different somitogenesis patterning hypotheses. Using this framework, we propose the Clock and Wavefront Self-Organizing model that considers an excitable self-organizing region where phase waves form independent of global frequency gradients. The model recapitulates the change in relative phase of Wnt and Notch observed during mouse somitogenesis and provides a theoretical basis for understanding the excitability of mouse presomitic mesoderm cells in vitro.
Subject(s)
Receptors, Notch , Somites , Animals , Mice , Somites/embryology , Somites/metabolism , Receptors, Notch/metabolism , Receptors, Notch/genetics , Mesoderm/embryology , Mesoderm/metabolism , Models, Biological , Body Patterning/genetics , Wnt Proteins/metabolism , Wnt Proteins/genetics , Embryonic Development/genetics , Embryonic Development/physiology , Biological Clocks/physiologyABSTRACT
Self-organized spatial patterns are a common feature of complex systems, ranging from microbial communities to mussel beds and drylands. While the theoretical implications of these patterns for ecosystem-level processes, such as functioning and resilience, have been extensively studied, empirical evidence remains scarce. To address this gap, we analyzed global drylands along an aridity gradient using remote sensing, field data, and modeling. We found that the spatial structure of the vegetation strengthens as aridity increases, which is associated with the maintenance of a high level of soil multifunctionality, even as aridity levels rise up to a certain threshold. The combination of these results with those of two individual-based models indicate that self-organized vegetation patterns not only form in response to stressful environmental conditions but also provide drylands with the ability to adapt to changing conditions while maintaining their functioning, an adaptive capacity which is lost in degraded ecosystems. Self-organization thereby plays a vital role in enhancing the resilience of drylands. Overall, our findings contribute to a deeper understanding of the relationship between spatial vegetation patterns and dryland resilience. They also represent a significant step forward in the development of indicators for ecosystem resilience, which are critical tools for managing and preserving these valuable ecosystems in a warmer and more arid world.
Subject(s)
Microbiota , Resilience, Psychological , Ecosystem , SoilABSTRACT
The global steady state of a system in thermal equilibrium exponentially favors configurations with lesser energy. This principle is a powerful explanation of self-organization because energy is a local property of configurations. For nonequilibrium systems, there is no such property for which an analogous principle holds, hence no common explanation of the diverse forms of self-organization they exhibit. However, a flurry of recent empirical results has shown that a local property of configurations called "rattling" predicts the steady states of some nonequilibrium systems, leading to claims of a far-reaching principle of nonequilibrium self-organization. But for which nonequilibrium systems is rattling accurate, and why? We develop a theory of rattling in terms of Markov processes that gives simple and precise answers to these key questions. Our results show that rattling predicts a broader class of nonequilibrium steady states than has been claimed and for different reasons than have been suggested. Its predictions hold to an extent determined by the relative variance of, and correlation between, the local and global "parts" of a steady state. We show how these quantities characterize the local-global relationships of various random walks on random graphs, spin-glass dynamics, and models of animal collective behavior. Surprisingly, we find that the core idea of rattling is so general as to apply to equilibrium and nonequilibrium systems alike.