Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 186
Filter
Add more filters

Publication year range
1.
J Neurosci ; 43(30): 5501-5520, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37290937

ABSTRACT

Respiratory chemoreceptor activity encoding arterial Pco2 and Po2 is a critical determinant of ventilation. Currently, the relative importance of several putative chemoreceptor mechanisms for maintaining eupneic breathing and respiratory homeostasis is debated. Transcriptomic and anatomic evidence suggests that bombesin-related peptide Neuromedin-B (Nmb) expression identifies chemoreceptor neurons in the retrotrapezoid nucleus (RTN) that mediate the hypercapnic ventilatory response, but functional support is missing. In this study, we generated a transgenic Nmb-Cre mouse and used Cre-dependent cell ablation and optogenetics to test the hypothesis that RTN Nmb neurons are necessary for the CO2-dependent drive to breathe in adult male and female mice. Selective ablation of ∼95% of RTN Nmb neurons causes compensated respiratory acidosis because of alveolar hypoventilation, as well as profound breathing instability and respiratory-related sleep disruption. Following RTN Nmb lesion, mice were hypoxemic at rest and were prone to severe apneas during hyperoxia, suggesting that oxygen-sensitive mechanisms, presumably the peripheral chemoreceptors, compensate for the loss of RTN Nmb neurons. Interestingly, ventilation following RTN Nmb -lesion was unresponsive to hypercapnia, but behavioral responses to CO2 (freezing and avoidance) and the hypoxia ventilatory response were preserved. Neuroanatomical mapping shows that RTN Nmb neurons are highly collateralized and innervate the respiratory-related centers in the pons and medulla with a strong ipsilateral preference. Together, this evidence suggests that RTN Nmb neurons are dedicated to the respiratory effects of arterial Pco2/pH and maintain respiratory homeostasis in intact conditions and suggest that malfunction of these neurons could underlie the etiology of certain forms of sleep-disordered breathing in humans.SIGNIFICANCE STATEMENT Respiratory chemoreceptors stimulate neural respiratory motor output to regulate arterial Pco2 and Po2, thereby maintaining optimal gas exchange. Neurons in the retrotrapezoid nucleus (RTN) that express the bombesin-related peptide Neuromedin-B are proposed to be important in this process, but functional evidence has not been established. Here, we developed a transgenic mouse model and demonstrated that RTN neurons are fundamental for respiratory homeostasis and mediate the stimulatory effects of CO2 on breathing. Our functional and anatomic data indicate that Nmb-expressing RTN neurons are an integral component of the neural mechanisms that mediate CO2-dependent drive to breathe and maintain alveolar ventilation. This work highlights the importance of the interdependent and dynamic integration of CO2- and O2-sensing mechanisms in respiratory homeostasis of mammals.


Subject(s)
Bombesin , Carbon Dioxide , Humans , Mice , Male , Female , Animals , Bombesin/metabolism , Respiration , Chemoreceptor Cells/physiology , Hypercapnia , Homeostasis , Mice, Transgenic , Oxygen/metabolism , Neurons/physiology , Respiratory Center , Mammals
2.
J Sleep Res ; 33(2): e14062, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37803888

ABSTRACT

Different mouse strains used in biomedical research show different phenotypes associated with their genotypes. Two mouse strains commonly used in biomedical sleep research are C57Bl/6 and C3H/He, the strains differ in numerous aspects, including their ability to secrete melatonin as well as the expression of several sleep-related genes. However, sleep regulation has only limitedly been compared between C3H/HeN and C57Bl/6 mice. We therefore compared sleep-wake behaviour and EEG-measured spectral brain activity for C57bl/6 and C3H/HeN mice during a 12:12 h light: dark baseline and during and after a 6 h sleep deprivation. The C3H mice spent more time in NREM sleep around the light-dark transition and more time in REM sleep during the dark phase compared with C57bl/6 mice. The C3H mice also showed more EEG activity in the 4.5-7.5 Hz range during all stages and a stronger 24 h modulation of EEG power density in almost all EEG frequencies during NREM sleep. After the sleep deprivation, C3H mice showed a stronger recovery response, which was expressed in both a larger increase in EEG slow wave activity (SWA) and more time spent in NREM sleep. We show large differences regarding sleep architecture and EEG activity between C3H and C57bl/6 mice. These differences include the amount of waking during the late dark phase, the 24 h amplitude in EEG power density, and the amount of REM sleep during the dark phase. We conclude that differences between mouse strains should be considered when selecting a model strain to improve the generalisability of studies investigating biomedical parameters related to sleep and circadian rhythms.


Subject(s)
Sleep Deprivation , Sleep , Mice , Animals , Sleep Deprivation/complications , Mice, Inbred C3H , Mice, Inbred C57BL , Sleep/physiology , Electroencephalography , Circadian Rhythm/physiology
3.
J Sleep Res ; : e14140, 2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38221756

ABSTRACT

Acute caffeine intake affects brain and cardiovascular physiology, yet the concentration-effect relationships on the electroencephalogram and cardiac autonomic activity during sleep are poorly understood. To tackle this question, we simultaneously quantified the plasma caffeine concentration with ultra-high-performance liquid chromatography, as well as the electroencephalogram, heart rate and high-frequency (0.15-0.4 Hz) spectral power in heart rate variability, representing parasympathetic activity, with standard polysomnography during undisturbed human sleep. Twenty-one healthy young men in randomized, double-blind, crossover fashion, ingested 160 mg caffeine or placebo in a delayed, pulsatile-release caffeine formula at their habitual bedtime, and initiated a 4-hr sleep opportunity 4.5 hr later. The mean caffeine levels during sleep exhibited high individual variability between 0.2 and 18.4 µmol L-1 . Across the first two non-rapid-eye-movement (NREM)-rapid-eye-movement sleep cycles, electroencephalogram delta (0.75-2.5 Hz) activity and heart rate were reliably modulated by waking and sleep states. Caffeine dose-dependently reduced delta activity and heart rate, and increased high-frequency heart rate variability in NREM sleep when compared with placebo. The average reduction in heart rate equalled 3.24 ± 0.77 beats per minute. Non-linear statistical models suggest that caffeine levels above ~7.4 µmol L-1 decreased electroencephalogram delta activity, whereas concentrations above ~4.3 µmol L-1 and ~ 4.9 µmol L-1 , respectively, reduced heart rate and increased high-frequency heart rate variability. These findings provide quantitative concentration-effect relationships of caffeine, electroencephalogram delta power and cardiac autonomic activity, and suggest increased parasympathetic activity during sleep after intake of caffeine.

4.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34903646

ABSTRACT

Sleep and wakefulness are not simple, homogenous all-or-none states but represent a spectrum of substates, distinguished by behavior, levels of arousal, and brain activity at the local and global levels. Until now, the role of the hypothalamic circuitry in sleep-wake control was studied primarily with respect to its contribution to rapid state transitions. In contrast, whether the hypothalamus modulates within-state dynamics (state "quality") and the functional significance thereof remains unexplored. Here, we show that photoactivation of inhibitory neurons in the lateral preoptic area (LPO) of the hypothalamus of adult male and female laboratory mice does not merely trigger awakening from sleep, but the resulting awake state is also characterized by an activated electroencephalogram (EEG) pattern, suggesting increased levels of arousal. This was associated with a faster build-up of sleep pressure, as reflected in higher EEG slow-wave activity (SWA) during subsequent sleep. In contrast, photoinhibition of inhibitory LPO neurons did not result in changes in vigilance states but was associated with persistently increased EEG SWA during spontaneous sleep. These findings suggest a role of the LPO in regulating arousal levels, which we propose as a key variable shaping the daily architecture of sleep-wake states.


Subject(s)
Glutamate Decarboxylase/metabolism , Preoptic Area/physiology , Sleep/physiology , Animals , Dexmedetomidine , Electroencephalography , Female , Homeostasis , Male , Mice , Optogenetics
5.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article in English | MEDLINE | ID: mdl-34782479

ABSTRACT

Sleep is controlled by homeostatic mechanisms, which drive sleep after wakefulness, and a circadian clock, which confers the 24-h rhythm of sleep. These processes interact with each other to control the timing of sleep in a daily cycle as well as following sleep deprivation. However, the mechanisms by which they interact are poorly understood. We show here that hugin+ neurons, previously identified as neurons that function downstream of the clock to regulate rhythms of locomotor activity, are also targets of the sleep homeostat. Sleep deprivation decreases activity of hugin+ neurons, likely to suppress circadian-driven activity during recovery sleep, and ablation of hugin+ neurons promotes sleep increases generated by activation of the homeostatic sleep locus, the dorsal fan-shaped body (dFB). Also, mutations in peptides produced by the hugin+ locus increase recovery sleep following deprivation. Transsynaptic mapping reveals that hugin+ neurons feed back onto central clock neurons, which also show decreased activity upon sleep loss, in a Hugin peptide-dependent fashion. We propose that hugin+ neurons integrate circadian and sleep signals to modulate circadian circuitry and regulate the timing of sleep.


Subject(s)
Circadian Clocks/physiology , Drosophila Proteins/metabolism , Neurons/physiology , Neuropeptides/genetics , Neuropeptides/metabolism , Sleep/physiology , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Female , Homeostasis , Locomotion , Mutation , Sleep Deprivation , Wakefulness/physiology
6.
Neuroimage ; 272: 120045, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36997136

ABSTRACT

Sleep has been suggested to contribute to myelinogenesis and associated structural changes in the brain. As a principal hallmark of sleep, slow-wave activity (SWA) is homeostatically regulated but also differs between individuals. Besides its homeostatic function, SWA topography is suggested to reflect processes of brain maturation. Here, we assessed whether interindividual differences in sleep SWA and its homeostatic response to sleep manipulations are associated with in-vivo myelin estimates in a sample of healthy young men. Two hundred twenty-six participants (18-31 y.) underwent an in-lab protocol in which SWA was assessed at baseline (BAS), after sleep deprivation (high homeostatic sleep pressure, HSP) and after sleep saturation (low homeostatic sleep pressure, LSP). Early-night frontal SWA, the frontal-occipital SWA ratio, as well as the overnight exponential SWA decay were computed over sleep conditions. Semi-quantitative magnetization transfer saturation maps (MTsat), providing markers for myelin content, were acquired during a separate laboratory visit. Early-night frontal SWA was negatively associated with regional myelin estimates in the temporal portion of the inferior longitudinal fasciculus. By contrast, neither the responsiveness of SWA to sleep saturation or deprivation, its overnight dynamics, nor the frontal/occipital SWA ratio were associated with brain structural indices. Our results indicate that frontal SWA generation tracks inter-individual differences in continued structural brain re-organization during early adulthood. This stage of life is not only characterized by ongoing region-specific changes in myelin content, but also by a sharp decrease and a shift towards frontal predominance in SWA generation.


Subject(s)
Electroencephalography , Myelin Sheath , Male , Humans , Adult , Sleep/physiology , Sleep Deprivation , Brain
7.
Genes Cells ; 27(6): 381-391, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35438236

ABSTRACT

Sleep is regulated by two main processes: the circadian clock and sleep homeostasis. Circadian rhythms have been well studied at the molecular level. In the Drosophila circadian clock neurons, the core clock proteins are precisely regulated by post-translational modifications and degraded via the ubiquitin-proteasome system (UPS). Sleep homeostasis, however, is less understood; nevertheless, recent reports suggest that proteasome-mediated degradation of core clock proteins or synaptic proteins contributes to the regulation of sleep amount. Here, we review the molecular mechanism of the UPS and summarize the role of protein degradation in the regulation of circadian clock and homeostatic sleep in Drosophila. Moreover, we discuss the potential interaction between circadian clock and homeostatic sleep regulation with a prime focus on E3 ubiquitin ligases.


Subject(s)
Circadian Rhythm , Drosophila Proteins , Animals , CLOCK Proteins , Circadian Rhythm/physiology , Drosophila/metabolism , Drosophila Proteins/metabolism , Homeostasis , Proteasome Endopeptidase Complex , Sleep/physiology , Ubiquitin
8.
J Sleep Res ; : e14117, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38059385

ABSTRACT

Chronic sleep restriction, common in today's 24/7 society, causes cumulative neurobehavioural impairment, but the dynamics of the build-up and dissipation of this impairment have not been fully elucidated. We addressed this knowledge gap in a laboratory study involving two, 5-day periods of sleep restriction to 4 hr per day, separated by a 1-day dose-response intervention sleep opportunity. We measured sleep physiological and waking neurobehavioural responses in 70 healthy adults, each randomized to one of seven dose-response intervention sleep doses ranging from 0 to 12 hr, or a non-sleep-restricted control group. As anticipated, sleep physiological markers showed homeostatic dynamics throughout the study, and waking neurobehavioural impairment accumulated across the two sleep restriction periods. Unexpectedly, there was only a slight and short-lived effect of the 1-day dose-response intervention sleep opportunity. Whether the dose-response intervention sleep opportunity involved extension, further restriction or total deprivation of sleep, neurobehavioural functioning during the subsequent second sleep restriction period was dominated by prior sleep-wake history. Our findings revealed a profound and enduring influence of long-term sleep-wake history as a fundamental aspect of the dynamic regulation of the neurobehavioural response to sleep loss.

9.
EMBO Rep ; 22(2): e47910, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33410264

ABSTRACT

Sleep homeostasis is crucial for sleep regulation. The role of epigenetic regulation in sleep homeostasis is unestablished. Previous studies showed that octopamine is important for sleep homeostasis. However, the regulatory mechanism of octopamine reception in sleep is unknown. In this study, we identify an epigenetic regulatory cascade (Stuxnet-Polycomb-Octß2R) that modulates the octopamine receptor in Drosophila. We demonstrate that stuxnet positively regulates Octß2R through repression of Polycomb in the ellipsoid body of the adult fly brain and that Octß2R is one of the major receptors mediating octopamine function in sleep homeostasis. In response to octopamine, Octß2R transcription is inhibited as a result of stuxnet downregulation. This feedback through the Stuxnet-Polycomb-Octß2R cascade is crucial for sleep homeostasis regulation. This study demonstrates a Stuxnet-Polycomb-Octß2R-mediated epigenetic regulatory mechanism for octopamine reception, thus providing an example of epigenetic regulation of sleep homeostasis.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Epigenesis, Genetic , Octopamine/pharmacology , Sleep , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Polycomb Repressive Complex 1 , Receptors, G-Protein-Coupled , Sleep/drug effects , Sleep/genetics
10.
Br J Anaesth ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38071152

ABSTRACT

BACKGROUND: Sleep disruption is a common occurrence during medical care and is detrimental to patient recovery. Long-term sedation in the critical care setting is a modifiable factor that affects sleep, but the impact of different sedative-hypnotics on sleep homeostasis is not clear. METHODS: We conducted a systematic comparison of the effects of prolonged sedation (8 h) with i.v. and inhalational agents on sleep homeostasis. Adult Sprague-Dawley rats (n=10) received dexmedetomidine or midazolam on separate days. Another group (n=9) received propofol or sevoflurane on separate days. A third group (n=12) received coadministration of dexmedetomidine and sevoflurane. Wakefulness (wake), slow-wave sleep (SWS), and rapid eye movement (REM) sleep were quantified during the 48-h post-sedation period, during which we also assessed wake-associated neural dynamics using two electroencephalographic measures: theta-high gamma phase-amplitude coupling and high gamma weighted phase-lag index. RESULTS: Dexmedetomidine-, midazolam-, or propofol-induced sedation increased wake and decreased SWS and REM sleep (P<0.0001) during the 48-h post-sedation period. Sevoflurane produced no change in SWS, decreased wake for 3 h, and increased REM sleep for 6 h (P<0.02) post-sedation. Coadministration of dexmedetomidine and sevoflurane induced no change in wake (P>0.05), increased SWS for 3 h, and decreased REM sleep for 9 h (P<0.02) post-sedation. Dexmedetomidine, midazolam, and coadministration of dexmedetomidine with sevoflurane reduced wake-associated phase-amplitude coupling (P≤0.01). All sedatives except sevoflurane decreased wake-associated high gamma weighted phase-lag index (P<0.01). CONCLUSIONS: In contrast to i.v. drugs, prolonged sevoflurane sedation produced minimal changes in sleep homeostasis and neural dynamics. Further studies are warranted to assess inhalational agents for long-term sedation and sleep homeostasis.

11.
Proc Natl Acad Sci U S A ; 117(19): 10547-10553, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32350140

ABSTRACT

The activity-regulated cytoskeleton-associated protein (Arc) gene is a neural immediate early gene that is involved in synaptic downscaling and is robustly induced by prolonged wakefulness in rodent brains. Converging evidence has led to the hypothesis that wakefulness potentiates, and sleep reduces, synaptic strengthening. This suggests a potential role for Arc in these and other sleep-related processes. However, the role of Arc in sleep remains unknown. Here, we demonstrated that Arc is important for the induction of multiple behavioral and molecular responses associated with sleep homeostasis. Arc knockout (KO) mice displayed increased time spent in rapid eye movement (REM) sleep under baseline conditions and marked attenuation of sleep rebound to both 4 h of total sleep deprivation (SD) and selective REM deprivation. At the molecular level, the following homeostatic sleep responses to 4-h SD were all blunted in Arc KO mice: increase of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluA1 and its phosphorylation in synaptoneurosomes; induction of a subset of SD-response genes; and suppression of the GluA1 messenger RNA in the cortex. In wild-type brains, SD increased Arc protein expression in multiple subcellular locations, including the nucleus, cytoplasm, and synapse, which is reversed in part by recovery sleep. Arc is critical for these behavioral and multiple molecular responses to SD, thus providing a multifunctional role for Arc in the maintenance of sleep homeostasis, which may be attributed by the sleep/wake-associated changes in subcellular location of Arc.


Subject(s)
Cytoskeletal Proteins/metabolism , Nerve Tissue Proteins/metabolism , Sleep/physiology , Animals , Brain/physiology , Cell Nucleus/metabolism , Cerebral Cortex/physiology , Cytoplasm/metabolism , Cytoskeletal Proteins/genetics , Electroencephalography/methods , Homeostasis/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Receptors, AMPA/metabolism , Sleep/genetics , Sleep Deprivation/physiopathology , Sleep, REM/physiology , Wakefulness/genetics , Wakefulness/physiology
12.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37176016

ABSTRACT

The ventrolateral preoptic area (VLPO) contains GABAergic sleep-active neurons. However, the extent to which these neurons are involved in expressing spontaneous sleep and homeostatic sleep regulatory demands is not fully understood. We used calcium (Ca2+) imaging to characterize the activity dynamics of VLPO neurons, especially those expressing the vesicular GABA transporter (VGAT) across spontaneous sleep-waking and in response to homeostatic sleep demands. The VLPOs of wild-type and VGAT-Cre mice were transfected with GCaMP6, and the Ca2+ fluorescence of unidentified (UNID) and VGAT cells was recorded during spontaneous sleep-waking and 3 h of sleep deprivation (SD) followed by 1 h of recovery sleep. Although both VGAT and UNID neurons exhibited heterogeneous Ca2+ fluorescence across sleep-waking, the majority of VLPO neurons displayed increased activity during nonREM/REM (VGAT, 120/303; UNID, 39/106) and REM sleep (VGAT, 32/303; UNID, 19/106). Compared to the baseline waking, VLPO sleep-active neurons (n = 91) exhibited higher activity with increasing SD that remained elevated during the recovery period. These neurons also exhibited increased Ca2+ fluorescence during nonREM sleep, marked by increased slow-wave activity and REM sleep during recovery after SD. These findings support the notion that VLPO sleep-active neurons, including GABAergic neurons, are components of neuronal circuitry that mediate spontaneous sleep and homeostatic responses to sustained wakefulness.


Subject(s)
Calcium , Sleep , Mice , Animals , Sleep/physiology , GABAergic Neurons/physiology , Sleep Deprivation , Sleep, REM , Preoptic Area , Calcium, Dietary
13.
J Neurosci ; 41(41): 8562-8576, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34446572

ABSTRACT

The timing and quality of sleep-wake cycles are regulated by interacting circadian and homeostatic mechanisms. Although the suprachiasmatic nucleus (SCN) is the principal clock, circadian clocks are active across the brain and the respective sleep-regulatory roles of SCN and local clocks are unclear. To determine the specific contribution(s) of the SCN, we used virally mediated genetic complementation, expressing Cryptochrome1 (Cry1) to establish circadian molecular competence in the suprachiasmatic hypothalamus of globally clockless, arrhythmic male Cry1/Cry2-null mice. Under free-running conditions, the rest/activity behavior of Cry1/Cry2-null controls expressing EGFP (SCNCon) was arrhythmic, whereas Cry1-complemented mice (SCNCry1) had coherent circadian behavior, comparable to that of Cry1,2-competent wild types (WTs). In SCNCon mice, sleep-wakefulness, assessed by electroencephalography (EEG)/electromyography (EMG), lacked circadian organization. In SCNCry1 mice, however, it matched WTs, with consolidated vigilance states [wake, rapid eye movement sleep (REMS) and non-REMS (NREMS)] and rhythms in NREMS δ power and expression of REMS within total sleep (TS). Wakefulness in SCNCon mice was more fragmented than in WTs, with more wake-NREMS-wake transitions. This disruption was reversed in SCNCry1 mice. Following sleep deprivation (SD), all mice showed a homeostatic increase in NREMS δ power, although the SCNCon mice had reduced NREMS during the inactive (light) phase of recovery. In contrast, the dynamics of homeostatic responses in the SCNCry1 mice were comparable to WTs. Finally, SCNCon mice exhibited poor sleep-dependent memory but this was corrected in SCNCry1mice. In clockless mice, circadian molecular competence focused solely on the SCN rescued the architecture and consolidation of sleep-wake and sleep-dependent memory, highlighting its dominant role in timing sleep.SIGNIFICANCE STATEMENT The circadian timing system regulates sleep-wake cycles. The hypothalamic suprachiasmatic nucleus (SCN) is the principal circadian clock, but the presence of multiple local brain and peripheral clocks mean the respective roles of SCN and other clocks in regulating sleep are unclear. We therefore used virally mediated genetic complementation to restore molecular circadian functions in the suprachiasmatic hypothalamus, focusing on the SCN, in otherwise genetically clockless, arrhythmic mice. This initiated circadian activity-rest cycles, and circadian sleep-wake cycles, circadian patterning to the intensity of non-rapid eye movement sleep (NREMS) and circadian control of REMS as a proportion of total sleep (TS). Consolidation of sleep-wake established normal dynamics of sleep homeostasis and enhanced sleep-dependent memory. Thus, the suprachiasmatic hypothalamus, alone, can direct circadian regulation of sleep-wake.


Subject(s)
Circadian Rhythm/physiology , Cryptochromes/biosynthesis , Sleep/physiology , Suprachiasmatic Nucleus/metabolism , Wakefulness/physiology , Animals , Circadian Clocks/physiology , Cryptochromes/genetics , Electroencephalography/methods , Electromyography/methods , Male , Memory Disorders , Mice , Mice, Inbred C57BL , Mice, Knockout
14.
J Sleep Res ; 31(4): e13597, 2022 08.
Article in English | MEDLINE | ID: mdl-35575450

ABSTRACT

For hundreds of years, mankind has been influencing its sleep and waking state through the adenosinergic system. For ~100 years now, systematic research has been performed, first started by testing the effects of different dosages of caffeine on sleep and waking behaviour. About 70 years ago, adenosine itself entered the picture as a possible ligand of the receptors where caffeine hooks on as an antagonist to reduce sleepiness. Since the scientific demonstration that this is indeed the case, progress has been fast. Today, adenosine is widely accepted as an endogenous sleep-regulatory substance. In this review, we discuss the current state of the science in model organisms and humans on the working mechanisms of adenosine and caffeine on sleep. We critically investigate the evidence for a direct involvement in sleep homeostatic mechanisms and whether the effects of caffeine on sleep differ between acute intake and chronic consumption. In addition, we review the more recent evidence that adenosine levels may also influence the functioning of the circadian clock and address the question of whether sleep homeostasis and the circadian clock may interact through adenosinergic signalling. In the final section, we discuss the perspectives of possible clinical applications of the accumulated knowledge over the last century that may improve sleep-related disorders. We conclude our review by highlighting some open questions that need to be answered, to better understand how adenosine and caffeine exactly regulate and influence sleep.


Subject(s)
Caffeine , Sleep Deprivation , Adenosine/pharmacology , Caffeine/pharmacology , Circadian Rhythm , Humans , Sleep/physiology , Wakefulness
15.
J Sleep Res ; 31(6): e13603, 2022 12.
Article in English | MEDLINE | ID: mdl-35665551

ABSTRACT

The slow oscillation is a central neuronal dynamic during sleep, and is generated by alternating periods of high and low neuronal activity (ON- and OFF-states). Mounting evidence causally links the slow oscillation to sleep's functions, and it has recently become possible to manipulate the slow oscillation non-invasively and phase-specifically. These developments represent promising clinical avenues, but they also highlight the importance of improving our understanding of how ON/OFF-states affect incoming stimuli and what role they play in neuronal plasticity. Most studies using closed-loop stimulation rely on the electroencephalogram and local field potential signals, which reflect neuronal ON- and OFF-states only indirectly. Here we develop an online detection algorithm based on spiking activity recorded from laminar arrays in mouse motor cortex. We find that online detection of ON- and OFF-states reflects specific phases of spontaneous local field potential slow oscillation. Our neuronal-spiking-based closed-loop procedure offers a novel opportunity for testing the functional role of slow oscillation in sleep-related restorative processes and neural plasticity.


Subject(s)
Action Potentials , Brain Waves , Motor Cortex , Neurons , Sleep , Animals , Mice , Electroencephalography , Motor Cortex/physiology , Neurons/physiology , Sleep/physiology , Neuronal Plasticity/physiology , Algorithms , Internet , Action Potentials/physiology , Brain Waves/physiology
16.
BMC Biol ; 19(1): 65, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33823872

ABSTRACT

BACKGROUND: Homeostatic regulation of sleep is reflected in the maintenance of a daily balance between sleep and wakefulness. Although numerous internal and external factors can influence sleep, it is unclear whether and to what extent the process that keeps track of time spent awake is determined by the content of the waking experience. We hypothesised that alterations in environmental conditions may elicit different types of wakefulness, which will in turn influence both the capacity to sustain continuous wakefulness as well as the rates of accumulating sleep pressure. To address this, we compared the effects of repetitive behaviours such as voluntary wheel running or performing a simple touchscreen task, with wakefulness dominated by novel object exploration, on sleep timing and EEG slow-wave activity (SWA) during subsequent NREM sleep. RESULTS: We find that voluntary wheel running is associated with higher wake EEG theta-frequency activity and results in longer wake episodes, as compared with exploratory behaviour; yet, it does not lead to higher levels of EEG SWA during subsequent NREM sleep in either the frontal or occipital derivation. Furthermore, engagement in a touchscreen task, motivated by food reward, results in lower SWA during subsequent NREM sleep in both derivations, as compared to exploratory wakefulness, even though the total duration of wakefulness is similar. CONCLUSION: Overall, our study suggests that sleep-wake behaviour is highly flexible within an individual and that the homeostatic processes that keep track of time spent awake are sensitive to the nature of the waking experience. We therefore conclude that sleep dynamics are determined, to a large degree, by the interaction between the organism and the environment.


Subject(s)
Exploratory Behavior , Mice/physiology , Motor Activity , Running , Sleep/physiology , Wakefulness , Animals , Male , Mice, Inbred C57BL , Sleep, Slow-Wave/physiology
17.
Neuroimage ; 239: 118281, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34147627

ABSTRACT

Plasticity of synaptic strength and density is a vital mechanism enabling memory consolidation, learning, and neurodevelopment. It is strongly dependent on the intact function of N-Methyl-d-Aspartate Receptors (NMDAR). The importance of NMDAR is further evident as their dysfunction is involved in many diseases such as schizophrenia, Alzheimer's disease, neurodevelopmental disorders, and epilepsies. Synaptic plasticity is thought to be reflected by changes of sleep slow wave slopes across the night, namely higher slopes after wakefulness at the beginning of sleep than after a night of sleep. Hence, a functional NMDAR deficiency should theoretically lead to altered overnight changes of slow wave slopes. Here we investigated whether pediatric patients with anti-NMDAR encephalitis, being a very rare but unique human model of NMDAR deficiency due to autoantibodies against receptor subunits, indeed show alterations in this sleep EEG marker for synaptic plasticity. We retrospectively analyzed 12 whole-night EEGs of 9 patients (age 4.3-20.8 years, 7 females) and compared them to a control group of 45 healthy individuals with the same age distribution. Slow wave slopes were calculated for the first and last hour of Non-Rapid Eye Movement (NREM) sleep (factor 'hour') for patients and controls (factor 'group'). There was a significant interaction between 'hour' and 'group' (p = 0.013), with patients showing a smaller overnight decrease of slow wave slopes than controls. Moreover, we found smaller slopes during the first hour in patients (p = 0.022), whereas there was no group difference during the last hour of NREM sleep (p = 0.980). Importantly, the distribution of sleep stages was not different between the groups, and in our main analyses of patients without severe disturbance of sleep architecture, neither was the incidence of slow waves. These possible confounders could therefore not account for the differences in the slow wave slope values, which we also saw in the analysis of the whole sample of EEGs. These results suggest that quantitative EEG analysis of slow wave characteristics may reveal impaired synaptic plasticity in patients with anti-NMDAR encephalitis, a human model of functional NMDAR deficiency. Thus, in the future, the changes of sleep slow wave slopes may contribute to the development of electrophysiological biomarkers of functional NMDAR deficiency and synaptic plasticity in general.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis/physiopathology , Brain Waves/physiology , Electroencephalography/methods , Neuronal Plasticity , Receptors, N-Methyl-D-Aspartate/deficiency , Sleep Stages/physiology , Adolescent , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnostic imaging , Child , Child, Preschool , Female , Humans , Male , Receptors, N-Methyl-D-Aspartate/immunology , Retrospective Studies , Young Adult
18.
J Sleep Res ; 30(5): e13295, 2021 10.
Article in English | MEDLINE | ID: mdl-33622020

ABSTRACT

The two-process model of sleep posits that two processes interact to regulate sleep and wake: a homeostatic (Process S) and a circadian process (Process C). Process S compensates for sleep loss by increasing sleep duration and intensity. Process C gates the timing of sleep/wake favouring sleep during the circadian night in humans. In this study, we examined whether taking six naps throughout a 24-hr period would result in the same amount of dissipation of homeostatic pressure at the end of the day as a night of sleep, when time in bed is equivalent. Data from 46 participants (10-23 years; mean = 14.5 [±â€…2.9]; 25 females) were analysed. Slow-wave energy, normalized to account for individual differences in slow-wave activity, was used as a measure of sleep homeostasis. In the nap condition, slow-wave energy of six naps distributed equally during a 24-hr period was calculated. In the baseline condition, slow-wave energy was measured after 9-hr time in bed. A paired t-test was used to compare nap and baseline conditions. A linear regression was used to examine whether slow-wave energy varied as a function of age. Slow-wave energy was greater during baseline than the nap condition (p < .001). No association between age and slow-wave energy was found for baseline or nap conditions. Our findings indicate that multiple naps throughout the day are not as effective at dissipating sleep pressure as a night of sleep. This is likely due to the influence of the circadian system, which staves off sleep during certain times of the day.


Subject(s)
Sleep Initiation and Maintenance Disorders , Wakefulness , Circadian Rhythm , Female , Humans , Sleep , Time Factors
19.
Eur J Neurosci ; 52(9): 4100-4114, 2020 11.
Article in English | MEDLINE | ID: mdl-32588491

ABSTRACT

Sleep pressure that builds up gradually during the extended wakefulness results in sleep rebound. Several lines of evidence, however, suggest that wake per se may not be sufficient to drive sleep rebound and that rapid eye movement (REM) and non-rapid eye movement (NREM) sleep rebound may be differentially regulated. In this study, we investigated the relative contribution of brain versus physical activities in REM and NREM sleep rebound by four sets of experiments. First, we forced locomotion in rats in a rotating wheel for 4 hr and examined subsequent sleep rebound. Second, we exposed the rats lacking homeostatic sleep response after prolonged quiet wakefulness and arousal brain activity induced by chemoactivation of parabrachial nucleus to the same rotating wheel paradigm and tested if physical activity could rescue the sleep homeostasis. Third, we varied motor activity levels while concurrently inhibiting the cortical activity by administering ketamine or xylazine (motor inhibitor), or ketamine + xylazine mixture and investigated if motor activity in the absence of activated cortex can cause NREM sleep rebound. Fourth and finally, we manipulated cortical activity by administering ketamine (that induced active wakefulness and waking brain) alone or in combination with atropine (that selectively inhibits the cortex) and studied if cortical inhibition irrespective of motor activity levels can block REM sleep rebound. Our results demonstrate that motor activity but not cortical activity determines NREM sleep rebound whereas cortical activity but not motor activity determines REM sleep rebound.


Subject(s)
Electroencephalography , Sleep , Animals , Homeostasis , Rats , Sleep, REM , Wakefulness
20.
Eur J Neurosci ; 51(1): 346-365, 2020 01.
Article in English | MEDLINE | ID: mdl-30702783

ABSTRACT

Mood disorders are often characterised by alterations in circadian rhythms, sleep disturbances and seasonal exacerbation. Conversely, chronobiological treatments utilise zeitgebers for circadian rhythms such as light to improve mood and stabilise sleep, and manipulations of sleep timing and duration as rapid antidepressant modalities. Although sleep deprivation ("wake therapy") can act within hours, and its mood-elevating effects be maintained by regular morning light administration/medication/earlier sleep, it has not entered the regular guidelines for treating affective disorders as a first-line treatment. The hindrances to using chronotherapeutics may lie in their lack of patentability, few sponsors to carry out large multi-centre trials, non-reimbursement by medical insurance and their perceived difficulty or exotic "alternative" nature. Future use can be promoted by new technology (single-sample phase measurements, phone apps, movement and sleep trackers) that provides ambulatory documentation over long periods and feedback to therapist and patient. Light combinations with cognitive behavioural therapy and sleep hygiene practice may speed up and also maintain response. The urgent need for new antidepressants should hopefully lead to reconsideration and implementation of these non-pharmacological methods, as well as further clinical trials. We review the putative neurochemical mechanisms underlying the antidepressant effect of sleep deprivation and light therapy, and current knowledge linking clocks and sleep with affective disorders: neurotransmitter switching, stress and cortico-limbic reactivity, clock genes, cortical neuroplasticity, connectomics and neuroinflammation. Despite the complexity of multi-system mechanisms, more insight will lead to fine tuning and better application of circadian and sleep-related treatments of depression.


Subject(s)
Mood Disorders , Sleep , Antidepressive Agents/therapeutic use , Circadian Rhythm , Humans , Mood Disorders/drug therapy , Sleep Deprivation/therapy
SELECTION OF CITATIONS
SEARCH DETAIL