Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Cell ; 186(18): 3862-3881.e28, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37572660

ABSTRACT

Male sexual behavior is innate and rewarding. Despite its centrality to reproduction, a molecularly specified neural circuit governing innate male sexual behavior and reward remains to be characterized. We have discovered a developmentally wired neural circuit necessary and sufficient for male mating. This circuit connects chemosensory input to BNSTprTac1 neurons, which innervate POATacr1 neurons that project to centers regulating motor output and reward. Epistasis studies demonstrate that BNSTprTac1 neurons are upstream of POATacr1 neurons, and BNSTprTac1-released substance P following mate recognition potentiates activation of POATacr1 neurons through Tacr1 to initiate mating. Experimental activation of POATacr1 neurons triggers mating, even in sexually satiated males, and it is rewarding, eliciting dopamine release and self-stimulation of these cells. Together, we have uncovered a neural circuit that governs the key aspects of innate male sexual behavior: motor displays, drive, and reward.


Subject(s)
Neural Pathways , Sexual Behavior, Animal , Animals , Male , Neurons/physiology , Reward , Sexual Behavior, Animal/physiology , Mice
2.
Annu Rev Neurosci ; 46: 321-339, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37001242

ABSTRACT

Rapid advances in the neural control of social behavior highlight the role of interconnected nodes engaged in differential information processing to generate behavior. Many innate social behaviors are essential to reproductive fitness and therefore fundamentally different in males and females. Programming these differences occurs early in development in mammals, following gonadal differentiation and copious androgen production by the fetal testis during a critical period. Early-life programming of social behavior and its adult manifestation are separate but yoked processes, yet how they are linked is unknown. This review seeks to highlight that gap by identifying four core mechanisms (epigenetics, cell death, circuit formation, and adult hormonal modulation) that could connect developmental changes to the adult behaviors of mating and aggression. We further propose that a unique social behavior, adolescent play, bridges the preweaning to the postpubertal brain by engaging the same neural networks underpinning adult reproductive and aggressive behaviors.


Subject(s)
Aggression , Social Behavior , Male , Animals , Female , Brain , Sexual Behavior, Animal , Cognition , Mammals
3.
Horm Behav ; 152: 105362, 2023 06.
Article in English | MEDLINE | ID: mdl-37086574

ABSTRACT

The social behavior network (SBN) has provided a framework for understanding the neural control of social behavior. The original SBN hypothesis proposed this network modulates social behavior and should exhibit distinct patterns of neural activity across nodes, which correspond to distinct social contexts. Despite its tremendous impact on the field of social neuroscience, no study has directly tested this hypothesis. Thus, we assessed Fos responses across the SBN of male prairie voles (Microtus ochrogaster). Virgin/non-bonded and pair bonded subjects were exposed to a sibling cagemate or pair bonded partner, novel female, novel male, novel meadow vole, novel object, or no stimulus. Inconsistent with the original SBN hypothesis, we did not find profoundly different patterns of neural responses across the SBN for different contexts, but instead found that the SBN generated significantly different patterns of activity in response to social novelty in pair bonded, but not non-bonded males. These findings suggest that non-bonded male prairie voles may perceive social novelty differently from pair bonded males or that SBN functionality undergoes substantial changes after pair bonding. This study reveals novel information about bond-dependent, context-specific neural responsivity in male prairie voles and suggests that the SBN may be particularly important for processing social salience. Further, our study suggests there is a need to reconceptualize the framework of how the SBN modulates social behavior.


Subject(s)
Grassland , Social Behavior , Male , Female , Humans , Animals , Arvicolinae/physiology , Pair Bond
4.
Horm Behav ; 155: 105403, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37678093

ABSTRACT

Social relationships, affiliative social attachments, are important for many species. The best studied types of relationships are monogamous pair bonds. However, it remains unclear how generalizable models of pair bonding are across types of social attachments. Zebra finches are a fascinating system to explore the neurobiology of social relationships because they form various adult bonds with both same- and opposite-sex partners. To test whether different bonds are supported by a single brain network, we quantified individuals' neuroendocrine state after either 24 h or 2 weeks of co-housing with a novel same- or opposite-sex partner. We defined neuroendocrine state by the expression of 22 genes related to 4 major signaling pathways (dopamine, steroid, nonapeptide, and opioid) in six brain regions associated with affiliation or communication [nucleus accumbens (NAc), nucleus taeniae of the amygdala (TnA), medial preoptic area (POM), and periaqueductal gray (PAG), ventral tegmental area, and auditory cortex]. Overall, we found dissociable effects of social contexts (same- or opposite-sex partnerships) and duration of co-housing. Social bonding impacted the neuroendocrine state of four regions in males (NAc, TnA, POM, and PAG) and three regions in females (NAc, TnA, and POM). Monogamous pair bonding specifically appeared to impact male NAc. However, the patterns of gene expression in zebra finches were different than has previously been reported in mammals. Together, our results support the view that there are numerous mechanisms regulating social relationships and highlight the need to further our understanding of how social interactions shape social bonds.

5.
Horm Behav ; 141: 105138, 2022 05.
Article in English | MEDLINE | ID: mdl-35219166

ABSTRACT

A primary goal of the field of behavioral neuroendocrinology is to understand how the brain modulates complex behavior. Over the last 20 years we have proposed various brain networks to explain behavioral regulation, however, the parameters by which these networks are identified are often ill-defined and reflect our personal scientific biases based on our area of expertise. In this perspective article, I question our characterization of brain networks underlying behavior and their utility. Using the Social Behavior Network as a primary example, I outline issues with brain networks commonly discussed in the field of behavioral neuroendocrinology, argue that we reconsider how we identify brain networks underlying behavior, and urge the future use of analytical tools developed by the field of Network Neuroscience. With modern statistical/mathematical tools and state of the art technology for brain imaging, we can strive to minimize our bias and generate brain networks that may more accurately reflect how the brain produces behavior.


Subject(s)
Brain , Neurosciences , Brain/physiology , Motivation , Neuroendocrinology , Social Behavior
6.
Proc Natl Acad Sci U S A ; 114(23): 5886-5893, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28584121

ABSTRACT

Animal behavior is ultimately the product of gene regulatory networks (GRNs) for brain development and neural networks for brain function. The GRN approach has advanced the fields of genomics and development, and we identify organizational similarities between networks of genes that build the brain and networks of neurons that encode brain function. In this perspective, we engage the analogy between developmental networks and neural networks, exploring the advantages of using GRN logic to study behavior. Applying the GRN approach to the brain and behavior provides a quantitative and manipulative framework for discovery. We illustrate features of this framework using the example of social behavior and the neural circuitry of aggression.


Subject(s)
Biological Evolution , Gene Regulatory Networks , Social Behavior , Animals , Models, Biological , Nerve Net
7.
Eur J Neurosci ; 48(2): 1851-1865, 2018 07.
Article in English | MEDLINE | ID: mdl-29923242

ABSTRACT

The posterodorsal medial amygdala (MePD) is a sexually dimorphic area and plays a central role in the social behavior network of rats. Dendritic spines modulate synaptic processing and plasticity. Here, we compared the number and structure of dendritic spines in the MePD of prepubertal males and females and postpubertal males with and without sexual experience. Spines were classified and measured after three-dimensional image reconstruction using DiI fluorescent labeling and confocal microscopy. Significantly differences are as follows: (a) Prepubertal males have more proximal spines, stubby/wide spines with long length and large head diameter and thin and mushroom spines with wide neck and head diameters than prepubertal females, whereas (b) prepubertal females have more mushroom spines with long neck length than age-matched males. (c) In males, the number of thin spines reduces after puberty and, compared to sexually experienced counterparts, (d) naive males have short stubby/wide spines as well as mushroom spines with reduced neck diameter. In addition, (e) sexually experienced males have an increase in the number of mushroom spines, the length of stubby/wide spines, the head diameter of thin and stubby/wide spines and the neck diameter of thin and mushroom spines. These data indicate that a sexual dimorphism in the MePD dendritic spines is evident before adulthood and a spine-specific remodeling of number and shape can be brought about by both puberty and sexual experience. These fine-tuned ontogenetic, hormonally and experience-dependent changes in the MePD are relevant for plastic synaptic processing and the reproductive behavior of adult rats.


Subject(s)
Corticomedial Nuclear Complex/cytology , Dendritic Spines/ultrastructure , Neuronal Plasticity/physiology , Sex Characteristics , Sexual Behavior, Animal/physiology , Sexual Maturation/physiology , Age Factors , Animals , Female , Male , Rats , Rats, Wistar
8.
Horm Behav ; 97: 102-111, 2018 01.
Article in English | MEDLINE | ID: mdl-29117505

ABSTRACT

Motherhood is a period of intense behavioral and brain activity. However, we know less about the neural and molecular mechanisms associated with the demands of fatherhood. Here, we report the results of two experiments designed to track changes in behavior and brain activation associated with fatherhood in male threespined stickleback fish (Gasterosteus aculeatus), a species in which fathers are the sole providers of parental care. In experiment 1, we tested whether males' behavioral reactions to different social stimuli depends on parental status, i.e. whether they were providing parental care. Parental males visited their nest more in response to social stimuli compared to nonparental males. Rates of courtship behavior were high in non-parental males but low in parental males. In experiment 2, we used a quantitative in situ hybridization method to compare the expression of an immediate early gene (Egr-1) across the breeding cycle - from establishing a territory to caring for offspring. Egr-1 expression peaked when the activities associated with fatherhood were greatest (when they were providing care to fry), and then returned to baseline levels once offspring were independent. The medial dorsal telencephalon (basolateral amygdala), lateral part of dorsal telencephalon (hippocampus) and anterior tuberal nucleus (ventral medial hypothalamus) exhibited high levels of Egr-1 expression during the breeding cycle. These results help to define the neural circuitry associated with fatherhood in fishes, and are consistent with the hypothesis that fatherhood - like motherhood - is a period of intense behavioral and neural activity.


Subject(s)
Early Growth Response Protein 1/metabolism , Hippocampus/metabolism , Paternal Behavior/physiology , Smegmamorpha/physiology , Animals , Male , Sexual Behavior, Animal/physiology
9.
Horm Behav ; 87: 16-24, 2017 01.
Article in English | MEDLINE | ID: mdl-27793769

ABSTRACT

Social behavior is regulated by conserved neural networks across vertebrates. Variation in the organization of neuropeptide systems across these networks is thought to contribute to individual and species diversity in network function during social contexts. For example, oxytocin (OT) is an ancient neuropeptide that binds to OT receptors (OTRs) in the brain and modulates social and reproductive behavior across vertebrate species, including humans. Central OTRs exhibit extraordinarily diverse expression patterns that are associated with individual and species differences in social behavior. In voles, OTR density in the nucleus accumbens (NAc)-a region important for social and reward learning-is associated with individual and species variation in social attachment behavior. Here we test whether OTRs in the NAc modulate a social salience network (SSN)-a network of interconnected brain nuclei thought to encode valence and incentive salience of sociosensory cues-during a social context in the socially monogamous male prairie vole. Using a selective OTR antagonist, we test whether activation of OTRs in the NAc during sociosexual interaction and mating modulates expression of the immediate early gene product Fos across nuclei of the SSN. We show that blockade of endogenous OTR signaling in the NAc during sociosexual interaction and mating does not strongly modulate levels of Fos expression in individual nodes of the network, but strongly modulates patterns of correlated Fos expression between the NAc and other SSN nuclei.


Subject(s)
Arvicolinae/physiology , Nerve Net/physiology , Receptors, Oxytocin/physiology , Social Behavior , Animals , Behavior, Animal/drug effects , Brain/drug effects , Brain/metabolism , Female , Male , Nerve Net/drug effects , Nerve Net/metabolism , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Oxytocin/pharmacology , Oxytocin/physiology , Pair Bond , Receptors, Oxytocin/metabolism , Reproduction/drug effects , Reproduction/physiology , Sexual Behavior, Animal/drug effects
10.
Horm Behav ; 76: 11-22, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25935729

ABSTRACT

This article is part of a Special Issue "SBN 2014". Understanding affiliative behavior is critical to understanding social organisms. While affiliative behaviors are present across a wide range of taxa and contexts, much of what is known about the neuroendocrine regulation of affiliation comes from studies of pair-bond formation in prairie voles. This leaves at least three gaps in our current knowledge. First, little is known about long-term pair-bond maintenance. Second, few studies have examined non-mammalian systems, even though monogamy is much more common in birds than in mammals. Third, the influence of breeding condition on affiliation is largely unknown. The zebra finch (Taeniopygia guttata) is an excellent model system for examining the neuroendocrine regulation of affiliative behaviors, including the formation and maintenance of a long-term pair bond. Zebra finches form genetically monogamous pair bonds, which they actively maintain throughout the year. The genomic and neuroanatomical resources, combined with the wealth of knowledge on the ecology and ethology of wild zebra finches, give this model system unique advantages to study the neuroendocrine regulation of pair bonding. Here, we review the endocrinology of opportunistic breeding in zebra finches, the sex steroid profiles of breeding and non-breeding zebra finches (domesticated and wild), and the roles of sex steroids and other signaling molecules in pair-maintenance behaviors in the zebra finch and other monogamous species. Studies of zebra finches and other songbirds will be useful for broadly understanding the neuroendocrine regulation of affiliative behaviors, including pair bonding and monogamy.


Subject(s)
Finches/physiology , Gonadal Steroid Hormones/physiology , Pair Bond , Social Behavior , Animals , Female , Finches/metabolism , Gonadal Steroid Hormones/metabolism , Male
11.
bioRxiv ; 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-37905098

ABSTRACT

Aggression is ubiquitous among social species and functions to maintains social dominance hierarchies. The African cichlid fish Astatotilapia burtoni is an ideal study species for studying aggression due to their unique and flexible dominance hierarchy. However, female aggression in this species and the neural mechanisms of aggression in both sexes is not well understood. To further understand the potential sex differences in aggression in this species, we characterized aggression in male and female A. burtoni in a mirror assay. We then quantified neural activation patterns in brain regions of the social behavior network (SBN) to investigate if differences in behavior are reflected in the brain with immunohistochemistry by detecting the phosphorylated ribosome marker phospho-S6 ribosomal protein (pS6), a marker for neural activation. We found that A. burtoni perform both identical and sex-specific aggressive behaviors in response to a mirror assay. We observed sex differences in pS6 immunoreactivity in the Vv, a homolog of the lateral septum in mammals. Males but not females had higher ps6 immunoreactivity in the ATn after the aggression assay. The ATn is a homolog of the ventromedial hypothalamus in mammals, which is strongly implicated in the regulation of aggression in males. Several regions also have higher pS6 immunoreactivity in negative controls than fish exposed to a mirror, implicating a role for inhibitory neurons in suppressing aggression until a relevant stimulus is present. Male and female A. burtoni display both similar and sexually dimorphic behavioral patterns in aggression in response to a mirror assay. There are also sex differences in the corresponding neural activation patterns in the SBN. In mirror males but not females, the ATn clusters with the POA, revealing a functional connectivity of these regions that is triggered in an aggressive context in males. These findings suggest that distinct neural circuitry underlie aggressive behavior in male and female A. burtoni, serving as a foundation for future work investigating the molecular and neural underpinnings of sexually dimorphic behaviors in this species to reveal fundamental insights into understanding aggression.

12.
Neuroscience ; 537: 126-140, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38042251

ABSTRACT

17ß-estradiol (E2) regulates various forms of social behavior through the activation of two types of estrogen receptors, ERα and ERß. The lateral septum (LS) is thought to be one of the potential target sites of E2, but the role played by ERα and ERß in this brain area remains largely unknown. In the present study, we first analyzed the distribution of ERα and ERß with double fluorescent immunohistochemistry in a transgenic mouse line in which red fluorescent protein (RFP) signal has been a reliable marker of ERß expression. The overall number of ERß-RFP-expressing cells was significantly higher (about 2.5 times) compared to ERα-expressing cells. The distribution of the two types of ERs was different, with co-expression only seen in about 1.2% of total ER-positive cells. Given these distinctive distribution patterns, we examined the behavioral effects of site-specific knockdown of each ER using viral vector-mediated small interference RNA (siRNA) techniques in male mice. We found ERß-specific behavioral alterations during a social interaction test, suggesting involvement of ERß-expressing LS neurons in the regulation of social anxiety and social interest. Further, we investigated the neuronal projections of ERα- and ERß-expressing LS cells by injecting an anterograde viral tracer in ERα-Cre and ERß-iCre mice. Dense expression of green fluorescence protein (GFP) in synaptic terminals was observed in ERß-iCre mice in areas known to be related to the modulation of anxiety. These findings collectively suggest that ERß expressed in the LS plays a major role in the estrogenic control of social anxiety-like behavior.


Subject(s)
Estrogen Receptor alpha , Estrogen Receptor beta , Mice , Male , Animals , Estrogen Receptor beta/metabolism , Estrogen Receptor alpha/metabolism , Estrogens , Estradiol/pharmacology , Estradiol/metabolism , Mice, Transgenic , Anxiety
13.
J Neural Eng ; 21(3)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38861996

ABSTRACT

Objective.Distributed hypothalamic-midbrain neural circuits help orchestrate complex behavioral responses during social interactions. Given rapid advances in optical imaging, it is a fundamental question how population-averaged neural activity measured by multi-fiber photometry (MFP) for calcium fluorescence signals correlates with social behaviors is a fundamental question. This paper aims to investigate the correspondence between MFP data and social behaviors.Approach:We propose a state-space analysis framework to characterize mouse MFP data based on dynamic latent variable models, which include a continuous-state linear dynamical system and a discrete-state hidden semi-Markov model. We validate these models on extensive MFP recordings during aggressive and mating behaviors in male-male and male-female interactions, respectively.Main results:Our results show that these models are capable of capturing both temporal behavioral structure and associated neural states, and produce interpretable latent states. Our approach is also validated in computer simulations in the presence of known ground truth.Significance:Overall, these analysis approaches provide a state-space framework to examine neural dynamics underlying social behaviors and reveals mechanistic insights into the relevant networks.


Subject(s)
Photometry , Social Behavior , Animals , Mice , Photometry/methods , Male , Female , Mice, Inbred C57BL , Nerve Net/physiology , Computer Simulation , Sexual Behavior, Animal/physiology , Aggression/physiology , Models, Neurological
14.
bioRxiv ; 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38234793

ABSTRACT

Distributed hypothalamic-midbrain neural circuits orchestrate complex behavioral responses during social interactions. How population-averaged neural activity measured by multi-fiber photometry (MFP) for calcium fluorescence signals correlates with social behaviors is a fundamental question. We propose a state-space analysis framework to characterize mouse MFP data based on dynamic latent variable models, which include continuous-state linear dynamical system (LDS) and discrete-state hidden semi-Markov model (HSMM). We validate these models on extensive MFP recordings during aggressive and mating behaviors in male-male and male-female interactions, respectively. Our results show that these models are capable of capturing both temporal behavioral structure and associated neural states. Overall, these analysis approaches provide an unbiased strategy to examine neural dynamics underlying social behaviors and reveals mechanistic insights into the relevant networks.

15.
Genes Brain Behav ; 23(5): e12907, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39246030

ABSTRACT

Avian brood parasitism is an evolutionarily derived behavior for which the neurobiological mechanisms are mostly unexplored. We aimed to identify brain regions that have diverged in the brood-parasitic brain using relative transcript abundance of social neuropeptides and receptors. We compared behavioral responses and transcript abundance in three brain regions in the brown-headed cowbird (BHCO), a brood parasite, and a closely related parental species, the red-winged blackbird (RWBL). Females of both species were treated with mesotocin (MT; avian homolog of oxytocin) or saline prior to exposure to nest stimuli. Results reveal that MT promotes approach toward nests with eggs rather than nests with begging nestlings in both species. We also examined relative transcript abundance of the five social neuropeptides and receptors in the brain regions examined: preoptic area (POA), paraventricular nucleus (PVN) and bed nucleus of the stria terminalis (BST). We found that MT-treated cowbirds but not blackbirds exhibited lower transcript abundance for two receptors, corticotropin-releasing factor 2 (CRFR2) and prolactin receptor (PRLR) in BST. Additionally, MT-treated cowbirds had higher PRLR in POA, comparable to those found in blackbirds, regardless of treatment. No other transcripts of interest exhibited significant differences as a result of MT treatment, but we found a significant effect of species in the three regions. Together, these results indicate that POA, PVN, and BST represent neural nodes that have diverged in avian brood parasites and may serve as neural substrates of brood-parasitic behavior.


Subject(s)
Nesting Behavior , Oxytocin , Animals , Oxytocin/metabolism , Oxytocin/genetics , Oxytocin/pharmacology , Oxytocin/analogs & derivatives , Female , Songbirds/genetics , Brain/metabolism , Species Specificity , Paraventricular Hypothalamic Nucleus/metabolism , Septal Nuclei/metabolism , Preoptic Area/metabolism
16.
J Exp Biol ; 216(Pt 13): 2412-20, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23761466

ABSTRACT

Agonistic behavior has shaped sociality across evolution. Though extremely diverse in types of displays and timing, agonistic encounters always follow the same conserved phases (evaluation, contest and post-resolution) and depend on homologous neural circuits modulated by the same neuroendocrine mediators across vertebrates. Among neuromodulators, serotonin (5-HT) is the main inhibitor of aggression, and arginine vasotocin (AVT) underlies sexual, individual and social context differences in behavior across vertebrate taxa. We aim to demonstrate that a distinct spatio-temporal pattern of activation of the social behavior network characterizes each type of aggression by exploring its modulation by both the 5-HT and AVT systems. We analyze the neuromodulation of aggression between the intermale reproduction-related aggression displayed by the gregarious Brachyhypopomus gauderio and the non-breeding intrasexual and intersexual territorial aggression displayed by the solitary Gymnotus omarorum. Differences in the telencephalic activity of 5-HT between species were paralleled by a differential serotonergic modulation through 1A receptors that inhibited aggression in the territorial aggression of G. omarorum but not in the reproduction-related aggression of B. gauderio. AVT injection increased the motivation towards aggression in the territorial aggression of G. omarorum but not in the reproduction-related aggression of B. gauderio, whereas the electric submission and dominance observed in G. omarorum and B. gauderio, respectively, were both AVT-dependent in a distinctive way. The advantages of our model species allowed us to identify precise target areas and mechanisms of the neuromodulation of two types of aggression that may represent more general and conserved strategies of the control of social behavior among vertebrates.


Subject(s)
Aggression , Electric Fish/physiology , Neurotransmitter Agents/metabolism , Serotonin/metabolism , Vasotocin/metabolism , Animals , Behavior, Animal , Female , Male , Sexual Behavior, Animal , Territoriality
17.
J Exp Biol ; 216(Pt 19): 3656-66, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23788709

ABSTRACT

In social species that form hierarchies where only dominant males reproduce, lower-ranking individuals may challenge higher-ranking ones, often resulting in changes in relative social status. How does a losing animal respond to loss of status? Here, using the African cichlid fish Astatotilapia burtoni, we manipulated the social environment, causing males to descend in rank, and then examined changes in behavior, circulating steroids and immediate early gene (IEG) expression (cfos, egr-1) in micro-dissected brain regions as a proxy for neuronal activation. In particular, we examined changes in the conserved 'social behavior network' (SBN), a collection of brain nuclei known to regulate social behaviors across vertebrates. Astatotilapia burtoni has rapidly reversible dominant-subordinate male phenotypes, so that within minutes, descending males lost their bright body coloration, switched to submissive behaviors and expressed higher plasma cortisol levels compared with non-descending and control males. Descending males had higher IEG expression throughout the SBN, but each brain region showed a distinct IEG-specific response in either cfos or egr-1 levels, but not both. Overall, SBN IEG patterns in descending males were distinctly different from the pattern observed in males ascending (subordinate to dominant) in social status. These results reveal that the SBN rapidly coordinates the perception of social cues about status that are of opposite valence, and translates them into appropriate phenotypic changes. This shows for the first time in a non-mammalian vertebrate that dropping in social rank rapidly activates specific socially relevant brain nuclei in a pattern that differs from when males rise to a higher status position.


Subject(s)
Behavior, Animal , Brain/physiology , Cichlids/physiology , Dominance-Subordination , Animals , Brain/metabolism , Cichlids/blood , Cichlids/genetics , Early Growth Response Protein 1/genetics , Fish Proteins/genetics , Gene Expression Regulation , Hormones/blood , Male , Territoriality
18.
Brain Struct Funct ; 228(7): 1785-1797, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37615758

ABSTRACT

Neural activation in brain regions for vocal control is social context dependent. This context-dependent brain activation reflects social context-appropriate vocal behavior but has unresolved mechanisms. Studies of non-vocal social behaviors in multiple organisms suggest a functional role for several evolutionarily conserved and highly interconnected brain regions. Here, we use neural activity-dependent gene expression to evaluate the functional connectivity of this social behavior network within zebra finches in non-social and social singing contexts. We found that activity in one social behavior network region, the medial preoptic area (POM), was strongly associated with the amount of non-social undirected singing in zebra finches. In addition, in all regions of the social behavior network and the paraventricular nucleus (PVN), a higher percentage of EGR1 expression was observed during a social female-directed singing context compared to a non-social undirected singing context. Furthermore, we observed distinct patterns of significantly correlated activity between regions of the social behavior network during non-social undirected and social female-directed singing. Our results suggest that non-social vs. social contexts differentially activate this social behavior network and PVN. Moreover, neuronal activity within this social behavior network, PVN, and POM may alter context-appropriate vocal production.


Subject(s)
Brain , Social Behavior , Female , Animals , Learning , Paraventricular Hypothalamic Nucleus , Preoptic Area
19.
Curr Biol ; 33(22): 4937-4949.e3, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37898122

ABSTRACT

Bluehead wrasses (Thalassoma bifasciatum) follow a socially controlled mechanism of sex determination. A socially dominant initial-phase (IP) female is able to transform into a new terminal-phase (TP) male if the resident TP male is no longer present. TP males display an elaborate array of courtship behaviors, including both color changes and motor behaviors. Little is known concerning the neural circuits that control male-typical courtship behaviors. This study used glutamate iontophoresis to identify regions that may be involved in courtship. Stimulation of the following brain regions elicited diverse types of color change responses, many of which appear similar to courtship color changes: the ventral telencephalon (supracommissural nucleus of the ventral telencephalon [Vs], lateral nucleus of the ventral telencephalon [Vl], ventral nucleus of the ventral telencephalon [Vv], and dorsal nucleus of the ventral telencephalon [Vd]), parts of the preoptic area (NPOmg and NPOpc), entopeduncular nucleus, habenular nucleus, and pretectal nuclei (PSi and PSm). Stimulation of two regions in the posterior thalamus (central posterior thalamic [CP] and dorsal posterior thalamic [DP]) caused movements of the pectoral fins that are similar to courtship fluttering and vibrations. Furthermore, these responses were elicited in female IP fish, indicating that circuits for sexual behaviors typical of TP males exist in females. Immunohistochemistry results revealed regions that are more active in fish that are not courting: interpeduncular nucleus, red nucleus, and ventrolateral thalamus (VL). Taken together, we propose that the telencephalic-habenular-interpeduncular pathway plays an important role in controlling and regulating courtship behaviors in TP males; in this model, in response to telencephalic input, the habenular nucleus inhibits the interpeduncular nucleus, thereby dis-inhibiting forebrain regions and promoting the expression of courtship behaviors.


Subject(s)
Courtship , Perciformes , Animals , Female , Male , Telencephalon/physiology , Prosencephalon , Thalamus , Perciformes/physiology , Fishes
20.
J Exp Zool A Ecol Integr Physiol ; 337(1): 88-98, 2022 01.
Article in English | MEDLINE | ID: mdl-33929097

ABSTRACT

Is the brain bipotential or is sex-typical behavior determined during development? Thirty years of research in whiptail lizards transformed the field of behavioral neuroscience to show the brain is indeed bipotential, producing behaviors along a spectrum of male-typical and female-typical behavior via a parliamentary system of neural networks and not a predetermined program of constrained behavioral output. The unusual clade of whiptail lizards gave these insights as there are several parthenogenetic all-female species that display both male-typical and female-typical sexual behavior. These descendant species exist alongside their ancestors, allowing a unique perspective into how brain-behavior relationships evolve. In this review, we celebrate the over 40-year career of David Crews, beginning with the story of how he established whiptails as a model system through serendipitous behavioral observations and ending with advice to young scientists formulating their own questions. In between these personal notes, we discuss the discoveries that integrated hormones, neural activity, and gene expression to provide transformative insights into how brains function and reshaped our understanding of sexuality.


Subject(s)
Lizards , Animals , Biological Evolution , Brain , Female , Male , Parthenogenesis , Sexual Behavior, Animal
SELECTION OF CITATIONS
SEARCH DETAIL